Design, Synthesis, and Molecular Docking Studies of Indolo[3,2-c]Quinolines as Topoisomerase Inhibitors


如何引用文章

全文:

详细

Background: The tetracyclic indoloquinoline ring system has attracted considerable interest in the recent past due to its broad spectrum of biological activities and its binding to various types of nucleic acids.

Objective: This study aims to elucidate their interactions with DNA and their effects on topoisomerases (TOPO) I and II.

Methods: Several compounds derived from 6-amino-11H-indolo[3,2-c]quinoline with diverse groups on the quinoline ring have been successfully synthesized according to a previously established protocol where all the synthesized indolo[3,2-c]quinoline derivatives were evaluated in vitro against A549, HCT-116, BALB/3T3, and MV4-11 cell lines using MTT (3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyl- tetrazolium bromide) assay. These derivatives were then screened for their topo I and II inhibitory activities.

Results: The tested compounds were more effective at killing MV4-11 leukemia cells than the standard cancer drug cisplatin, as shown by the fact that their IC50 values were less than 0.9 μM. On the other hand, cisplatin revealed an IC50 value of 2.36 μM. Moreover, they exhibited inhibitory activity against both Topoisomerase (Topo) I and II. The most potent compound, 5g, demonstrated a suppressive impact on topoisomerase I, with an IC50 value of 2.9 μM compared to the positive control Camptothecin (IC50 1.64 μM) and compound 8 displayed remarkable topoisomerase II inhibitory activity with an IC50 of 6.82 μM compared to the positive control Doxorubicin (IC50 6.49 μM). The cell cycle study for compounds 5g and 8 revealed that cell cycle arrest occurred at the G1/S and S phases, respectively. Compounds 5g and 8 showed a high selectivity index, which suggests that they could be used to develop low-toxicity chemotherapeutic agents.

Conclusion: The results of this study demonstrate that compounds 5g and 8 can be considered promising candidates for further anti-cancer drug development, which might be related to inhibiting TOPO I and TOPO II activities.

作者简介

Mohamed Badr

Department of Biochemistry, Faculty of Pharmacy, Menoufia University

Email: info@benthamscience.net

Elshaymaa Elmongy

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Ibrahim Sayed

Chemistry Department, Faculty of Science,, Menoufia University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Yasmine Moemen

Clinical Pathology Department, National Liver Institute, Menoufia University

Email: info@benthamscience.net

Ashraf Khalil

Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University

Email: info@benthamscience.net

Doaa Elkhateeb

Chemistry Department, Faculty of Science,, Menoufia University

Email: info@benthamscience.net

Reem Binsuwaidan

Department of Pharmaceutical Sciences, College of Pharmacy,, Princess Nourah bint Abdulrahman University,

