Effects of Citrus-derived Diosmetin on Melanoma: Induction of Apoptosis and Autophagy Mediated by PI3K/Akt/mTOR Pathway Inhibition


Cite item

Full Text

Abstract

Background:Diosmetin (DIOS) is a naturally abundant flavonoid and possesses various biological activities that hold promise as an anti-cancer agent. However, the anti-cancer activities and underlying mechanism of DIOS on cutaneous melanoma remain unclear.

Objective:This study seeks to explore the anti-tumor effect and mechanism of DIOS in cutaneous melanoma.

Methods:Here, a variety of in vitro and in vivo experiments, combined with RNA sequencing (RNA-seq), were employed to ascertain the potential anti-cutaneous melanoma capacity and mechanism of DIOS.

Results:The results demonstrated that DIOS considerably impeded cell proliferation and triggered cell apoptosis in a dose- and time-dependent manner. Concurrently, DIOS markedly elevated the expression of pro-apoptotic proteins (Cleaved caspase-3, Bax, Cleaved PARP, and Cleaved caspase-9) and downregulated the expression of Bcl-2. Additionally, DIOS markedly upregulated the protein expressions of LC3B-II and Atg5, while downregulating p62 protein expression. Notably, pre-treatment with an autophagy inhibitor significantly inhibited DIOSinduced cell apoptosis and autophagy. Mechanistically, DIOS was identified to repress the PI3K/Akt/mTOR signaling pathway by western blot analyses and RNA-seq. Finally, in vivo experiments using a syngeneic mouse model confirmed the anti-tumor effect of DIOS, which exhibited high levels of apoptosis and autophagy.

Conclusion:These findings propose that DIOS acts as a potential melanoma therapy that exerts its anti-tumor effects by triggering apoptosis and autophagy via inhibition of the PI3K/Akt/mTOR pathway.

