Computational Modelling Strategies for Exploring Triazolopyridazine PIM1 Kinase Inhibitors as Anticancer Agents


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:PIM (Proviral Integration site for Moloney Murine Leukemia virus) kinases are members of the class of kinase family serine/threonine kinases, which play a crucial role in cancer development. As there is no drug in the market against PIM-1, kinase has transpired as a budding and captivating target for discovering new anticancer agents targeting PIM-1 kinase.

Aim:The current research pondered the development of new PIM-1 kinase inhibitors by applying a ligand-based and structure-based drug discovery approach involving 3D QSAR, molecular docking, and dynamics simulation.

Methods:In this study, association allying the structural properties and biological activity was undertaken using 3DQSAR analysis. The 3D-QSAR model was generated with the help of 35 compounds from which the best model manifested an appreciated cross-validation coefficient (q2) of 0.8866 and conventional correlation coefficient (r2) of 0.9298, respectively and the predicted correlation coefficient (r2 pred) was obtained as 0.7878.

Results:The molecular docking analysis demonstrated that the analogs under analysis occupied the active site of the PIM-1 kinase receptor and interactions with Lys67 in the catalytic region, Asp186 in the DFG motif, and Glu171 were noticed with numerous compounds.

Discussion:Furthermore, the molecular dynamics simulation study stated that the ligand portrayed strong conformational stability within the active site of PIM-1 kinase protein, forming two hydrogen bonds until 100 ns, respectively.

Conclusion:Overall outcomes of the study revealed that applications of the ligand-based drug discovery approach and structure-based drug discovery strategy conceivably applied to discovering new PIM-1 kinase inhibitors as anticancer agents.

Авторлар туралы

Vinayak Walhekar

Department of Pharmaceutical Chemistry,, BVDU’S Poona College of Pharmacy

Email: info@benthamscience.net

Chandrakant Bagul

Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy,

Email: info@benthamscience.net

Dileep Kumar

Department of Pharmaceutical Chemistry,, BVDU’S Poona College of Pharmacy

Email: info@benthamscience.net

Garlapati Achaiah

University College of Pharmaceutical Sciences, Kakatiya University

Email: info@benthamscience.net

Amol Muthal

Department of Pharmacology,, BVDU’S Poona College of Pharmacy

Email: info@benthamscience.net

Ravindra Kulkarni

Department of Pharmaceutical Chemistry,, BVDU’S Poona College of Pharmacy

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Maccha Basavarju

Department of Pharmaceutical Chemistry,, Jayamukhi Institute of Pharmaceutical Sciences

