Melittin, A Potential Game-changer in the Fight Against Breast Cancer: A Systematic Review


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction: Breast cancer is the most common cancer in women. Traditional treatments include endocrine therapy, chemotherapy, surgery, radiation, and immunotherapy. Recent studies suggest melittin, a component of bee venom, as a promising breast cancer treatment due to its anticancer properties: inducing cytotoxicity, apoptosis, and gene regulation.

Methods: This manuscript aims to review melittin's potential therapeutical and future implications in treating breast cancer. An extensive literature search was conducted on MEDLINE and Cochrane databases up to July 2024 using Boolean operators with a combination of keywords. After screening, data extraction, and descriptive analysis, 40 articles were retained.

Results: Experimental data and different therapeutical strategies were collected. Melittin disrupts tumor cell membranes and modulates key apoptotic pathways. Advanced delivery systems enhance their effectiveness and reduce toxicity. Combining melittin with chemotherapy shows synergistic effects, improving outcomes. Thus, melittin could be a valuable addition to breast cancer therapies.

Conclusion: Further clinical trials are essential to validate its potential and establish its role in breast cancer therapy.

Авторлар туралы

Gilles Prince

Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Ahmad Assi

Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut

Email: info@benthamscience.net

Marc Aoude

Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut

Email: info@benthamscience.net

Hampig Kourie

Hematology-Oncology Department, Hotel Dieu De France Hospital, Saint Joseph University of Beirut