About the authors

jie Li

Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University

Email: info@benthamscience.net

Mingyuan Xu

Shanghai Skin Disease Hospital, Tongji University School of Medicine

Email: info@benthamscience.net

Nanhui Wu

Shanghai Skin Disease Hospital, Tongji University School of Medicine

Email: info@benthamscience.net

Fei Wu

Shanghai Skin Disease Hospital, Tongji University School of Medicine

Email: info@benthamscience.net

Jiashe Chen

Shanghai Skin Disease Hospital, Tongji University School of Medicine

Email: info@benthamscience.net

Xiaoxiang Xu

Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai Skin Disease Hospital

Author for correspondence.
Email: info@benthamscience.net

Fei Tan

Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University

Author for correspondence.
Email: info@benthamscience.net

Yeqiang Liu

Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; Vries, D.E.; Whiteman, D.C.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol., 2022, 158(5), 495-503. doi: 10.1001/jamadermatol.2022.0160 PMID: 35353115
  2. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  3. Hartman, R.I.; Lin, J.Y. Cutaneous melanoma—A review in detection, staging, and management. Hematol. Oncol. Clin. North Am., 2019, 33(1), 25-38. doi: 10.1016/j.hoc.2018.09.005 PMID: 30497675
  4. Flaherty, K.T. A twenty year perspective on melanoma therapy. Pigment Cell Melanoma Res., 2023, 36(6), 563-575. doi: 10.1111/pcmr.13125 PMID: 37770281
  5. Kim, H.J.; Kim, Y.H. Molecular frontiers in melanoma: Pathogenesis, diagnosis, and therapeutic advances. Int. J. Mol. Sci., 2024, 25(5), 2984. doi: 10.3390/ijms25052984 PMID: 38474231
  6. Liu, S.; Yao, S.; Yang, H.; Liu, S.; Wang, Y. Autophagy: Regulator of cell death. Cell Death Dis., 2023, 14(10), 648. doi: 10.1038/s41419-023-06154-8 PMID: 37794028
  7. Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12. doi: 10.1186/s12943-020-1138-4 PMID: 31969156
  8. Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol., 2023, 24(8), 560-575. doi: 10.1038/s41580-023-00585-z PMID: 36864290
  9. Jalal, S.; Zhang, T.; Deng, J.; Wang, J.; Xu, T.; Zhang, T.; Zhai, C.; Yuan, R.; Teng, H.; Huang, L. β-Elemene isopropanolamine derivative LXX-8250 induces apoptosis through impairing autophagic flux via PFKFB4 repression in melanoma cells. Front. Pharmacol., 2022, 13, 900973. doi: 10.3389/fphar.2022.900973 PMID: 36034839
  10. Kashyap, D.; Garg, V.K.; Goel, N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol., 2021, 125, 73-120. doi: 10.1016/bs.apcsb.2021.01.003 PMID: 33931145
  11. Alves, C.L.; Ditzel, H.J. Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer. Int. J. Mol. Sci., 2023, 24(5), 4522. doi: 10.3390/ijms24054522 PMID: 36901954
  12. Xu, Z.; Han, X.; Ou, D.; Liu, T.; Li, Z.; Jiang, G.; Liu, J.; Zhang, J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol., 2020, 104(2), 575-587. doi: 10.1007/s00253-019-10257-8 PMID: 31832711
  13. Tufail, M.; Wan, W.D.; Jiang, C.; Li, N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem. Biol. Interact., 2024, 396, 111055. doi: 10.1016/j.cbi.2024.111055 PMID: 38763348