Email: info@benthamscience.net

Әдебиет тізімі

  1. Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4(4), 127-129. doi: 10.1016/j.jcrpr.2017.07.001
  2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
  3. Atfi, A.; Lepage, K.; Allard, P.; Chapdelaine, A.; Chevalier, S. Activation of a serine/threonine kinase signaling pathway by transforming growth factor type beta. Proc. Natl. Acad. Sci. USA, 1995, 92(26), 12110-12114. doi: 10.1073/pnas.92.26.12110 PMID: 8618854
  4. Swords, R.; Kelly, K.; Carew, J.; Nawrocki, S.; Mahalingam, D.; Sarantopoulos, J.; Bearss, D.; Giles, F. The Pim kinases: New targets for drug development. Curr. Drug Targets, 2011, 12(14), 2059-2066. doi: 10.2174/138945011798829447 PMID: 21777193
  5. Walhekar, V.; Bagul, C.; Kumar, D.; Muthal, A.; Achaiah, G.; Kulkarni, R. Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(3), 188725. doi: 10.1016/j.bbcan.2022.188725 PMID: 35367531
  6. Peperzak, V.; Veraar, E.A.; Keller, A.M.; Xiao, Y.; Borst, J. The Pim kinase pathway contributes to survival signaling in primed CD8+ T cells upon CD27 costimulation. J. Immunol., 2010, 185(11), 6670-6678. doi: 10.4049/jimmunol.1000159 PMID: 21048108
  7. Narlik-Grassow, M.; Blanco-Aparicio, C.; Cecilia, Y.; Peregrina, S.; Garcia-Serelde, B.; Muñoz-Galvan, S.; Cañamero, M.; Carnero, A. The essential role of PIM kinases in sarcoma growth and bone invasion. Carcinogenesis, 2012, 33(8), 1479-1486. doi: 10.1093/carcin/bgs176 PMID: 22623646
  8. Santio, N.M.; Landor, S.K.; Vahtera, L.; Ylä-Pelto, J.; Paloniemi, E.; Imanishi, S.Y.; Corthals, G.; Varjosalo, M.; Manoharan, G.B.; Uri, A.; Lendahl, U.; Sahlgren, C.; Koskinen, P.J. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget, 2016, 7(28), 43220-43238. doi: 10.18632/oncotarget.9215 PMID: 27281612
  9. Wu, J.; Chu, E.; Kang, Y. PIM kinases in multiple myeloma. Cancers, 2021, 13(17), 4304. doi: 10.3390/cancers13174304 PMID: 34503111
  10. Le, B.T.; Kumarasiri, M.; Adams, J.R.; Yu, M.; Milne, R.; Sykes, M.J.; Wang, S. Targeting PIM kinases for cancer treatment: Opportunities and challenges. Future Med. Chem., 2015, 7(1), 35-53. doi: 10.4155/fmc.14.145 PMID: 25582332
  11. Luszczak, S.; Kumar, C.; Sathyadevan, V.K.; Simpson, B.S.; Gately, K.A.; Whitaker, H.C.; Heavey, S. PIM kinase inhibition: Co-targeted therapeutic approaches in prostate cancer. Signal Transduct. Target. Ther., 2020, 5(1), 7. doi: 10.1038/s41392-020-0109-y PMID: 32296034
  12. Kulkarni, R.; Mitkari, U.; Achaiah, G.; Laufer, S.; Bikshapti, D.V.R.N.; Chandrashekar, V.M.; Gurav, P.B.; Joshi, S.J.; Chipade, V.D. Substituted benzamides from anti-inflammatory and p38 kinase inhibitors to antitubercular activity: Design, synthesis and screening. Mini Rev. Med. Chem., 2018, 18(17), 1486-1497. doi: 10.2174/1389557517666170707105416 PMID: 28685700
  13. Doma, A.; Kulkarni, R.; Palakodety, R.; Sastry, G.N.; Sridhara, J.; Garlapati, A. Pyrazole derivatives as potent inhibitors of c-Jun N-terminal kinase: Synthesis and SAR studies. Bioorg. Med. Chem., 2014, 22(21), 6209-6219. doi: 10.1016/j.bmc.2014.08.028 PMID: 25261929
  14. Kulkarni, R.G.; Laufer, S.; Mangannavar, C.; Garlapati, A. Design, synthesis and characterization of N′, N"-diaryl ureas as p38 kinase inhibitors. Med. Chem., 2013, 9(2), 213-221. doi: 10.2174/1573406411309020006 PMID: 22946566
  15. Kulkarni, R.G.; Laufer, S.A.; M, C.V.; Garlapati, A. Synthesis, p38 kinase inhibitory and anti-inflammatory activity of new substituted benzimidazole derivatives. Med. Chem., 2013, 9(1), 91-99. doi: 10.2174/157340613804488440 PMID: 22946527
  16. Kulkarni, R.; Kompalli, K.; Gaddam, N.; Mangannavar, C.V.; Darna, B.; Garlapati, A.; Kumar, D.; Machha, B. Synthesis, characterization, antitubercular and anti-inflammatory activity of new pyrazolo3, 4-d pyrimidines. Comb. Chem. High Throughput Screen., 2021, 24(8), 1300-1308. doi: 10.2174/1386207323999200918114905 PMID: 32957875
  17. Martínez-González, S.; Rodríguez-Arístegui, S.; Gómez de la Oliva, C.A.; Hernández, A.I.; González Cantalapiedra, E.; Varela, C.; García, A.B.; Rabal, O.; Oyarzabal, J.; Bischoff, J.R.; Klett, J.; Albarrán, M.I.; Cebriá, A.; Ajenjo, N.; García-Serelde, B.; Gómez-Casero, E.; Cuadrado-Urbano, M.; Cebrián, D.; Blanco-Aparicio, C.; Pastor, J. Discovery of novel triazolo4,3-bpyridazin-3-yl-quinoline derivatives as PIM inhibitors. Eur. J. Med. Chem., 2019, 168, 87-109. doi: 10.1016/j.ejmech.2019.02.022 PMID: 30802730