Email: info@benthamscience.net

Fadi Haddad

Department of Leukemia, The University of Texas MD Anderson Cancer Center

Email: info@benthamscience.net

Әдебиет тізімі

  1. Akay, M.; Kalaycioğlu, Z.; Kolayli, S.; Berker, B. Comparative determination of melittin by capillary electrophoretic methods. J. Turk. Chem. Soc. A: Chem., 2021, 8(4), 1211-1216. doi: 10.18596/jotcsa.949188
  2. Data visualization tools for exploring the global cancer burden in 2022. Available from: https://gco.iarc.who.int/today/
  3. World health organization breast cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  4. Orrantia-Borunda, E.; Anchondo-Nuñez, P.; Acuña-Aguilar, L.E.; Gómez-Valles, F.O.; Ramírez-Valdespino, C.A. Subtypes of breast cancer. In: Breast Cancer; Exon Publications: Brisbane (AU), 2022.
  5. Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet, 2021, 397(10286), 1750-1769. doi: 10.1016/S0140-6736(20)32381-3 PMID: 33812473
  6. Kwon, N.Y.; Sung, S.H.; Sung, H.K.; Park, J.K. Anticancer activity of bee venom components against breast cancer. Toxins, 2022, 14(7), 460. doi: 10.3390/toxins14070460 PMID: 35878198
  7. Chen, J.; Guan, S.M.; Sun, W.; Fu, H. Melittin, the major pain-producing substance of bee venom. Neurosci. Bull., 2016, 32(3), 265-272. doi: 10.1007/s12264-016-0024-y PMID: 26983715
  8. Wehbe, R.; Frangieh, J.; Rima, M.; El Obeid, D.; Sabatier, J.M.; Fajloun, Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules, 2019, 24(16), 2997. doi: 10.3390/molecules24162997 PMID: 31430861
  9. Haque, S. Melittin: A possible regulator of cancer proliferation in preclinical cell culture and animal models. J. Cancer Res. Clin. Oncol., 2023, 149, 17709-17726. doi: 10.1007/s00432-023-05458-8
  10. Pandey, P.; Khan, F.; Khan, M.A.; Kumar, R.; Upadhyay, T.K. An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. Nutrients, 2023, 15(14), 3111. doi: 10.3390/nu15143111 PMID: 37513529
  11. Moga, M.; Dimienescu, O.; Arvătescu, C.; Ifteni, P.; Pleş, L. Anticancer activity of toxins from bee and snake venom—an overview on ovarian cancer. Molecules, 2018, 23(3), 692. doi: 10.3390/molecules23030692 PMID: 29562696
  12. LeBeau, A.M.; Brennen, W.N.; Aggarwal, S.; Denmeade, S.R. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther., 2009, 8(5), 1378-1386. doi: 10.1158/1535-7163.MCT-08-1170 PMID: 19417147
  13. Li, B.; Gu, W.; Zhang, C.; Huang, X.Q.; Han, K.Q.; Ling, C.Q. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie, 2006, 29(8-9), 367-371. PMID: 16974113
  14. Sobral, F.; Sampaio, A.; Falcão, S.; Queiroz, M.J.R.P.; Calhelha, R.C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem. Toxicol., 2016, 94, 172-177. doi: 10.1016/j.fct.2016.06.008 PMID: 27288930
  15. Salama, M.A.; Younis, M.A.; Talaat, R.M. Cytokine and inflammatory mediators are associated with cytotoxic, anti-inflammatory and apoptotic activity of honeybee venom. J. Complement. Integr. Med., 2021, 18(1), 75-86. doi: 10.1515/jcim-2019-0182 PMID: 32452823
  16. Jung, G.B.; Huh, J.E.; Lee, H.J.; Kim, D.; Lee, G.J.; Park, H.K.; Lee, J.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomed. Opt. Express, 2018, 9(11), 5703-5718. doi: 10.1364/BOE.9.005703 PMID: 30460157
  17. Sevin, S.; D Ozkan, A.; Tutun, H.; Kivrak, I.; Turna, O.; Guney, E.G. Determination of the effects of bee venom on triple negative breast cancer cells in vitro. Chem. Biodivers., 2023, 20(3), e202201263. doi: 10.1002/cbdv.202201263 PMID: 36806913
  18. Jeong, Y.J.; Choi, Y.; Shin, J.M.; Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Bae, Y.S.; Han, S.M.; Kim, C.H.; Chang, H.W.; Chang, Y.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol., 2014, 68, 218-225. doi: 10.1016/j.fct.2014.03.022 PMID: 24675423
  19. Khorsand-Dehkordi, S.; Doosti, A. Upregulation of EPSTI1/Drp1/AKT1 signaling pathways using pDNA/Melittin against breast cancer. Biochem. Genet., 2024, 1-23. doi: 10.1007/s10528-024-10806-5 PMID: 38722433