  14. Kharouf, N.; Flanagan, T.W.; Alamodi, A.A.; Hmada, Y.A.; Hassan, S.Y.; Shalaby, H.; Hassan, M. CD133-dependent activation of phosphoinositide 3-kinase/AKT/mammalian target of rapamycin signaling in melanoma progression and drug resistance. Cells, 2024, 13(3), 240.
  15. Rahmati, M.; Ebrahim, S.; Hashemi, S.; Motamedi, M.; Moosavi, M.A. New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Mol. Biol. Rep., 2020, 47(11), 9021-9032. doi: 10.1007/s11033-020-05886-6 PMID: 33034883
  16. Chamcheu, J.; Roy, T.; Uddin, M.; Mbeumi, B.S.; Chamcheu, R.C.; Walker, A.; Liu, Y.Y.; Huang, S. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: A review of current status and future trends on natural and synthetic agents therapy. Cells, 2019, 8(8), 803. doi: 10.3390/cells8080803 PMID: 31370278
  17. Rahman, M.M.; Sarker, M.T.; Tumpa, A.M.A.; Yamin, M.; Islam, T.; Park, M.N.; Islam, M.R.; Rauf, A.; Sharma, R.; Cavalu, S.; Kim, B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front. Pharmacol., 2022, 13, 950109. doi: 10.3389/fphar.2022.950109 PMID: 36160435
  18. Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13. doi: 10.1007/s13659-020-00293-7 PMID: 33389713
  19. Yang, Y.; He, P.Y.; Zhang, Y.; Li, N. Natural products targeting the mitochondria in cancers. Molecules, 2020, 26(1), 92. doi: 10.3390/molecules26010092 PMID: 33379233
  20. Dehelean, C.A.; Marcovici, I.; Soica, C.; Mioc, M.; Coricovac, D.; Iurciuc, S.; Cretu, O.M.; Pinzaru, I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules, 2021, 26(4), 1109. doi: 10.3390/molecules26041109 PMID: 33669817
  21. Wang, Q.; Kuang, H.; Su, Y.; Sun, Y.; Feng, J.; Guo, R.; Chan, K. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol., 2013, 146(1), 9-39. doi: 10.1016/j.jep.2012.12.013 PMID: 23274744
  22. Yang, D.; Peng, M.; Fu, F.; Zhao, W.; Zhang, B. Diosmetin ameliorates psoriasis-associated inflammation and keratinocyte hyperproliferation by modulation of PGC-1α / YAP signaling pathway. Int. Immunopharmacol., 2024, 134, 112248. doi: 10.1016/j.intimp.2024.112248 PMID: 38749332
  23. Chen, Y.; Dai, X.; Chen, W.; Qiao, Y.; Bai, R.; Duan, X.; Zhang, K.; Chen, X.; Li, X.; Mo, S.; Cao, W.; Li, X.; Liu, K.; Dong, Z.; Lu, J. Diosmetin suppresses the progression of ESCC by CDK2/Rb/E2F2/RRM2 pathway and synergies with cisplatin. Oncogene, 2023, 42(29), 2278-2293. doi: 10.1038/s41388-023-02750-2 PMID: 37349644
  24. Liu, J.; Wen, X.; Liu, B.; Zhang, Q.; Zhang, J.; Miao, H.; Zhu, R. Diosmetin inhibits the metastasis of hepatocellular carcinoma cells by downregulating the expression levels of MMP-2 and MMP-9. Mol. Med. Rep., 2016, 13(3), 2401-2408. doi: 10.3892/mmr.2016.4872 PMID: 26847170
  25. Sun, Z.; Liu, K.; Liang, C.; Wen, L.; Wu, J.; Liu, X.; Li, X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother. Res., 2024, 38(7), 3660-3694. doi: 10.1002/ptr.8214 PMID: 38748620
  26. Zhao, F.; Hong, X.; Li, D.; Wei, Z.; Ci, X.; Zhang, S. Diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway. Med. Oncol., 2021, 38(5), 54. doi: 10.1007/s12032-021-01501-1 PMID: 33811596
  27. Koosha, S.; Mohamed, Z.; Sinniah, A.; Alshawsh, M.A. Investigation into the molecular mechanisms underlying the anti-proliferative and anti-tumorigenesis activities of diosmetin against HCT-116 human colorectal cancer. Sci. Rep., 2019, 9(1), 5148. doi: 10.1038/s41598-019-41685-1 PMID: 30914796