  18. Golbraikh, A.; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des., 2000, 5(4), 231-243. PMID: 12489684
  19. Halgren, T.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem., 1996, 17(5‐6), 553-586. doi: 10.1002/(SICI)1096-987X(199604)17:5/6>553::AID-JCC3>3.0.CO;2-T
  20. Ajmani, S.; Kulkarni, S.A. A dual‐response partial least squares regression QSAR model and its application in design of dual activators of PPARα and PPARγ. QSAR Comb. Sci., 2008, 27(11‐12), 1291-1304. doi: 10.1002/qsar.200810023
  21. Ajmani, S.; Jadhav, K.; Kulkarni, S.A. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J. Chem. Inf. Model., 2006, 46(1), 24-31. doi: 10.1021/ci0501286 PMID: 16426036
  22. Ghosh, P.; Bagchi, M.C. Comparative QSAR studies of nitrofuranyl amide derivatives using theoretical structural properties. Mol. Simul., 2009, 35(14), 1185-1200. doi: 10.1080/08927020903033141
  23. Bhatia, M.S.; Pakhare, K.D.; Choudhari, P.B.; Jadhav, S.D.; Dhavale, R.P.; Bhatia, N.M. Pharmacophore modeling and 3D QSAR studies of aryl amine derivatives as potential lumazine synthase inhibitors. Arab. J. Chem., 2017, 10, 100-104. doi: 10.1016/j.arabjc.2012.05.008
  24. Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276. doi: 10.1016/S1093-3263(01)00123-1 PMID: 11858635
  25. Makhija, M.T.; Kulkarni, V.M. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors. J. Comput. Aided Mol. Des., 2002, 16(3), 181-200. doi: 10.1023/A:1020137802155 PMID: 12363217
  26. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749. doi: 10.1021/jm0306430 PMID: 15027865
  27. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196. doi: 10.1021/jm051256o PMID: 17034125
  28. Modi, S.J.; Kulkarni, V.M. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. Eur. J. Med. Chem., 2020, 207, 112851. doi: 10.1016/j.ejmech.2020.112851 PMID: 33002846
  29. Schrödinger, L.; DeLano, W. The PyMOL Molecular Graphics System Schrödinger Version 2.1.1; Schrödinger, LLC, 2020.
  30. Dassault Systèmes Biovia Discovery Studio Visualizer 4.5, 2020.
  31. Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, 234(3), 779-815. doi: 10.1006/jmbi.1993.1626 PMID: 8254673
  32. Macha, B.; Kulkarni, R.; Bagul, C.; Garige, A.K.; Akkinepally, R.; Garlapati, A. Molecular hybridization based design and synthesis of new benzo5, 6 chromeno2, 3-b-quinolin-13 (14H)-one analogs as cholinesterase inhibitors. Med. Chem. Res., 2021, 30(3), 685-701. doi: 10.1007/s00044-020-02670-w
  33. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447. doi: 10.1021/ct700301q PMID: 26620784
  34. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1, 19-25. doi: 10.1016/j.softx.2015.06.001
  35. Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J., 2011, 40(7), 843-856. doi: 10.1007/s00249-011-0700-9 PMID: 21533652
  36. Stroet, M.; Caron, B.; Visscher, K.M.; Geerke, D.P.; Malde, A.K.; Mark, A.E. Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane. J. Chem. Theory Comput., 2018, 14(11), 5834-5845. doi: 10.1021/acs.jctc.8b00768 PMID: 30289710
  37. Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7), 845-854. doi: 10.1093/bioinformatics/btt055 PMID: 23407358
  38. Pastor, J.; Oyarzabal, J.; Saluste, G.; Alvarez, R.M.; Rivero, V.; Ramos, F.; Cendón, E.; Blanco-Aparicio, C.; Ajenjo, N.; Cebriá, A.; Albarrán, M.I.; Cebrián, D.; Corrionero, A.; Fominaya, J.; Montoya, G.; Mazzorana, M. Hit to lead evaluation of 1,2,3-triazolo4,5-bpyridines as PIM kinase inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(4), 1591-1597. doi: 10.1016/j.bmcl.2011.12.130 PMID: 22266039
  39. Qian, K.C.; Wang, L.; Hickey, E.R.; Studts, J.; Barringer, K.; Peng, C.; Kronkaitis, A.; Li, J.; White, A.; Mische, S.; Farmer, B. Structural basis of constitutive activity and a unique nucleotide binding mode of human PIM-1 kinase. J. Biol. Chem., 2005, 280(7), 6130-6137. doi: 10.1074/jbc.M409123200 PMID: 15525646

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025