Design, Synthesis, and Molecular Docking Studies of Indolo[3,2-c]Quinolines as Topoisomerase Inhibitors
- 作者: Badr M.1, Elmongy E.2, Sayed I.3, Moemen Y.4, Khalil A.5, Elkhateeb D.3, Binsuwaidan R.6, Ali H.3
-
隶属关系:
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University
- Chemistry Department, Faculty of Science,, Menoufia University
- Clinical Pathology Department, National Liver Institute, Menoufia University
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University
- Department of Pharmaceutical Sciences, College of Pharmacy,, Princess Nourah bint Abdulrahman University,
- 期: 卷 25, 编号 14 (2025)
- 页面: 1029-1040
- 栏目: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694441
- DOI: https://doi.org/10.2174/0118715206360700241219065917
- ID: 694441
如何引用文章
全文:
详细
Background: The tetracyclic indoloquinoline ring system has attracted considerable interest in the recent past due to its broad spectrum of biological activities and its binding to various types of nucleic acids.
Objective: This study aims to elucidate their interactions with DNA and their effects on topoisomerases (TOPO) I and II.
Methods: Several compounds derived from 6-amino-11H-indolo[3,2-c]quinoline with diverse groups on the quinoline ring have been successfully synthesized according to a previously established protocol where all the synthesized indolo[3,2-c]quinoline derivatives were evaluated in vitro against A549, HCT-116, BALB/3T3, and MV4-11 cell lines using MTT (3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyl- tetrazolium bromide) assay. These derivatives were then screened for their topo I and II inhibitory activities.
Results: The tested compounds were more effective at killing MV4-11 leukemia cells than the standard cancer drug cisplatin, as shown by the fact that their IC50 values were less than 0.9 μM. On the other hand, cisplatin revealed an IC50 value of 2.36 μM. Moreover, they exhibited inhibitory activity against both Topoisomerase (Topo) I and II. The most potent compound, 5g, demonstrated a suppressive impact on topoisomerase I, with an IC50 value of 2.9 μM compared to the positive control Camptothecin (IC50 1.64 μM) and compound 8 displayed remarkable topoisomerase II inhibitory activity with an IC50 of 6.82 μM compared to the positive control Doxorubicin (IC50 6.49 μM). The cell cycle study for compounds 5g and 8 revealed that cell cycle arrest occurred at the G1/S and S phases, respectively. Compounds 5g and 8 showed a high selectivity index, which suggests that they could be used to develop low-toxicity chemotherapeutic agents.
Conclusion: The results of this study demonstrate that compounds 5g and 8 can be considered promising candidates for further anti-cancer drug development, which might be related to inhibiting TOPO I and TOPO II activities.
作者简介
Mohamed Badr
Department of Biochemistry, Faculty of Pharmacy, Menoufia University
Email: info@benthamscience.net
Elshaymaa Elmongy
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Ibrahim Sayed
Chemistry Department, Faculty of Science,, Menoufia University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Yasmine Moemen
Clinical Pathology Department, National Liver Institute, Menoufia University
Email: info@benthamscience.net
Ashraf Khalil
Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University
Email: info@benthamscience.net
Doaa Elkhateeb
Chemistry Department, Faculty of Science,, Menoufia University
Email: info@benthamscience.net
Reem Binsuwaidan
Department of Pharmaceutical Sciences, College of Pharmacy,, Princess Nourah bint Abdulrahman University,
Email: info@benthamscience.net
Hadeer Ali
Chemistry Department, Faculty of Science,, Menoufia University
Email: info@benthamscience.net
参考
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
- Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol., 2021, 18(10), 663-672. doi: 10.1038/s41571-021-00514-z PMID: 34079102
- El Sayed, I.E. et al. Synthesis, Nanoformulations and In-vitro anticancer activity of N-substituted side chain neocryptolepine scaffolds. Molecules,, 2022, 27(3)
- Selvam, T.P.; Karthick, V.; Kumar, P.V.; Ali, M.A. Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo3,2-apyrimidin-3(7H)-one derivatives as anticancer agents. Drug Discov. Ther., 2012, 6(4), 198-204. doi: 10.5582/ddt.2012.v6.4.198 PMID: 23006990
- Akkachairin, B.; Tummatorn, J.; Khamsuwan, N.; Thongsornkleeb, C.; Ruchirawat, S. Domino N 2 -extrusion–cyclization of alkynylarylketone derivatives for the synthesis of indoloquinolines and carbocycle-fused quinolines. J. Org. Chem., 2018, 83(18), 11254-11268. doi: 10.1021/acs.joc.8b01851 PMID: 30084635
- Aksenov, A.V.; Aksenov, D.A.; Orazova, N.A.; Aksenov, N.A.; Griaznov, G.D.; De Carvalho, A.; Kiss, R.; Mathieu, V.; Kornienko, A.; Rubin, M. One-pot, three-component assembly of indoloquinolines: Total synthesis of isocryptolepine. J. Org. Chem., 2017, 82(6), 3011-3018. doi: 10.1021/acs.joc.6b03084 PMID: 28253622
- Parvatkar, P.T.; Parameswaran, P.S. Indoloquinolines: Possible biogenesis from common indole precursors and their synthesis using domino strategies. Curr. Org. Synth., 2015, 13(1), 58-72. doi: 10.2174/1570179412666150511224648
- Wright, C.W.; Addae-Kyereme, J.; Breen, A.G.; Brown, J.E.; Cox, M.F.; Croft, S.L.; Gökçek, Y.; Kendrick, H.; Phillips, R.M.; Pollet, P.L. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J. Med. Chem., 2001, 44(19), 3187-3194. doi: 10.1021/jm010929+ PMID: 11543688
- Onyeibor, O.; Croft, S.L.; Dodson, H.I.; Feiz-Haddad, M.; Kendrick, H.; Millington, N.J.; Parapini, S.; Phillips, R.M.; Seville, S.; Shnyder, S.D.; Taramelli, D.; Wright, C.W. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. J. Med. Chem., 2005, 48(7), 2701-2709. doi: 10.1021/jm040893w PMID: 15801861
- Wang, N. Structural modifications of nature-inspired indoloquinolines: A mini review of their potential antiproliferative activity. Molecules, 2019, 24(11) doi: 10.3390/molecules24112121
- Ibrahim, E.S.; Montgomerie, A.M.; Sneddon, A.H.; Proctor, G.R.; Green, B. Synthesis of indolo3,2-cquinolines and indolo3,2-dbenzazepines and their interaction with DNA. Eur. J. Med. Chem., 1988, 23(2), 183-188. doi: 10.1016/0223-5234(88)90192-4
- Marquez, V.E.; Cranston, J.W.; Ruddon, R.W.; Kier, L.B.; Burckhalter, J.H. Mechanism of action of amodiaquine. Synthesis of its indoloquinoline analog. J. Med. Chem., 1972, 15(1), 36-39. doi: 10.1021/jm00271a010 PMID: 4550134
- Lu, W.J.; Świtalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I.E-T.; Wietrzyk, J.; Inokuchi, T. In vitros antiproliferative activity of 11-aminoalkylamino-substituted 5H-indolo2,3-bquinolines; Improving activity of neocryptolepines by installation of ester substituent. Med. Chem. Res., 2013, 22(9), 4492-4504. doi: 10.1007/s00044-012-0443-x
- Ahmed, A.A.S.; Awad, H.M.; El-Sayed, I.E.T.; El Gokha, A.A. Synthesis and antiproliferative activity of new hybrids bearing neocryptolepine, acridine and α-aminophosphonate scaffolds. J. Indian Chem. Soc., 2020, 17(5), 1211-1221. doi: 10.1007/s13738-019-01849-2
- Fan, M. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS. Phytochem. Rev., 2020, 19(5), 1231-1261. doi: 10.1007/s11101-019-09635-x
- Singh, S.; Pandey, V.P.; Yadav, K.; Yadav, A.; Dwivedi, U.N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases. Curr. Protein Pept. Sci., 2020, 21(11), 1103-1142. doi: 10.2174/1389203721666200918152511 PMID: 32951576
- Nofal, A.E.; Elmongy, E.I.; Hassan, E.A.; Tousson, E.; Ahmed, A.A.S.; El Sayed, I.E.T.; Binsuwaidan, R.; Sakr, M. Impact of synthesized indoloquinoline analog to isolates from Cryptolepis sanguinolenta on tumor growth inhibition and hepatotoxicity in ehrlich solid tumor-bearing female mice. Cells, 2023, 12(7), 1024. doi: 10.3390/cells12071024 PMID: 37048097
