Cucurbitacin E Glucoside as an Apoptosis Inducer in Melanoma Cancer Cells by Modulating AMPK/PGK1/PKM2 Pathway
- Authors: Hussein M.1, Sallam A.2, Mohamed S.2, Abdel-Rady A.1, Maghrabe A.2, Soltan A.1, Abdelhamid H.1, Eldesoky G.3, Alam S.4, Islam M.3
-
Affiliations:
- Department of Biotechnology, Faculty of Applied Health Science, October 6 University
- Department of Biotechnology, Faculty of Applied Health Science,, October 6 University
- Department of Chemistry, College of Science, King Saud University
- Department of Chemistry, Aliah University, New Town
- Issue: Vol 25, No 13 (2025)
- Pages: 885-898
- Section: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694431
- DOI: https://doi.org/10.2174/0118715206345600241216053948
- ID: 694431
Cite item
Full Text
Abstract
Background:Cucurbitacin E glucoside (CEG), a prominent constituent of Cucurbitaceae plants, exhibits notable effects on cancer cell behavior, including inhibition of invasion and migration, achieved through mechanisms such as apoptosis induction, autophagy, cell cycle arrest, and disruption of the actin cytoskeleton.
Objective:Melanoma, the fastest-growing malignancy among young individuals in the United States and the predominant cancer among young adults aged 25 to 29, poses a significant health threat.
Methods:The study estimated the IC50 of CEG against the A375 cell line and assessed cell viability, apoptosis, and necrosis upon CEG treatment. Additionally, IC50 values of CEG against Phosphoglycerate kinase1 (PGK1) and Pyruvate Kinase M2 (PKM2) were determined at various levels of concentrations. The impact of CEG on intracellular glutathione (GSH) levels and the activity of key enzymes (GR, SOD, GPx, CAT), as well as markers of apoptosis (P53), and cell cycle regulation (cyclin D1, cyclin E2, cdk2, cdk4), were estimated. Finally, the level of AMP-activated protein kinase (AMPK), PGK1, and PKM2 gene expression levels in A375 cells were also evaluated.
Results:The IC50 value of CEG against A375 cells was determined to be 41.87 ± 2.47 μg/mL. A375 cells treated with CEG showed a significant increase in the G0/G1 phase and a decrease in the S and G2/M phases, indicating cell cycle arrest and reduced proliferation. Additionally, there was an increase in the sub-G1 peak, suggesting enhanced apoptosis. Additionally, the pharmacological analysis revealed potent inhibitory activity of CEG against both PGK1 and PKM2 gene expression, with IC50 values 27.89, 11.70, 7.43 and 2.74 μg/mL after incubation periods interval of 30, 60, 90 and 120 minutes, respectively. In In-Silico study, computational simulations showed a strong binding affinity of CEG towards AMPK, PGK1, and PKM2 activities, with estimated binding energy (ΔG) values of -6.5, -7.9, and -8.3 kcal/mol, respectively. Furthermore, incubation of A375 cells with CEG (at concentrations of 20.9, 41.87, and 83.74 μg/mL) led to a significant decrease in GSH levels and the activity of GR, SOD, GPx, CAT, cyclin D1, cyclin E2, cdk2, and cdk4. Notably, CEG treatment upregulated AMPK levels while downregulating PGK1 and PKM2 gene expression significantly.
Conclusion:CEG induces apoptosis in melanoma cancer cells (A375) through various mechanisms, including enhanced production of p53 and MDA, inhibition of key enzymes (GR, SOD, GPx, CAT) involved in oxidative stress defense and production of cell cycle regulating enzymes (cyclin D1, cyclin E2, cdk2, cdk4, and upregulation of AMPK and downregulation PGK1, and PKM2 in A375 tumor cells pathways. The downregulation of PKM2 in CEG-treated A375 cells inhibits ATP generation via aerobic glycolysis, a metabolic preference of cancer cells.
Aim:This study aims to elucidate the apoptotic mechanism of CEG against the melanoma cancer cell line (A375).
Keywords
About the authors
Mohammed Hussein
Department of Biotechnology, Faculty of Applied Health Science, October 6 University
Author for correspondence.