  28. Choi, J.; Lee, D.H.; Park, S.Y.; Seol, J.W. Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed. Pharmacother., 2019, 117, 109091. doi: 10.1016/j.biopha.2019.109091 PMID: 31228803
  29. Aranha, E.S.P.; Portilho, A.J.S.; de Sousa, B.L.; Silva, D.E.L.; Mesquita, F.P.; Rocha, W.C.; da Silva, A.F.M.; Lima, E.S.; Alves, A.P.N.N.; Koolen, H.H.F.; Montenegro, R.C.; Vasconcellos, M.C. 22β-hydroxytingenone induces apoptosis and suppresses invasiveness of melanoma cells by inhibiting MMP-9 activity and MAPK signaling. J. Ethnopharmacol., 2021, 267, 113605. doi: 10.1016/j.jep.2020.113605 PMID: 33232779
  30. Liu, L.; Wen, T.; Xiao, Y.; Chen, H.; Yang, S.; Shen, X. Sea buckthorn extract mitigates chronic obstructive pulmonary disease by suppression of ferroptosis via scavenging ROS and blocking p53/MAPK pathways. J. Ethnopharmacol., 2025, 336, 118726. doi: 10.1016/j.jep.2024.118726 PMID: 39181279
  31. Jiang, S.; Ma, F.; Lou, J.; Li, J.; Shang, X.; Li, Y.; Wu, J.; Xu, S. Naringenin reduces oxidative stress and necroptosis, apoptosis, and pyroptosis in random-pattern skin flaps by enhancing autophagy. Eur. J. Pharmacol., 2024, 970, 176455. doi: 10.1016/j.ejphar.2024.176455 PMID: 38423240
  32. Jeon, S.J.; Choi, E.Y.; Han, E.J.; Lee, S.W.; Moon, J.M.; Jung, S.H.; Jung, J.Y. Piperlongumine induces apoptosis via the MAPK pathway and ERK‑mediated autophagy in human melanoma cells. Int. J. Mol. Med., 2023, 52(6), 115. doi: 10.3892/ijmm.2023.5318 PMID: 37830157
  33. Komel, T. Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry, 2021, 141, 107843.
  34. Koosha, S.; Mohamed, Z.; Sinniah, A.; Alshawsh, M.A. Evaluation of anti-tumorigenic effects of diosmetin against human colon cancer xenografts in athymic nude mice. Molecules, 2019, 24(14), 2522. doi: 10.3390/molecules24142522 PMID: 31295840
  35. Zhao, L.; Jin, L.; Yang, B. Diosmetin alleviates S. aureus-induced mastitis by inhibiting SIRT1/GPX4 mediated ferroptosis. Life Sci., 2023, 331, 122060. doi: 10.1016/j.lfs.2023.122060 PMID: 37652155
  36. He, X.; Sun, Y.; Fan, R.; Sun, J.; Zou, D.; Yuan, Y. Knockdown of the DJ-1 (PARK7) gene sensitizes pancreatic cancer to erlotinib inhibition. Mol. Ther. Oncolytics, 2021, 20, 364-372. doi: 10.1016/j.omto.2021.01.013 PMID: 33614917
  37. Tian, L.; Meng, H.; Dong, X.; Li, X.; Shi, Z.; Li, H.; Zhang, L.; Yang, Y.; Liu, R.; Pei, C.; Li, B. IRGM promotes melanoma cell survival through autophagy and is a promising prognostic biomarker for clinical application. Mol. Ther. Oncolytics, 2021, 20, 187-198. doi: 10.1016/j.omto.2020.12.005 PMID: 33665357
  38. Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The role of polyphenol (Flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer, 2020, 72(3), 386-397. doi: 10.1080/01635581.2019.1637006 PMID: 31287738
  39. Ning, N.; Liu, S.; Liu, X.; Tian, Z.; Jiang, Y.; Yu, N.; Tan, B.; Feng, H.; Feng, X.; Zou, L. Curcumol inhibits the proliferation and metastasis of melanoma via the miR-152-3p/PI3K/AKT and ERK/NF-κB signaling pathways. J. Cancer, 2020, 11(7), 1679-1692. doi: 10.7150/jca.38624 PMID: 32194780