- Liang, X. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Europ. J. Med. Chem., 2019, 171, 129-168. doi: 10.1016/j.ejmech.2019.03.034
- Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440. doi: 10.1038/nrm831 PMID: 12042765
- Badr, M.; Elmongy, E.I.; Elkhateeb, D.; Moemen, Y.S.; Khalil, A.; Ali, H.; Binsuwaidan, R.; Awadallah, F.; El Sayed, I.E.T. In silico and in vitros investigation of cytotoxicity and apoptosis of acridine/sulfonamide hybrids targeting topoisomerases I and II. Pharmaceuticals, 2024, 17(11), 1487. doi: 10.3390/ph17111487
- Khadka, D.B.; Cho, W.J. Topoisomerase inhibitors as anticancer agents: A patent update. Expert Opin. Ther. Pat., 2013, 23(8), 1033-1056. doi: 10.1517/13543776.2013.790958 PMID: 23611704
- Wang, N.; Świtalska, M.; Wu, M.Y.; Imai, K.; Ngoc, T.A.; Pang, C.Q.; Wang, L.; Wietrzyk, J.; Inokuchi, T. Synthesis and in vitros cytotoxic effect of 6-amino-substituted 11H- and 11Me-indolo3,2-cquinolines. Eur. J. Med. Chem., 2014, 78, 314-323. doi: 10.1016/j.ejmech.2014.03.038 PMID: 24686018
- Skehan, P. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
- Quadruplex, G.; Hu, M.; Lin, J. New dibenzoquinoxalines inhibit triple-negative breast cancer growth by dual targeting of topoisomerase 1 and the c-MYC G-quadruplex. J. Med. Chem., 2021, (10), 6720-6729. doi: 10.1021/acs.jmedchem.0c02202
- Eissa, I.H.; El-Naggar, A.M.; El-Sattar, N.E.A.A.; Youssef, A.S.A. Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors. Anticancer. Agents Med. Chem., 2018, 18(2), 195-209. doi: 10.2174/1871520617666170710182405 PMID: 28699490
- Turky, A.; Bayoumi, A.H.; Ghiaty, A.; El-Azab, A.S.; A-M Abdel-Aziz, A.; Abulkhair, H.S. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg. Chem., 2020, 101, 104019. doi: 10.1016/j.bioorg.2020.104019 PMID: 32615465
- Andree, H.A.; Reutelingsperger, C.P.; Hauptmann, R.; Hemker, H.C.; Hermens, W.T.; Willems, G.M. Binding of vascular anticoagulant α (VAC α) to planar phospholipid bilayers. J. Biol. Chem., 1990, 265(9), 4923-4928. doi: 10.1016/S0021-9258(19)34062-1 PMID: 2138622
- Shum, J.; Leung, P.K.K.; Lo, K.K.W. Luminescent Ruthenium(II) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg. Chem., 2019, 58(4), 2231-2247. doi: 10.1021/acs.inorgchem.8b02979 PMID: 30693762
- Segun, P.A.; Ogbole, O.O.; Ismail, F.M.D.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Resveratrol derivatives fromCommiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines. Phytother. Res., 2019, 33(1), 159-166. doi: 10.1002/ptr.6209 PMID: 30346066
- Sutejo, I.R.; Putri, H.; Meiyanto, E. The selectivity of ethanolic extract of buah makassar (Brucea javanica) on metastatic breast cancer cells. J. Agromed. Med. Sci., 1970, 2(1), 1-6. doi: 10.19184/ams.v2i1.2422
- Butt, S.S.; Badshah, Y.; Shabbir, M.; Rafiq, M. Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinform. Biotechnol., 2020, 1(1), e14232. doi: 10.2196/14232 PMID: 38943236
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Wenzel, E.S.; Singh, A.T.K. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo, 2018, 32(1), 1-5. doi: 10.21873/invivo.11197 PMID: 29275292
- Elbastawesy, M.A.I.; Aly, A.A.; Ramadan, M.; Elshaier, Y.A.M.M.; Youssif, B.G.M.; Brown, A.B.; El-Din A Abuo-Rahma, G. Novel pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors. Bioorg. Chem., 2019, 90, 103045. doi: 10.1016/j.bioorg.2019.103045 PMID: 31212178
- Da’i, M.; Meilinasary, K.A.; Suhendi, A.; Haryanti, S. Selectivity index of alpinia galanga extract and 1′-acetoxychavicol acetate on cancer cell lines. Indones. J. Cancer Chemoprevent., 2019, 10(2), 95. doi: 10.14499/indonesianjcanchemoprev10iss2pp95-100
- Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15387-15392. doi: 10.1073/pnas.242259599 PMID: 12426403
补充文件