Email: info@benthamscience.net
Aya Sallam
Department of Biotechnology, Faculty of Applied Health Science,, October 6 University
Email: info@benthamscience.net
Shaza Mohamed
Department of Biotechnology, Faculty of Applied Health Science,, October 6 University
Email: info@benthamscience.net
Amera Abdel-Rady
Department of Biotechnology, Faculty of Applied Health Science, October 6 University
Email: info@benthamscience.net
Adam Maghrabe
Department of Biotechnology, Faculty of Applied Health Science,, October 6 University
Email: info@benthamscience.net
Abdelrahman Soltan
Department of Biotechnology, Faculty of Applied Health Science, October 6 University
Email: info@benthamscience.net
Hanan Abdelhamid
Department of Biotechnology, Faculty of Applied Health Science, October 6 University
Email: info@benthamscience.net
Gaber Eldesoky
Department of Chemistry, College of Science, King Saud University
Email: info@benthamscience.net
Seikh Alam
Department of Chemistry, Aliah University, New Town
Email: info@benthamscience.net
Mohammad Islam
Department of Chemistry, College of Science, King Saud University
Email: info@benthamscience.net
References
- Hayat, M.J.; Howlader, N.; Reichman, M.E.; Edwards, B.K. Cancer statistics, trends, and multiple primary cancer analyses from the surveillance, epidemiology, and end results (SEER) program. Oncologist, 2007, 12(1), 20-37. doi: 10.1634/theoncologist.12-1-20 PMID: 17227898
- El Gizawy, H.A.E.H.; Hussein, M.A.; Abdel-Sattar, E. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum. Pharm. Biol., 2019, 57(1), 485-497. doi: 10.1080/13880209.2019.1643378 PMID: 31401911
- Hussein, M.A. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet. Free Radic. Antioxid., 2011, 1(1), 49-60. doi: 10.5530/ax.2011.1.9
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033. doi: 10.1126/science.1160809 PMID: 19460998
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; Kantarjian, H.M.; Collins, R.; Patel, M.R.; Frankel, A.E.; Stein, A.; Sekeres, M.A.; Swords, R.T.; Medeiros, B.C.; Willekens, C.; Vyas, P.; Tosolini, A.; Xu, Q.; Knight, R.D.; Yen, K.E.; Agresta, S.; de Botton, S.; Tallman, M.S. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood, 2017, 130(6), 722-731. doi: 10.1182/blood-2017-04-779405 PMID: 28588020
- Hussein, M.A.; Ismail, N.E.M.; Mohamed, A.H.; Borik, R.M.; Ali, A.A.; Mosaad, Y.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity. Bioinform. Biol. Insights, 2021, 15, 11779322211055891. doi: 10.1177/11779322211055891 PMID: 34840499
- Shehata, M.R.; Mohamed, M.M.A.; Shoukry, M.M.; Hussein, M.A.; Hussein, F.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine. J. Coord. Chem., 2015, 68(6), 1101-1114. doi: 10.1080/00958972.2015.1007962
- El-gizawy, H.A.E.; Hussein, M.A. Isolation, structure elucidation of ferulic and coumaric acids from Fortunella japonica swingle leaves and their structure antioxidant activity relationship. Free Radic. Antioxid., 2016, 7(1), 23-30. doi: 10.5530/fra.2017.1.4
- Zheng, Q.; Lin, Z.; Xu, J.; Lu, Y.; Meng, Q.; Wang, C.; Yang, Y.; Xin, X.; Li, X.; Pu, H.; Gui, X.; Li, T.; Xiong, W.; Lu, D. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis., 2018, 9(3), 253. doi: 10.1038/s41419-018-0305-7 PMID: 29449541
- Benesch, C.; Schneider, C.; Voelker, H-U.; Kapp, M.; Caffier, H.; Krockenberger, M.; Dietl, J.; Kammerer, U.; Schmidt, M. The clinicopathological and prognostic relevance of pyruvate kinase M2 and pAkt expression in breast cancer. Anticancer Res., 2010, 30(5), 1689-1694. PMID: 20592362
- Tang, S.J.; Ho, M.Y.; Cho, H.C.; Lin, Y.C.; Sun, G.H.; Chi, K.H.; Wang, Y.S.; Jhou, R.S.; Yang, W.; Sun, K.H. Phosphoglycerate kinase 1‐overexpressing lung cancer cells reduce cyclooxygenase 2 expression and promote anti‐tumor immunity in vivo. Int. J. Cancer, 2008, 123(12), 2840-2848. doi: 10.1002/ijc.23888 PMID: 18814280
- Mohammed Abdalla, H., Jr; Soad Mohamed, A.G. In vivo hepato-protective properties of purslane extracts on paracetamol-induced liver damage. Malays. J. Nutr., 2010, 16(1), 161-170. PMID: 22691863
- Mohamad, E.A.; Mohamed, Z.N.; Hussein, M.A.; Elneklawi, M.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation. ACS Omega, 2022, 7(3), 3109-3120. doi: 10.1021/acsomega.1c06591 PMID: 35097306
- El Gizawy, H.A.; Abo-Salem, H.M.; Ali, A.A.; Hussein, M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from parkia roxburghii against AChE activity as well as GABAA α5, GSK-3β, and p38α MAP-kinase genes. ACS Omega, 2021, 6(31), 20492-20511. doi: 10.1021/acsomega.1c02340 PMID: 34395996
- Gobba, N.A.E.K.; Hussein Ali, A.; El Sharawy, D.E.; Hussein, M.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch. Environ. Occup. Health, 2018, 73(3), 189-202. doi: 10.1080/19338244.2017.1314930 PMID: 28375782
- Wang, J.; Wang, J.; Dai, J.; Jung, Y.; Wei, C.L.; Wang, Y.; Havens, A.M.; Hogg, P.J.; Keller, E.T.; Pienta, K.J.; Nor, J.E.; Wang, C.Y.; Taichman, R.S. A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res., 2007, 67(1), 149-159. doi: 10.1158/0008-5472.CAN-06-2971 PMID: 17210694
- Faubert, B.; Boily, G.; Izreig, S.; Griss, T.; Samborska, B.; Dong, Z.; Dupuy, F.; Chambers, C.; Fuerth, B.J.; Viollet, B.; Mamer, O.A.; Avizonis, D.; DeBerardinis, R.J.; Siegel, P.M.; Jones, R.G. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab., 2013, 17(1), 113-124. doi: 10.1016/j.cmet.2012.12.001 PMID: 23274086
- Zhou, Y.; Farooqi, A.A.; Xu, B. Comprehensive review on signaling pathways of dietary saponins in cancer cells suppression. Crit. Rev. Food Sci. Nutr., 2023, 63(20), 4325-4350. doi: 10.1080/10408398.2021.2000933 PMID: 34751072
- Chen, Y.F.; Yang, C.H.; Chang, M.S.; Ciou, Y.P.; Huang, Y.C. Foam properties and detergent abilities of the saponins from Camellia oleifera. Int. J. Mol. Sci., 2010, 11(11), 4417-4425. doi: 10.3390/ijms11114417 PMID: 21151446
- Barbosa, A.D.P. An overview on the biological and pharmacological activities of saponins. Int. J. Pharm. Pharm. Sci., 2014, 6, 47-50.
- Man, S.; Gao, W.; Zhang, Y.; Huang, L.; Liu, C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia, 2010, 81(7), 703-714. doi: 10.1016/j.fitote.2010.06.004 PMID: 20550961
- Ramalhete, C.; Gonçalves, B.M.F.; Barbosa, F.; Duarte, N.; Ferreira, M.J.U. Momordica balsamina: Phytochemistry and pharmacological potential of a gifted species. Phytochem. Rev., 2022, 21(2), 617-646. doi: 10.1007/s11101-022-09802-7 PMID: 35153639
- Borik, R.M.; Hussein, M.A. Synthesis, molecular docking, biological potentials and structure activity relationship of new quinazoline and quinazoline-4-one derivatives. Asian J. Chem., 2021, 33(2), 423-438. doi: 10.14233/ajchem.2021.23036
- Boshra, S.; Hussein, M. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed., 2016, 8, 217-227.