  40. Rad, S.J.; Ozleyen, A.; Tumer, B.T.; Adetunji, O.C.; Omari, E.N.; Balahbib, A.; Taheri, Y.; Bouyahya, A.; Martorell, M.; Martins, N.; Cho, W.C. Natural products and synthetic analogs as a source of antitumor drugs. Biomolecules, 2019, 9(11), 679. doi: 10.3390/biom9110679 PMID: 31683894
  41. Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104(2), 466-479. doi: 10.1016/j.foodchem.2006.11.054
  42. Wujec, M.; Feldo, M. Can we improve diosmetin activity? The state-of-the-art and promising research directions. Molecules, 2023, 28(23), 7910.
  43. Si, Q.; Shi, Y.; Huang, D.; Zhang, N. Diosmetin alleviates hypoxia‑induced myocardial apoptosis by inducing autophagy through AMPK activation. Mol. Med. Rep., 2020, 22(2), 1335-1341. doi: 10.3892/mmr.2020.11241 PMID: 32627001
  44. Pan, Z.; Tan, Z.; Li, H.; Wang, Y.; Du, H.; Sun, J.; Li, C.; Ye, S.; Li, X.; Quan, J. Diosmetin induces apoptosis and protective autophagy in human gastric cancer HGC-27 cells via the PI3K/Akt/FoxO1 and MAPK/JNK pathways. Med. Oncol., 2023, 40(11), 319. doi: 10.1007/s12032-023-02180-w PMID: 37796396
  45. Raza, W.; Meena, A.; Luqman, S. Diosmetin: A dietary flavone as modulator of signaling pathways in cancer progression. Mol. Carcinog., 2024, 63(9), 1627-1642. doi: 10.1002/mc.23774 PMID: 38888206
  46. Newton, K.; Strasser, A.; Kayagaki, N.; Dixit, V.M. Cell death. Cell, 2024, 187(2), 235-256. doi: 10.1016/j.cell.2023.11.044 PMID: 38242081
  47. Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis, 2023, 28(1-2), 20-38. doi: 10.1007/s10495-022-01780-7 PMID: 36342579
  48. Czabotar, P.E.; Saez, G.A.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol., 2023, 24(10), 732-748. doi: 10.1038/s41580-023-00629-4 PMID: 37438560
  49. Wang, C.; Li, S.; Ren, H.; Sheng, Y.; Wang, T.; Li, M.; Zhou, Q.; He, H.; Liu, C. Anti-proliferation and pro-apoptotic effects of diosmetin via modulating cell cycle arrest and mitochondria-mediated intrinsic apoptotic pathway in MDA-MB-231 cells. Med. Sci. Monit., 2019, 25, 4639-4647. doi: 10.12659/MSM.914058 PMID: 31228347
  50. Yan, Y.; Liu, X.; Gao, J.; Wu, Y.; Li, Y. Inhibition of TGF-β signaling in gliomas by the flavonoid diosmetin isolated from Dracocephalum peregrinum L. Molecules, 2020, 25(1), 192. doi: 10.3390/molecules25010192 PMID: 31906574
  51. Oak, C.; Khalifa, A.; Isali, I.; Bhaskaran, N.; Walker, E.; Shukla, S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int. J. Oncol., 2018, 53(2), 835-843. doi: 10.3892/ijo.2018.4407 PMID: 29767250
  52. Mizushima, N.; Levine, B. Autophagy in human diseases. N. Engl. J. Med., 2020, 383(16), 1564-1576. doi: 10.1056/NEJMra2022774 PMID: 33053285
  53. Fan, S.; Yue, L.; Wan, W.; Zhang, Y.; Zhang, B.; Otomo, C.; Li, Q.; Lin, T.; Hu, J.; Xu, P.; Zhu, M.; Tao, H.; Chen, Z.; Li, L.; Ding, H.; Yao, Z.; Lu, J.; Wen, Y.; Zhang, N.; Tan, M.; Chen, K.; Xie, Y.; Otomo, T.; Zhou, B.; Jiang, H.; Dang, Y.; Luo, C. Inhibition of autophagy by a small molecule through covalent modification of the LC3 protein. Angew. Chem. Int. Ed., 2021, 60(50), 26105-26114. doi: 10.1002/anie.202109464 PMID: 34590387
  54. Hwang, H.J.; Ha, H.; Lee, B.S.; Kim, B.H.; Song, H.K.; Kim, Y.K. LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy. Nat. Commun., 2022, 13(1), 1436. doi: 10.1038/s41467-022-29139-1 PMID: 35302060