Email: info@benthamscience.net

Hadeer Ali

Chemistry Department, Faculty of Science,, Menoufia University

Email: info@benthamscience.net

参考

  1. Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
  2. Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol., 2021, 18(10), 663-672. doi: 10.1038/s41571-021-00514-z PMID: 34079102
  3. El Sayed, I.E. et al. Synthesis, Nanoformulations and In-vitro anticancer activity of N-substituted side chain neocryptolepine scaffolds. Molecules,, 2022, 27(3)
  4. Selvam, T.P.; Karthick, V.; Kumar, P.V.; Ali, M.A. Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo3,2-apyrimidin-3(7H)-one derivatives as anticancer agents. Drug Discov. Ther., 2012, 6(4), 198-204. doi: 10.5582/ddt.2012.v6.4.198 PMID: 23006990
  5. Akkachairin, B.; Tummatorn, J.; Khamsuwan, N.; Thongsornkleeb, C.; Ruchirawat, S. Domino N 2 -extrusion–cyclization of alkynylarylketone derivatives for the synthesis of indoloquinolines and carbocycle-fused quinolines. J. Org. Chem., 2018, 83(18), 11254-11268. doi: 10.1021/acs.joc.8b01851 PMID: 30084635
  6. Aksenov, A.V.; Aksenov, D.A.; Orazova, N.A.; Aksenov, N.A.; Griaznov, G.D.; De Carvalho, A.; Kiss, R.; Mathieu, V.; Kornienko, A.; Rubin, M. One-pot, three-component assembly of indoloquinolines: Total synthesis of isocryptolepine. J. Org. Chem., 2017, 82(6), 3011-3018. doi: 10.1021/acs.joc.6b03084 PMID: 28253622
  7. Parvatkar, P.T.; Parameswaran, P.S. Indoloquinolines: Possible biogenesis from common indole precursors and their synthesis using domino strategies. Curr. Org. Synth., 2015, 13(1), 58-72. doi: 10.2174/1570179412666150511224648
  8. Wright, C.W.; Addae-Kyereme, J.; Breen, A.G.; Brown, J.E.; Cox, M.F.; Croft, S.L.; Gökçek, Y.; Kendrick, H.; Phillips, R.M.; Pollet, P.L. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J. Med. Chem., 2001, 44(19), 3187-3194. doi: 10.1021/jm010929+ PMID: 11543688
  9. Onyeibor, O.; Croft, S.L.; Dodson, H.I.; Feiz-Haddad, M.; Kendrick, H.; Millington, N.J.; Parapini, S.; Phillips, R.M.; Seville, S.; Shnyder, S.D.; Taramelli, D.; Wright, C.W. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. J. Med. Chem., 2005, 48(7), 2701-2709. doi: 10.1021/jm040893w PMID: 15801861
  10. Wang, N. Structural modifications of nature-inspired indoloquinolines: A mini review of their potential antiproliferative activity. Molecules, 2019, 24(11) doi: 10.3390/molecules24112121
  11. Ibrahim, E.S.; Montgomerie, A.M.; Sneddon, A.H.; Proctor, G.R.; Green, B. Synthesis of indolo3,2-cquinolines and indolo3,2-dbenzazepines and their interaction with DNA. Eur. J. Med. Chem., 1988, 23(2), 183-188. doi: 10.1016/0223-5234(88)90192-4
  12. Marquez, V.E.; Cranston, J.W.; Ruddon, R.W.; Kier, L.B.; Burckhalter, J.H. Mechanism of action of amodiaquine. Synthesis of its indoloquinoline analog. J. Med. Chem., 1972, 15(1), 36-39. doi: 10.1021/jm00271a010 PMID: 4550134
  13. Lu, W.J.; Świtalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I.E-T.; Wietrzyk, J.; Inokuchi, T. In vitros antiproliferative activity of 11-aminoalkylamino-substituted 5H-indolo2,3-bquinolines; Improving activity of neocryptolepines by installation of ester substituent. Med. Chem. Res., 2013, 22(9), 4492-4504. doi: 10.1007/s00044-012-0443-x
  14. Ahmed, A.A.S.; Awad, H.M.; El-Sayed, I.E.T.; El Gokha, A.A. Synthesis and antiproliferative activity of new hybrids bearing neocryptolepine, acridine and α-aminophosphonate scaffolds. J. Indian Chem. Soc., 2020, 17(5), 1211-1221. doi: 10.1007/s13738-019-01849-2
  15. Fan, M. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS. Phytochem. Rev., 2020, 19(5), 1231-1261. doi: 10.1007/s11101-019-09635-x
  16. Singh, S.; Pandey, V.P.; Yadav, K.; Yadav, A.; Dwivedi, U.N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases. Curr. Protein Pept. Sci., 2020, 21(11), 1103-1142. doi: 10.2174/1389203721666200918152511 PMID: 32951576
  17. Nofal, A.E.; Elmongy, E.I.; Hassan, E.A.; Tousson, E.; Ahmed, A.A.S.; El Sayed, I.E.T.; Binsuwaidan, R.; Sakr, M. Impact of synthesized indoloquinoline analog to isolates from Cryptolepis sanguinolenta on tumor growth inhibition and hepatotoxicity in ehrlich solid tumor-bearing female mice. Cells, 2023, 12(7), 1024. doi: 10.3390/cells12071024 PMID: 37048097