- Hussein, M.A.; Borik, R.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol., 2022, 23(9), 1179-1203. doi: 10.2174/1389201022666210601170650 PMID: 34077343
- Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods, 1989, 119(2), 203-210. doi: 10.1016/0022-1759(89)90397-9 PMID: 2470825
- Crowley, L.C.; Marfell, B.J.; Scott, A.P.; Waterhouse, N.J. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb. Protoc., 2016, 2016(11), pdb.prot087288. doi: 10.1101/pdb.prot087288 PMID: 27803250
- Chen, X.; Zhao, C.; Li, X.; Wang, T.; Li, Y.; Cao, C.; Ding, Y.; Dong, M.; Finci, L.; Wang, J.; Li, X.; Liu, L. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat. Chem. Biol., 2015, 11(1), 19-25. doi: 10.1038/nchembio.1657 PMID: 25383758
- Vander Heiden, M.G.; Christofk, H.R.; Schuman, E.; Subtelny, A.O.; Sharfi, H.; Harlow, E.E.; Xian, J.; Cantley, L.C. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol., 2010, 79(8), 1118-1124. doi: 10.1016/j.bcp.2009.12.003 PMID: 20005212
- Akerboom, T.P.M.; Sies, H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol., 1981, 77, 373-382. doi: 10.1016/S0076-6879(81)77050-2 PMID: 7329314
- Tampa, M.; Nicolae, I.; Ene, C.D.; Sarbu, I.; Matei, C.; Georgescu, S.R. Vitamin C and thiobarbituric acid reactive substances (TBARS) in Psoriasis vulgaris related to psoriasis area severity index (PASI). Revista de Chimie, 2017, 68(1), 43-47. doi: 10.37358/RC.17.1.5385
- Nishikimi, M.; Appaji Rao, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854. doi: 10.1016/S0006-291X(72)80218-3 PMID: 4400444
- Aebi, H. Catalase in vitro; Methods in EnzymologyElsevier, 1984, pp. 121-126.
- Maiorino, F.M.; Brigelius-Flohé, R.; Aumann, K.; Roveri, A.; Schomburg, D.; Flohé, L. Diversity of glutathione peroxidases; Methods in Enzymology, Elsevier, 1995, pp. 38-53.
- Dym, O.; Eisenberg, D. Sequence‐structure analysis of FAD‐containing proteins. Protein Sci., 2001, 10(9), 1712-1728. doi: 10.1110/ps.12801 PMID: 11514662
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17. doi: 10.1186/1758-2946-4-17 PMID: 22889332
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042. doi: 10.1093/bioinformatics/btx350 PMID: 28575181
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
- Systèmes, D.B. Discovery Studio Modeling Environment, Release 2019; Dassault Systèmes, 2019.
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544. doi: 10.1038/s41564-020-0695-z PMID: 32123347
- Wu, P.L.; Lin, F.W.; Wu, T.S.; Kuoh, C.S.; Lee, K.H.; Lee, S.J. Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis. Chem. Pharm. Bull., 2004, 52(3), 345-349. doi: 10.1248/cpb.52.345 PMID: 14993759
- Kong, Y.; Chen, J.; Zhou, Z.; Xia, H.; Qiu, M.H.; Chen, C. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PLoS One, 2014, 9(7), e103760. doi: 10.1371/journal.pone.0103760 PMID: 25072848
- He, X.; Gao, Q.; Qiang, Y.; Guo, W.; Ma, Y. Cucurbitacin E induces apoptosis of human prostate cancer cells via cofilin-1 and mTORC1. Oncol. Lett., 2017, 13(6), 4905-4910. doi: 10.3892/ol.2017.6086 PMID: 28599494
- Tannin-Spitz, T.; Grossman, S.; Dovrat, S.; Gottlieb, H.E.; Bergman, M. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem. Pharmacol., 2007, 73(1), 56-67. doi: 10.1016/j.bcp.2006.09.012 PMID: 17049494
- Mostafa, M.M.; Amin, M.M.; Zakaria, M.Y.; Hussein, M.A.; Shamaa, M.M.; Abd El-Halim, S.M. Chitosan surface-modified PLGA nanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells. Pharmaceutics, 2023, 15(2), 606. doi: 10.3390/pharmaceutics15020606 PMID: 36839928
- M Soliman, S.; Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; M Abd El-Halim, S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv., 2022, 29(1), 427-439. doi: 10.1080/10717544.2022.2032875 PMID: 35098843
- El-Gizawy, H.; Hussein, M. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malvaparviflora growing in Egypt. Int. J. Phytomed., 2015, 7, 219-230.