  55. Huang, X.; Yao, J.; Liu, L.; Chen, J.; Mei, L.; Huangfu, J.; Luo, D.; Wang, X.; Lin, C.; Chen, X.; Yang, Y.; Ouyang, S.; Wei, F.; Wang, Z.; Zhang, S.; Xiang, T.; Neculai, D.; Sun, Q.; Kong, E.; Tate, E.W.; Yang, A. S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy. Mol. Cell, 2023, 83(19), 3485-3501.e11. doi: 10.1016/j.molcel.2023.09.004 PMID: 37802024
  56. Feng, X.; Sun, D.; Li, Y.; Zhang, J.; Liu, S.; Zhang, D.; Zheng, J.; Xi, Q.; Liang, H.; Zhao, W.; Li, Y.; Xu, M.; He, J.; Liu, T.; Hasim, A.; Ma, M.; Xu, P.; Mi, N. Local membrane source gathering by p62 body drives autophagosome formation. Nat. Commun., 2023, 14(1), 7338. doi: 10.1038/s41467-023-42829-8 PMID: 37957156
  57. Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Pedro, B.S.J.M.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; Choi, M.E.; Chu, C.T.; Codogno, P.; Colombo, M.I.; Cuervo, A.M.; Deretic, V.; Dikic, I.; Elazar, Z.; Eskelinen, E.L.; Fimia, G.M.; Gewirtz, D.A.; Green, D.R.; Hansen, M.; Jäättelä, M.; Johansen, T.; Juhász, G.; Karantza, V.; Kraft, C.; Kroemer, G.; Ktistakis, N.T.; Kumar, S.; Otin, L.C.; Macleod, K.F.; Madeo, F.; Martinez, J.; Meléndez, A.; Mizushima, N.; Münz, C.; Penninger, J.M.; Perera, R.M.; Piacentini, M.; Reggiori, F.; Rubinsztein, D.C.; Ryan, K.M.; Sadoshima, J.; Santambrogio, L.; Scorrano, L.; Simon, H.U.; Simon, A.K.; Simonsen, A.; Stolz, A.; Tavernarakis, N.; Tooze, S.A.; Yoshimori, T.; Yuan, J.; Yue, Z.; Zhong, Q.; Galluzzi, L.; Pietrocola, F. Autophagy in major human diseases. EMBO J., 2021, 40(19), e108863. doi: 10.15252/embj.2021108863 PMID: 34459017
  58. Pangilinan, C.; Klionsky, D.J.; Liang, C. Emerging dimensions of autophagy in melanoma. Autophagy, 2024, 20(8), 1700-1711. doi: 10.1080/15548627.2024.2330261 PMID: 38497492
  59. Sorice, M. Crosstalk of autophagy and apoptosis. Cells, 2022, 11(9), 1479. doi: 10.3390/cells11091479 PMID: 35563785
  60. Zhang, C.; Liu, R.; Chen, M.; Xu, Y.; Jin, X.; Shen, B.; Wang, J. Autophagy inhibitors 3‐MA and BAF may attenuate hippocampal neuronal necroptosis after global cerebral ischemia–reperfusion injury in male rats by inhibiting the interaction of the RIP3 / AIF / CYPA complex. J. Neurosci. Res., 2024, 102(2), e25301. doi: 10.1002/jnr.25301 PMID: 38361405
  61. Yan, J.; Shan, C.; Zhang, Z.; Li, F.; Sun, Y.; Wang, Q.; He, B.; Luo, K.; Chang, J.; Liang, Y. Autophagy-induced intracellular signaling fractional nano-drug system for synergistic anti-tumor therapy. J. Colloid Interface Sci., 2023, 645, 986-996. doi: 10.1016/j.jcis.2023.05.031 PMID: 37179196
  62. Gąsiorkiewicz, B.M.; Adamczyk, K.P.; Piska, K.; Pękala, E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest. New Drugs, 2021, 39(2), 538-563. doi: 10.1007/s10637-020-01032-y PMID: 33159673
  63. Yun, C.W.; Jeon, J.; Go, G.; Lee, J.H.; Lee, S.H. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int. J. Mol. Sci., 2020, 22(1), 179. doi: 10.3390/ijms22010179 PMID: 33375363
  64. Zhang, Y.; Li, H.; Lv, L.; Lu, K.; Li, H.; Zhang, W.; Cui, T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie, 2023, 206, 49-60. doi: 10.1016/j.biochi.2022.10.004 PMID: 36244578