  18. Liang, X. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Europ. J. Med. Chem., 2019, 171, 129-168. doi: 10.1016/j.ejmech.2019.03.034
  19. Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440. doi: 10.1038/nrm831 PMID: 12042765
  20. Badr, M.; Elmongy, E.I.; Elkhateeb, D.; Moemen, Y.S.; Khalil, A.; Ali, H.; Binsuwaidan, R.; Awadallah, F.; El Sayed, I.E.T. In silico and in vitros investigation of cytotoxicity and apoptosis of acridine/sulfonamide hybrids targeting topoisomerases I and II. Pharmaceuticals, 2024, 17(11), 1487. doi: 10.3390/ph17111487
  21. Khadka, D.B.; Cho, W.J. Topoisomerase inhibitors as anticancer agents: A patent update. Expert Opin. Ther. Pat., 2013, 23(8), 1033-1056. doi: 10.1517/13543776.2013.790958 PMID: 23611704
  22. Wang, N.; Świtalska, M.; Wu, M.Y.; Imai, K.; Ngoc, T.A.; Pang, C.Q.; Wang, L.; Wietrzyk, J.; Inokuchi, T. Synthesis and in vitros cytotoxic effect of 6-amino-substituted 11H- and 11Me-indolo3,2-cquinolines. Eur. J. Med. Chem., 2014, 78, 314-323. doi: 10.1016/j.ejmech.2014.03.038 PMID: 24686018
  23. Skehan, P. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
  24. Quadruplex, G.; Hu, M.; Lin, J. New dibenzoquinoxalines inhibit triple-negative breast cancer growth by dual targeting of topoisomerase 1 and the c-MYC G-quadruplex. J. Med. Chem., 2021, (10), 6720-6729. doi: 10.1021/acs.jmedchem.0c02202
  25. Eissa, I.H.; El-Naggar, A.M.; El-Sattar, N.E.A.A.; Youssef, A.S.A. Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors. Anticancer. Agents Med. Chem., 2018, 18(2), 195-209. doi: 10.2174/1871520617666170710182405 PMID: 28699490
  26. Turky, A.; Bayoumi, A.H.; Ghiaty, A.; El-Azab, A.S.; A-M Abdel-Aziz, A.; Abulkhair, H.S. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg. Chem., 2020, 101, 104019. doi: 10.1016/j.bioorg.2020.104019 PMID: 32615465
  27. Andree, H.A.; Reutelingsperger, C.P.; Hauptmann, R.; Hemker, H.C.; Hermens, W.T.; Willems, G.M. Binding of vascular anticoagulant α (VAC α) to planar phospholipid bilayers. J. Biol. Chem., 1990, 265(9), 4923-4928. doi: 10.1016/S0021-9258(19)34062-1 PMID: 2138622
  28. Shum, J.; Leung, P.K.K.; Lo, K.K.W. Luminescent Ruthenium(II) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg. Chem., 2019, 58(4), 2231-2247. doi: 10.1021/acs.inorgchem.8b02979 PMID: 30693762
  29. Segun, P.A.; Ogbole, O.O.; Ismail, F.M.D.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Resveratrol derivatives fromCommiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines. Phytother. Res., 2019, 33(1), 159-166. doi: 10.1002/ptr.6209 PMID: 30346066
  30. Sutejo, I.R.; Putri, H.; Meiyanto, E. The selectivity of ethanolic extract of buah makassar (Brucea javanica) on metastatic breast cancer cells. J. Agromed. Med. Sci., 1970, 2(1), 1-6. doi: 10.19184/ams.v2i1.2422
  31. Butt, S.S.; Badshah, Y.; Shabbir, M.; Rafiq, M. Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinform. Biotechnol., 2020, 1(1), e14232. doi: 10.2196/14232 PMID: 38943236
  32. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  33. Wenzel, E.S.; Singh, A.T.K. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo, 2018, 32(1), 1-5. doi: 10.21873/invivo.11197 PMID: 29275292
  34. Elbastawesy, M.A.I.; Aly, A.A.; Ramadan, M.; Elshaier, Y.A.M.M.; Youssif, B.G.M.; Brown, A.B.; El-Din A Abuo-Rahma, G. Novel pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors. Bioorg. Chem., 2019, 90, 103045. doi: 10.1016/j.bioorg.2019.103045 PMID: 31212178
  35. Da’i, M.; Meilinasary, K.A.; Suhendi, A.; Haryanti, S. Selectivity index of alpinia galanga extract and 1′-acetoxychavicol acetate on cancer cell lines. Indones. J. Cancer Chemoprevent., 2019, 10(2), 95. doi: 10.14499/indonesianjcanchemoprev10iss2pp95-100
  36. Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15387-15392. doi: 10.1073/pnas.242259599 PMID: 12426403

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2025