- Mosaad, Y.O.; Hussein, M.A.; Ateyya, H.; Mohamed, A.H.; Ali, A.A.; Ramadan, Y.A.; Wink, M.; El-Kholy, A.A. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients. J. Inflamm. Res., 2022, 15, 6745-6759. doi: 10.2147/JIR.S386506 PMID: 36540060
- Min, H.Y.; Pei, H.; Hyun, S.Y.; Boo, H.J.; Jang, H.J.; Cho, J.; Kim, J.H.; Son, J.; Lee, H.Y. Potent anticancer effect of the natural steroidal Saponin gracillin is produced by inhibiting glycolysis and oxidative phosphorylation-mediated bioenergetics. Cancers, 2020, 12(4), 913. doi: 10.3390/cancers12040913 PMID: 32276500
- Gao, X.; Wang, H.; Yang, J.J.; Liu, X.; Liu, Z.R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell, 2012, 45(5), 598-609. doi: 10.1016/j.molcel.2012.01.001 PMID: 22306293
- Zheng, L.F.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure–activity relationship. Food Chem. Toxicol., 2008, 46(1), 149-156. doi: 10.1016/j.fct.2007.07.010 PMID: 17764801
- Bhosle, S.M.; Huilgol, N.G.; Mishra, K.P. Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid. Clin. Chim. Acta, 2005, 359(1-2), 89-100. doi: 10.1016/j.cccn.2005.03.037 PMID: 15922998
- Haupt, S.; Berger, M.; Goldberg, Z.; Haupt, Y. Apoptosis - The p53 network. J. Cell Sci., 2003, 116(20), 4077-4085. doi: 10.1242/jcs.00739 PMID: 12972501
- Liu, Y.; Xu, X.; Xu, X.; Li, S.; Liang, Z.; Hu, Z.; Wu, J.; Zhu, Y.; Jin, X.; Wang, X.; Lin, Y.; Chen, H.; Mao, Y.; Luo, J.; Zheng, X.; Xie, L. MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1. Oncol. Lett., 2017, 14(5), 5121-5128. doi: 10.3892/ol.2017.6865 PMID: 29142597
- Chen, Z.; Yu, Q.; Chen, G.; Tang, R.; Luo, D.; Dang, Y.; Wei, D. MiR-193a-3p inhibits pancreatic ductal adenocarcinoma cell proliferation by targeting CCND1. Cancer Manag. Res., 2019, 11, 4825-4837. doi: 10.2147/CMAR.S199257 PMID: 31213904
- Qian, X.; Li, X.; Lu, Z. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis. Autophagy, 2017, 13(7), 1246-1247. doi: 10.1080/15548627.2017.1313945 PMID: 28486006
- Zha, Q.B.; Zhang, X.Y.; Lin, Q.R.; Xu, L.H.; Zhao, G.X.; Pan, H.; Zhou, D.; Ouyang, D.Y.; Liu, Z.H.; He, X.H. Cucurbitacin E induces autophagy via downregulating mTORC1 signaling and upregulating AMPK activity. PLoS One, 2015, 10(5), e0124355. doi: 10.1371/journal.pone.0124355 PMID: 25970614
- Zhang, K.; Sun, L.; Kang, Y. Regulation of phosphoglycerate kinase 1 and its critical role in cancer. Cell Commun. Signal., 2023, 21(1), 240. doi: 10.1186/s12964-023-01256-4 PMID: 37723547
Supplementary files