  20. Mir Hassani, Z.; Nabiuni, M.; Parivar, K.; Abdirad, S.; Karimzadeh, L. Melittin inhibits the expression of key genes involved in tumor microenvironment formation by suppressing HIF-1α signaling in breast cancer cells. Med. Oncol., 2021, 38(7), 77. doi: 10.1007/s12032-021-01526-6 PMID: 34076777
  21. Bahreyni, A.; Liu, H.; Mohamud, Y.; Xue, Y.C.; Fan, Y.M.; Zhang, Y.L.; Luo, H. A combination of genetically engineered oncolytic virus and melittin-CpG for cancer viro-chemo-immunotherapy. BMC Med., 2023, 21(1), 193. doi: 10.1186/s12916-023-02901-y PMID: 37226233
  22. El Mehdi, I. Chemical, cytotoxic, and anti-inflammatory assessment of honey bee venom from Apis mellifera intermissa. Antibiot., 2021, 10(12), 1514.
  23. Bahreyni, A.; Mohamud, Y.; Zhang, J.; Luo, H. Engineering a facile and versatile nanoplatform to facilitate the delivery of multiple agents for targeted breast cancer chemo-immunotherapy. Biomed. Pharmacother., 2023, 163, 114789. doi: 10.1016/j.biopha.2023.114789 PMID: 37119737
  24. Bai, L.; Liu, H.; You, R.; Jiang, X.; Zhang, T.; Li, Y.; Shan, T.; Qian, Z.; Wang, Y.; Liu, Y.; Li, C. Combination nano-delivery systems remodel the immunosuppressive tumor microenvironment for metastatic triple-negative breast cancer therapy. Mol. Pharm., 2024, 21(5), 2148-2162. doi: 10.1021/acs.molpharmaceut.3c00242 PMID: 38536949
  25. Duarte, D.; Falcão, S.I.; El Mehdi, I.; Vilas-Boas, M.; Vale, N. Honeybee venom synergistically enhances the cytotoxic effect of CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines. Pharmaceutics, 2022, 14(3), 511. doi: 10.3390/pharmaceutics14030511 PMID: 35335887
  26. Li, Q.; Shi, Z.; Ou, M.; Li, Z.; Luo, M.; Wu, M.; Dong, X.; Lu, L.; Lv, F.; Zhang, F.; Mei, L. pH-labile artificial natural killer cells for overcoming tumor drug resistance. J. Control. Release, 2022, 352, 450-458. doi: 10.1016/j.jconrel.2022.10.042 PMID: 36341929
  27. Duffy, C.; Sorolla, A.; Wang, E.; Golden, E.; Woodward, E.; Davern, K.; Ho, D.; Johnstone, E.; Pfleger, K.; Redfern, A.; Iyer, K.S.; Baer, B.; Blancafort, P. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol., 2020, 4(1), 24. doi: 10.1038/s41698-020-00129-0 PMID: 32923684
  28. Khamis, A.A.; Ali, E.M.M.; Salim, E.I.; El-Moneim, M.A.A. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats. Sci. Rep., 2024, 14(1), 1510. doi: 10.1038/s41598-023-50729-6 PMID: 38233443
  29. Khamis, A.A.A.; Ali, E.M.M.; El-Moneim, M.A.A.; Abd-Alhaseeb, M.M.; El-Magd, M.A.; Salim, E.I. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed. Pharmacother., 2018, 105, 1335-1343. doi: 10.1016/j.biopha.2018.06.105 PMID: 30021371
  30. Shaw, P.; Kumar, N.; Hammerschmid, D.; Privat-Maldonado, A.; Dewilde, S.; Bogaerts, A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers, 2019, 11(8), 1109. doi: 10.3390/cancers11081109 PMID: 31382579
  31. Pinto, M.B. Bee venom-loaded niosomes as innovative platforms for cancer treatment: Development and therapeutical efficacy and safety evaluation. Phar. (Basel), 2024, 17(5), 572.
  32. Hussein, M.M.A.; Abdelfattah-Hassan, A.; Eldoumani, H.; Essawi, W.M.; Alsahli, T.G.; Alharbi, K.S.; Alzarea, S.I.; Al-Hejaili, H.Y.; Gaafar, S.F. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells. Front. Pharmacol., 2023, 14, 1258387. doi: 10.3389/fphar.2023.1258387 PMID: 37808196
  33. Raveendran, R.; Chen, F.; Kent, B.; Stenzel, M.H. Estrone-decorated polyion complex micelles for targeted melittin delivery to hormone-responsive breast cancer cells. Biomacromolecules, 2020, 21(3), 1222-1233. doi: 10.1021/acs.biomac.9b01681 PMID: 32022540
  34. Dai, Y.; Yu, X.; Leng, Y.; Peng, X.; Wang, J.; Zhao, Y.; Chen, J.; Zhang, Z. Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles. J. Nanobiotechnol., 2023, 21(1), 245. doi: 10.1186/s12951-023-02026-7 PMID: 37528426
  35. Zhou, Y.; Zhang, S.; Chen, Z.; Bao, Y.; Chen, A.T.; Sheu, W.C.; Liu, F.; Jiang, Z.; Zhou, J. Targeted delivery of secretory promelittin via novel Poly(lactone‐ co ‐β‐amino ester) nanoparticles for treatment of breast cancer brain metastases. Adv. Sci., 2020, 7(5), 1901866. doi: 10.1002/advs.201901866 PMID: 32154067
  36. Gribenko, A.V.; Guzmán-Casado, M.; Lopez, M.M.; Makhatadze, G.I. Conformational and thermodynamic properties of peptide binding to the human S100P protein. Protein Sci., 2002, 11(6), 1367-1375. doi: 10.1110/ps.0202202 PMID: 12021435
  37. Soman, N.R.; Baldwin, S.L.; Hu, G.; Marsh, J.N.; Lanza, G.M.; Heuser, J.E.; Arbeit, J.M.; Wickline, S.A.; Schlesinger, P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest., 2009, 119(9), 2830-2842. doi: 10.1172/JCI38842 PMID: 19726870
  38. Yang, L.; Cui, F.; Shi, K.; Cun, D.; Wang, R. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique. Drug Dev. Ind. Pharm., 2009, 35(8), 959-968. doi: 10.1080/03639040902718039 PMID: 19274512
  39. Cho, H.J.; Jeong, Y.J.; Park, K.K.; Park, Y.Y.; Chung, I.K.; Lee, K.G.; Yeo, J.H.; Han, S.M.; Bae, Y.S.; Chang, Y.C. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-κB-dependent mechanisms. J. Ethnopharmacol., 2010, 127(3), 662-668. doi: 10.1016/j.jep.2009.12.007 PMID: 19969058
  40. Armbrecht, L.; Gabernet, G.; Kurth, F.; Hiss, J.A.; Schneider, G.; Dittrich, P.S. Characterisation of anticancer peptides at the single-cell level. Lab Chip, 2017, 17(17), 2933-2940. doi: 10.1039/C7LC00505A PMID: 28736788
  41. Daniluk, K. Use of selected carbon nanoparticles as melittin carriers for MCF-7 and MDA-MB-231 human breast cancer cells. Materials (Basel), 2019, 13(1), 90.
  42. Daniluk, K.; Lange, A.; Pruchniewski, M.; Małolepszy, A.; Sawosz, E.; Jaworski, S. Delivery of melittin as a lytic agent via graphene nanoparticles as carriers to breast cancer cells. J. Funct. Biomater., 2022, 13(4), 278. doi: 10.3390/jfb13040278 PMID: 36547538
  43. Daniluk, K.; Lange, A.; Wójcik, B.; Zawadzka, K.; Bałaban, J.; Kutwin, M.; Jaworski, S. Effect of melittin complexes with graphene and graphene oxide on triple-negative breast cancer tumors grown on chicken embryo chorioallantoic membrane. Int. J. Mol. Sci., 2023, 24(9), 8388. doi: 10.3390/ijms24098388 PMID: 37176095
  44. Zhang, C.; Zhang, B.; Tang, C.; Shi, X.; Guo, B.; Wang, F. A ratiometric gene‐switch system for mirna sensing and gene regulation. Small Methods, 2024, 8(3), 2301266. doi: 10.1002/smtd.202301266 PMID: 38009771
  45. Kim, S.; Choi, I.; Han, I.H.; Bae, H. Enhanced therapeutic effect of optimized Melittin-dKLA, a peptide agent targeting m2-like tumor-associated macrophages in triple-negative breast cancer. Int. J. Mol. Sci., 2022, 23(24), 15751. doi: 10.3390/ijms232415751 PMID: 36555393
  46. Yu, X. Activatable protein nanoparticles for targeted delivery of therapeutic peptides. Adv. Mater., 2018, 30(7), 10.1002/adma.201705383. doi: 10.1002/adma.201705383
  47. Jin, X.; Wu, H.; Yu, J.; Cao, Y.; Zhang, L.; Zhang, Z.; Lv, H. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. J. Control. Release, 2024, 365, 802-817. doi: 10.1016/j.jconrel.2023.12.013 PMID: 38092255
  48. Zhang, T.; Bai, L.; You, R.; Yang, M.; Chen, Q.; Cheng, Y.; Qian, Z.; Wang, Y.; Liu, Y. Homologous-targeting biomimetic nanoparticles co-loaded with melittin and a photosensitizer for the combination therapy of triple negative breast cancer. J. Mater. Chem. B Mater. Biol. Med., 2024, 12(22), 5465-5478. doi: 10.1039/D3TB02919K PMID: 38742364
  49. Zhao, Q.; Feng, H.; Yang, Z.; Liang, J.; Jin, Z.; Chen, L.; Zhan, L.; Xuan, M.; Yan, J.; Kuang, J.; Cheng, X.; Zhao, R.; Qiu, W. The central role of a two‐way positive feedback pathway in molecular targeted therapies‐mediated pyroptosis in anaplastic thyroid cancer. Clin. Transl. Med., 2022, 12(2), e727. doi: 10.1002/ctm2.727 PMID: 35184413
  50. Hartmann, A.D.; Wilhelm, N.; Erfle, V.; Hartmann, K. Clinical efficacy of melittin in the treatment of cats infected with the feline immunodeficiency virus. Tierarztl. Prax. Ausg. K Klientiere. Heimtiere, 2016, 44(6), 417-423. PMID: 27808347
  51. Choi, E.; Michalski, C.J.; Choo, S.H.; Kim, G.N.; Banasikowska, E.; Lee, S.; Wu, K.; An, H.Y.; Mills, A.; Schneider, S.; Bredeek, U.F.; Coulston, D.R.; Ding, S.; Finzi, A.; Tian, M.; Klein, K.; Arts, E.J.; Mann, J.F.S.; Gao, Y.; Kang, C.Y. First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses. Retrovirol., 2016, 13(1), 82. doi: 10.1186/s12977-016-0317-2 PMID: 27894306
  52. Koyama, N.; Hirata, K.; Hori, K.; Dan, K.; Yokota, T. Computer-assisted infrared thermographic study of axon reflex induced by intradermal melittin. Pain, 2000, 84(2), 133-139. doi: 10.1016/S0304-3959(99)00192-X PMID: 10666517
  53. Carter, V.; Underhill, A.; Baber, I.; Sylla, L.; Baby, M.; Larget-Thiery, I.; Zettor, A.; Bourgouin, C.; Langel, Ü.; Faye, I.; Otvos, L.; Wade, J.D.; Coulibaly, M.B.; Traore, S.F.; Tripet, F.; Eggleston, P.; Hurd, H. Killer bee molecules: Antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog., 2013, 9(11), e1003790. doi: 10.1371/journal.ppat.1003790 PMID: 24278025
  54. Oršolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194. doi: 10.1007/s10555-011-9339-3 PMID: 22109081
  55. Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705. doi: 10.1016/j.etap.2013.06.009 PMID: 23892471
  56. Raghuraman, H.; Chattopadhyay, A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep., 2007, 27(4-5), 189-223. doi: 10.1007/s10540-006-9030-z PMID: 17139559
  57. Damianoglou, A.; Rodger, A.; Pridmore, C.; Dafforn, T.R.; Mosely, J.A.; Sanderson, J.M.; Hicks, M.R. The synergistic action of melittin and phospholipase A2 with lipid membranes: Development of linear dichroism for membrane-insertion kinetics. Protein Pept. Lett., 2010, 17(11), 1351-1362. doi: 10.2174/0929866511009011351 PMID: 20673225
  58. Lyu, C.; Fang, F.; Li, B. Anti-tumor effects of melittin and its potential applications in clinic. Curr. Protein Pept. Sci., 2019, 20(3), 240-250. doi: 10.2174/1389203719666180612084615 PMID: 29895240
  59. Tosteson, M.T.; Holmes, S.J.; Razin, M.; Tosteson, D.C. Melittin lysis of red cells. J. Membr. Biol., 1985, 87(1), 35-44. doi: 10.1007/BF01870697 PMID: 4057243
  60. DeGrado, W.F. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J., 1982, 37(1), 329-338.
  61. Lee, G.; Bae, H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules, 2016, 21(5), 616. doi: 10.3390/molecules21050616 PMID: 27187328
  62. Sobotka, A.K. Allergy to insect stings: II. Phospholipase A: The major allergen in honeybee venom. J. Allergy Clin. Immunol., 1976, 57(1), 29-40. doi: 10.1016/0091-6749(76)90076-2
  63. Paull, B.R. Melittin: An allergen of honeybee venom. J. Allergy Clin. Immunol., 1977, 59(4), 334-338. doi: 10.1016/0091-6749(77)90056-2
  64. Gajski, G. Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon, 2016, 110, 56-67. doi: 10.1016/j.toxicon.2015.12.005
  65. Cathcart-Rake, E.J.; Tevaarwerk, A.J.; Haddad, T.C.; D’Andre, S.D.; Ruddy, K.J. Advances in the care of breast cancer survivors. BMJ, 2023, 382, e071565. doi: 10.1136/bmj-2022-071565 PMID: 37722731
  66. Di Nardo, P.; Lisanti, C.; Garutti, M.; Buriolla, S.; Alberti, M.; Mazzeo, R.; Puglisi, F. Chemotherapy in patients with early breast cancer: Clinical overview and management of long-term side effects. Expert Opin. Drug Saf., 2022, 21(11), 1341-1355. doi: 10.1080/14740338.2022.2151584 PMID: 36469577
  67. DeMarco, C. Side effects of radiation therapy for breast cancer., 2023. Available from: https://www.mdanderson.org/cancerwise/side-effects-of-radiation-therapy-for-breast-cancer.h00-159615489.html
  68. Taylor, C.W.; Kirby, A.M. Cardiac side-effects from breast cancer radiotherapy. Clin. Oncol., 2015, 27(11), 621-629. doi: 10.1016/j.clon.2015.06.007 PMID: 26133462
  69. Al-Dasooqi, N.; Bowen, J.M.; Gibson, R.J.; Sullivan, T.; Lees, J.; Keefe, D.M. Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients. Invest. New Drugs, 2009, 27(2), 173-178. doi: 10.1007/s10637-008-9152-1 PMID: 18612591
  70. Hattersley, R.; Nana, M.; Lansdown, A.J. Endocrine complications of immunotherapies: A review. Clin. Med., 2021, 21(2), e212-e222. doi: 10.7861/clinmed.2020-0827 PMID: 33762389
  71. American thyroid association. Available from: https://www.thyroid. org/patient-thyroid-information/ct-for-patients/august-2020/vol-13-issue-8-p-5-6/
  72. Hormone Therapy for Breast Cancer. 2022. Available from: https://www.cancer.gov/types/breast/breast-hormone-therapy-fact-sheet

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025