  65. He, P.; He, Y.; Ma, J.; Liu, Y.; Liu, C.; Baoping, Y.; Dong, W. Thymoquinone induces apoptosis and protective autophagy in gastric cancer cells by inhibiting the PI3K /Akt/ MTOR pathway. Phytother. Res., 2023, 37(8), 3467-3480. doi: 10.1002/ptr.7820 PMID: 37288949
  66. Das, S.; Shukla, N.; Singh, S.S.; Kushwaha, S.; Shrivastava, R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis, 2021, 26(9-10), 512-533. doi: 10.1007/s10495-021-01687-9 PMID: 34510317
  67. Ciechomska, I.A. The role of autophagy in cancer – characterization of crosstalk between apoptosis and autophagy; autophagy as a new therapeutic strategy in glioblastoma. Postepy Biochem., 2018, 64(2), 119-128. doi: 10.18388/pb.2018_121 PMID: 30656894
  68. Ali, Md Autophagy as a targeted therapeutic approach for skin cancer: Evaluating natural and synthetic molecular interventions. Canc. Pathog. Ther., 2024, 2(04), 231-245.
  69. Wang, H.; Zhao, S.; Liu, H.; Liu, Y.; Zhang, Z.; Zhou, Z.; Wang, P.; Qi, S.; Xie, J. ALKBH5 facilitates the progression of skin cutaneous melanoma via mediating ABCA1 demethylation and modulating autophagy in an m 6 A-dependent manner. Int. J. Biol. Sci., 2024, 20(5), 1729-1743. doi: 10.7150/ijbs.92994 PMID: 38481816
  70. Parkman, G.L.; Foth, M.; Kircher, D.A.; Holmen, S.L.; McMahon, M. The role of PI3′‐lipid signalling in melanoma initiation, progression and maintenance. Exp. Dermatol., 2022, 31(1), 43-56. doi: 10.1111/exd.14489 PMID: 34717019
  71. Kma, L.; Baruah, T.J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol. Appl. Biochem., 2022, 69(1), 248-264. doi: 10.1002/bab.2104 PMID: 33442914
  72. Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Canc. Biol., 2022, 85, 69-94.
  73. Pakradooni, R.; Shukla, N.; Gupta, K.; Kumar, J.; Isali, I.; Khalifa, A.O.; Shukla, S. Diosmetin induces modulation of Igf-1 and Il-6 levels to alter Rictor-Akt-PKCα cascade in inhibition of prostate cancer. J. Clin. Med., 2021, 10(20), 4741. doi: 10.3390/jcm10204741 PMID: 34682865
  74. Popova, N.V.; Jücker, M. The role of mTOR signaling as a therapeutic target in cancer. Int. J. Mol. Sci., 2021, 22(4), 1743. doi: 10.3390/ijms22041743 PMID: 33572326
  75. Yu, X.; Zhang, D.; Hu, C.; Yu, Z.; Li, Y.; Fang, C.; Qiu, Y.; Mei, Z.; Xu, L. Combination of diosmetin with chrysin against hepatocellular carcinoma through inhibiting PI3K / AKT / MTOR / NF ‐ кB signaling pathway: TCGA analysis, molecular docking, molecular dynamics, in vitro experiment. Chem. Biol. Drug Des., 2024, 104(4), e70003. doi: 10.1111/cbdd.70003 PMID: 39448547
  76. Farhan, M.; Silva, M.; Xingan, X.; Zhou, Z.; Zheng, W. Artemisinin inhibits the migration and invasion in uveal melanoma via inhibition of the PI3K/AKT/mTOR signaling pathway. Oxid. Med. Cell. Longev., 2021, 2021(1), 9911537. doi: 10.1155/2021/9911537 PMID: 34931134
  77. Hell, T.; Dobrzyński, M.; Gröflin, F.; Reinhardt, J.K.; Dürr, L.; Pertz, O.; Hamburger, M.; Garo, E. Flavonoids from Ericameria nauseosa inhibiting PI3K/AKT pathway in human melanoma cells. Biomed. Pharmacother., 2022, 156, 113754. doi: 10.1016/j.biopha.2022.113754 PMID: 36265310

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers