HLTF Promotes the Proliferation of Osteosarcoma Cells and Cisplatin Resistance


Дәйексөз келтіру

Толық мәтін

Аннотация

Background: Osteosarcoma, the most common primary malignant tumor of bone tissue, is characterized by aggressive biological behavior and poor clinical outcomes. The Helicase-Like Transcription Factor (HLTF), a key regulator of DNA damage response and chromatin remodeling processes, has been increasingly recognized for its crucial role in the pathogenesis and progression of various malignancies.

Objective: This study aimed to elucidate the regulatory role of HLTF in modulating critical cellular processes, including proliferation, migration, and apoptosis in osteosarcoma cells, while concurrently investigating its potential as a molecular determinant of cisplatin chemoresistance.

Methods: The CCK-8 and colony formation assays were carried out to systematically evaluate the impact of HLTF on the proliferative capabilities of osteosarcoma cells. Additionally, the transwell and cell scratch assays were performed to determine the effect of HLTF on the migratory potential of osteosarcoma cells. Furthermore, the CCK8 assay and the subcutaneous tumorigenesis experiment were conducted in nude mice to determine the effect of HLTF on the sensitivity of osteosarcoma cells to cisplatin.

Results: Our findings revealed that silencing HLTF expression in osteosarcoma cells led to a marked suppression of both cell proliferation and invasive potential. In contrast, the overexpression of HLTF was found to augment the proliferative and migratory abilities of these cells. Remarkably, downregulating HLTF in osteosarcoma cells heightened cell sensitivity to cisplatin, which was further validated by in vivo experiments.

Conclusion: Collectively, our findings strongly indicate that HLTF acts as an oncogene, actively driving the proliferation of osteosarcoma cells and conferring resistance to cisplatin.

Негізгі сөздер

Авторлар туралы

Jing Yu

Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China

Email: info@benthamscience.net

Cheng Wang

Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Ceyssens, S.; Stroobants, S. Sarcoma. Positron Emission Tomography, 2011, 727, 191-203. doi: 10.1007/978-1-61779-062-1_11 PMID: 21331935
  2. Eaton, B.R.; Schwarz, R.; Vatner, R.; Yeh, B.; Claude, L.; Indelicato, D.J.; Laack, N. Osteosarcoma. Pediatr. Blood Cancer, 2021, 68(Suppl. 2), e28352. doi: 10.1002/pbc.28352 PMID: 32779875
  3. Gill, J.; Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol., 2021, 18(10), 609-624. doi: 10.1038/s41571-021-00519-8 PMID: 34131316
  4. Belayneh, R.; Fourman, M.S.; Bhogal, S.; Weiss, K.R. Update on Osteosarcoma. Curr. Oncol. Rep., 2021, 23(6), 71. doi: 10.1007/s11912-021-01053-7 PMID: 33880674
  5. Song, L.; Luo, Z.Q. Post-translational regulation of ubiquitin signaling. J. Cell Biol., 2019, 218(6), 1776-1786. doi: 10.1083/jcb.201902074 PMID: 31000580
  6. Czuba, L.C.; Hillgren, K.M.; Swaan, P.W. Post-translational modifications of transporters. Pharmacol. Ther., 2018, 192, 88-99. doi: 10.1016/j.pharmthera.2018.06.013 PMID: 29966598
  7. Han, S.; Wang, R.; Zhang, Y.; Li, X.; Gan, Y.; Gao, F.; Rong, P.; Wang, W.; Li, W. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int. J. Biol. Sci., 2022, 18(6), 2292-2303. doi: 10.7150/ijbs.69411 PMID: 35414786
  8. Cockram, P.E.; Kist, M.; Prakash, S.; Chen, S.H.; Wertz, I.E.; Vucic, D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ., 2021, 28(2), 591-605. doi: 10.1038/s41418-020-00708-5 PMID: 33432113
  9. Dang, F.; Nie, L.; Wei, W. Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ., 2021, 28(2), 427-438. doi: 10.1038/s41418-020-00648-0 PMID: 33130827
  10. Liu, P.; Xie, N. RFWD2 increases proliferation and CDDP resistance of osteosarcoma cells. Gene, 2025, 933, 148973. doi: 10.1016/j.gene.2024.148973 PMID: 39349111
  11. Elserafy, M.; Abugable, A.A.; Atteya, R.; El-Khamisy, S.F. Rad5, HLTF, and SHPRH: A fresh view of an old story. Trends Genet., 2018, 34(8), 574-577. doi: 10.1016/j.tig.2018.04.006 PMID: 29807746
  12. Motegi, A.; Liaw, H.J.; Lee, K.Y.; Roest, H.P.; Maas, A.; Wu, X.; Moinova, H.; Markowitz, S.D.; Ding, H.; Hoeijmakers, J.H.J.; Myung, K. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12411-12416. doi: 10.1073/pnas.0805685105 PMID: 18719106
  13. Masuda, Y.; Mitsuyuki, S.; Kanao, R.; Hishiki, A.; Hashimoto, H.; Masutani, C. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Res., 2018, 46(21), 11340-11356. doi: 10.1093/nar/gky943 PMID: 30335157
  14. Xu, Y.; Ke, S.; Lu, S.; Wang, C.; Li, Z.; Feng, Z.; Yu, H.; Bai, M.; Qian, B.; Yin, B.; Li, X.; Hua, Y.; Jiang, H.; Ma, Y. HLTF promotes hepatocellular carcinoma progression by enhancing SRSF1 stability and activating ERK/MAPK pathway. Oncogenesis, 2023, 12(1), 2. doi: 10.1038/s41389-023-00447-5 PMID: 36670110
  15. Liu, L.; Liu, H.; Zhou, Y.; He, J.; Liu, Q.; Wang, J.; Zeng, M.; Yuan, D.; Tan, F.; Zhou, Y.; Pei, H.; Zhu, H. HLTF suppresses the migration and invasion of colorectal cancer cells via TGF β/SMAD signaling in vitro. Int. J. Oncol., 2018, 53(6), 2780-2788. doi: 10.3892/ijo.2018.4591 PMID: 30320371
  16. Capouillez, A.; Debauve, G.; Decaestecker, C.; Filleul, O.; Chevalier, D.; Mortuaire, G.; Coppée, F.; Leroy, X.; Belayew, A.; Saussez, S. The helicase‐like transcription factor is a strong predictor of recurrence in hypopharyngeal but not in laryngeal squamous cell carcinomas. Histopathology, 2009, 55(1), 77-90. doi: 10.1111/j.1365-2559.2009.03330.x PMID: 19614770
  17. Arcolia, V.; Paci, P.; Dhont, L.; Chantrain, G.; Sirtaine, N.; Decaestecker, C.; Remmelink, M.; Belayew, A.; Saussez, S. Helicase-like transcription factor: A new marker of well-differentiated thyroid cancers. BMC Cancer, 2014, 14(1), 492. doi: 10.1186/1471-2407-14-492 PMID: 25005870
  18. Cho, S.; Cinghu, S.; Yu, J.R.; Park, W.Y. Helicase-like transcription factor confers radiation resistance in cervical cancer through enhancing the DNA damage repair capacity. J. Cancer Res. Clin. Oncol., 2011, 137(4), 629-637. doi: 10.1007/s00432-010-0925-5 PMID: 20535496
  19. Bryant, E.E.; Šunjevarić, I.; Berchowitz, L.; Rothstein, R.; Reid, R.J.D. Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin sensitivity and genome instability. Nucleic Acids Res., 2019, 47(17), 9144-9159. doi: 10.1093/nar/gkz631 PMID: 31350889
  20. Seelinger, M.; Søgaard, C.K.; Otterlei, M. The human RAD5 homologs, HLTF and SHPRH, have separate functions in DNA damage tolerance dependent on the DNA lesion type. Biomolecules, 2020, 10(3), 463. doi: 10.3390/biom10030463 PMID: 32192191
  21. Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol., 2015, 33(27), 3029-3035. doi: 10.1200/JCO.2014.59.4895 PMID: 26304877
  22. Argenziano, M.; Tortora, C.; Pota, E.; Di Paola, A.; Di Martino, M.; Di Leva, C.; Di Pinto, D.; Rossi, F. Osteosarcoma in children: Not only chemotherapy. Pharmaceuticals, 2021, 14(9), 923. doi: 10.3390/ph14090923 PMID: 34577623
  23. Tang, Q.; Wang, L.C.; Wang, Y.; Gao, H.; Hou, Z. Efficacy of methotrexate, doxorubicin, and cisplatin for osteosarcoma. Medicine, 2019, 98(6), e14442. doi: 10.1097/MD.0000000000014442 PMID: 30732208
  24. Unk, I.; Hajdú, I.; Fátyol, K.; Hurwitz, J.; Yoon, J.H.; Prakash, L.; Prakash, S.; Haracska, L. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 3768-3773. doi: 10.1073/pnas.0800563105 PMID: 18316726
  25. Debauve, G.; Capouillez, A.; Belayew, A.; Saussez, S. The Helicase-Like Transcription Factor and its implication in cancer progression. Cell. Mol. Life Sci., 2008, 65(4), 591-604. doi: 10.1007/s00018-007-7392-4 PMID: 18034322
  26. Poole, L.A.; Cortez, D. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol., 2017, 52(6), 696-714. doi: 10.1080/10409238.2017.1380597 PMID: 28954549
  27. Dhont, L.; Mascaux, C.; Belayew, A. The helicase-like transcription factor (HLTF) in cancer: Loss of function or oncomorphic conversion of a tumor suppressor? Cell. Mol. Life Sci., 2016, 73(1), 129-145. doi: 10.1007/s00018-015-2060-6 PMID: 26472339
  28. Debauve, G.; Nonclercq, D.; Ribaucour, F.; Wiedig, M.; Gerbaux, C.; Leo, O.; Laurent, G.; Journé, F.; Belayew, A.; Toubeau, G. Early expression of the Helicase-Like Transcription Factor (HLTF/SMARCA3) in an experimental model of estrogen-induced renal carcinogenesis. Mol. Cancer, 2006, 5(1), 23. doi: 10.1186/1476-4598-5-23 PMID: 16762066
  29. Capouillez, A.; Decaestecker, C.; Filleul, O.; Chevalier, D.; Coppée, F.; Leroy, X.; Belayew, A.; Saussez, S. Helicase-like transcription factor exhibits increased expression and altered intracellular distribution during tumor progression in hypopharyngeal and laryngeal squamous cell carcinomas. Virchows Arch., 2008, 453(5), 491-499. doi: 10.1007/s00428-008-0675-9 PMID: 18825407
  30. Piao, S.; Ojha, R.; Rebecca, V.W.; Samanta, A.; Ma, X.; Mcafee, Q.; Nicastri, M.C.; Buckley, M.; Brown, E.; Winkler, J.D.; Gimotty, P.A.; Amaravadi, R.K. ALDH1A1 and HLTF modulate the activity of lysosomal autophagy inhibitors in cancer cells. Autophagy, 2017, 13(12), 2056-2071. doi: 10.1080/15548627.2017.1377377 PMID: 28981387
  31. Hashimoto, K.; Nishimura, S.; Shinyashiki, Y.; Ito, T.; Akagi, M. Characterizing inflammatory markers in highly aggressive soft tissue sarcomas. Medicine, 2022, 101(39), e30688. doi: 10.1097/MD.0000000000030688 PMID: 36181081
  32. Nakamura, T.; Matsumine, A.; Matsubara, T.; Asanuma, K.; Uchida, A.; Sudo, A. The combined use of the neutrophil-lymphocyte ratio and C-reactive protein level as prognostic predictors in adult patients with soft tissue sarcoma. J. Surg. Oncol., 2013, 108(7), 481-485. doi: 10.1002/jso.23424 PMID: 24018883
  33. Kobayashi, H.; Okuma, T.; Okajima, K.; Ishibashi, Y.; Zhang, L.; Hirai, T.; Ohki, T.; Ikegami, M.; Sawada, R.; Shinoda, Y.; Akiyama, T.; Goto, T.; Tanaka, S. Systemic inflammation response index (SIRI) as a predictive factor for overall survival in advanced soft tissue sarcoma treated with eribulin. J. Orthop. Sci., 2022, 27(1), 222-228. doi: 10.1016/j.jos.2020.11.006 PMID: 33384219
  34. Wang, X.; Rao, J.; Chen, X.; Wang, Z.; Zhang, Y. Identification of shared signature genes and immune microenvironment subtypes for heart failure and chronic kidney disease based on Machine Learning. J. Inflamm. Res., 2024, 17, 1873-1895. doi: 10.2147/JIR.S450736 PMID: 38533476
  35. Tsuchida, C.; Sakuramoto-Tsuchida, S.; Taked, M.; Itaya-Hironaka, A.; Yamauchi, A.; Misu, M.; Shobatake, R.; Uchiyama, T.; Makino, M.; Pujol-Autonell, I.; Vives-Pi, M.; Ohbayashi, C.; Takasawa, S. Expression of REG family genes in human inflammatory bowel diseases and its regulation. Biochem. Biophys. Rep., 2017, 12, 198-205. doi: 10.1016/j.bbrep.2017.10.003 PMID: 29090282
  36. Takasawa, S.; Tsuchida, C.; Sakuramoto-Tsuchida, S.; Takeda, M.; Itaya-Hironaka, A.; Yamauchi, A.; Misu, M.; Shobatake, R.; Uchiyama, T.; Makino, M.; Ohbayashi, C. Expression of human REG family genes in inflammatory bowel disease and their molecular mechanism. Immunol. Res., 2018, 66(6), 800-805. doi: 10.1007/s12026-019-9067-2 PMID: 30694514
  37. Kaur, G.; Helmer, R.A.; Martinez-Marin, D.; Sennoune, S.R.; Washburn, R.L.; Martinez-Zaguilan, R.; Dufour, J.M.; Chilton, B.S. Helicase-like transcription factor (Hltf)-deletion activates Hmgb1-Rage axis and granzyme A-mediated killing of pancreatic β cells resulting in neonatal lethality. PLoS One, 2023, 18(8), e0286109. doi: 10.1371/journal.pone.0286109 PMID: 37624843
  38. Bai, G.; Kermi, C.; Stoy, H.; Schiltz, C.J.; Bacal, J.; Zaino, A.M.; Hadden, M.K.; Eichman, B.F.; Lopes, M.; Cimprich, K.A. HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis. Mol. Cell, 2020, 78(6), 1237-1251.e7. doi: 10.1016/j.molcel.2020.04.031 PMID: 32442397
  39. Gong, X.; Kaushal, S.; Ceccarelli, E.; Bogdanova, N.; Neville, C.; Nguyen, T.; Clark, H.; Khatib, Z.A.; Valentine, M.; Look, A.T.; Rosenthal, N. Developmental regulation of Zbu1, a DNA-binding member of the SWI2/SNF2 family. Dev. Biol., 1997, 183(2), 166-182. doi: 10.1006/dbio.1996.8486 PMID: 9126292
  40. Hu, Z.; Li, L.; Lan, W.; Wei, X.; Wen, X.; Wu, P.; Zhang, X.; Xi, X.; Li, Y.; Wu, L.; Li, W.; Liao, X. Enrichment of Wee1/CDC2 and NF-κB signaling pathway constituents mutually contributes to CDDP resistance in human Osteosarcoma. Cancer Res. Treat., 2022, 54(1), 277-293. doi: 10.4143/crt.2021.320 PMID: 33971703
  41. Pan, B.; Pan, Y.; Wang, S.; Bai, Y.; Hu, X.; Yang, Y.; Wu, L.; Liu, J. ANXA2 and Rac1 negatively regulates autophagy and osteogenic differentiation in osteosarcoma cells to confer CDDP resistance. Biochem. Biophys. Res. Commun., 2023, 676, 198-206. doi: 10.1016/j.bbrc.2023.07.006 PMID: 37536195

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025