In vitro and In vivo Growth Inhibition and Apoptosis of Cancer Cells by Ethyl 4-[(4-methylbenzyl)oxy] Benzoate Complex


Дәйексөз келтіру

Толық мәтін

Аннотация

Background: Cancer chemotherapy is one of the best ways to treat the patients with cancer as they can remove cancer cells, which can’t be remove by radiation or surgery.

Aims:Our study is focused on identifying potent chemotherapeutic drugs with minor or no adverse side effects. Therefore, in this study, we aimed to synthesize ethyl 4-[(4-methylbenzyl)oxy] benzoate complex, a macrocyclic aromatic compound followed by testing its antineoplastic activity against Ehrlich ascites carcinoma (EAC) human breast cancer (MCF7) cells.

Methods: In vitro and in vivo assays were used for monitoring, cytotoxicity, tumor weight, survival time, tumor cell growth inhibition, and hematological parameters to investigate the anticancer effectiveness of the tested compound. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to examine the expression of growth and apoptotic related genes. Haematological and biochemical parameters were assessed to examine the host toxicity in mice.

Results: The compound exhibited notable anticancer activity against both EAC and MCF7cells. It showed 40.70 and 58.98 % cell growth inhibition at the doses of 0.5 and 1.00 mg/kg, respectively in comparison to that of control EAC-bearing mice (p <0.0001). The result is comparable with clinically used chemotherapeutic drugs cisplatin (59.2% growth inhibition at the dose of 1.0 mg/kg body weight). A four folds reduction of tumor weight (volume) of treated group at higher dose (1.0 mg/kg/day) was noted in comparison to that of untreated EAC-bearing mice. Also, the mean survival time of treated mice (1.00 mg/kg) increased by more than 83.07% when compared to that of control EAC-bearing mice (p<0.001). In addition, EAC-bearing control mice showed drastic deterioration of RBC, WBC, and % of hemoglobin, however, in the treated mice these parameters were restored towards normal levels. A dose dependent reduction of growth and proliferation of MCF7 cells was noted in compound treated cells. Most importantly, apoptosis of MCF7 was induced followed by activation of pro-apoptotic genes (p53, Bax, Parp, Caspase-3, -8, -9) and inactivation of antiapoptotic, e.g. Bcl2 gene. Toxicological studies reveal that there were changes in hematological (RBC, WBC, % of Hb) and biochemical (serum glucose, cholesterol, creatinine, SGOT, SGPT) parameters during the treatment period, however, the parameters returned towards normal levels after the treatment period, indicating no or minor toxic effect of the compound on the host.

Conclusion: The compound has promising anticancer activity with no or minimum host toxic effects. Thus, it has the potential to be formulated as an effective chemo-agent, however, further preclinical and clinical research is imperative using animal and human models.

Авторлар туралы

Abdul Auwal

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Md. Al Banna

Department of Chemistry, University of Rajshahi

Email: info@benthamscience.net

Tasfik Pronoy

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

M. Hossain

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

KM Rashel

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Syed Kabir

Department of Biochemistry and Molecular Biology, University of Rajshahi

Email: info@benthamscience.net

Md. Ansary

Department of Chemistry, University of Rajshahi

Email: info@benthamscience.net

Farhadul Islam

Department of Biochemistry and Molecular Biology, University of Rajshahi

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Ma, X.; Yu, H. Global burden of cancer. Yale J. Biol. Med., 2006, 79(3-4), 85-94. PMID: 17940618
  2. Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(S2), 41-59. doi: 10.1159/000443404
  3. Ukrainets, I.V.; Burian, A.A.; Baumer, V.N.; Shishkina, S.V.; Sidorenko, L.V.; Tugaibei, I.A.; Voloshchuk, N.I.; Bondarenko, P.S. Synthesis, crystal structure, and biological activity of ethyl 4-methyl-2,2-dioxo-1h-2λ6,1-benzothiazine-3-carboxylate polymorphic forms. Sci. Pharm., 2018, 86(2), 21. doi: 10.3390/scipharm86020021 PMID: 29848976
  4. Selvam, T.P.; Karthick, V.; Kumar, P.V.; Ali, M.A. Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo3,2-apyrimidin-3(7H)-one derivatives as anticancer agents. Drug Discov. Ther., 2012, 6(4), 198-204. doi: 10.5582/ddt.2012.v6.4.198 PMID: 23006990
  5. Attalah, K.M.; Abdalla, A.N.; Aslam, A.; Ahmed, M.; Abourehab, M.A.S.; ElSawy, N.A.; Gouda, A.M. Ethyl benzoate bearing pyrrolizine/indolizine moieties: Design, synthesis and biological evaluation of anti-inflammatory and cytotoxic activities. Bioorg. Chem., 2020, 94, 103371. doi: 10.1016/j.bioorg.2019.103371 PMID: 31708230
  6. Hawas, U.W.; Abou El-Kassem, L.T.; Abdelfattah, M.S.; Elmallah, M.I.Y.; Eid, M.A.G.; Monier, M.M.; Marimuthu, N. Cytotoxic activity of alkyl benzoate and fatty acids from the red sea sponge Hyrtios erectus. Nat. Prod. Res., 2018, 32(12), 1369-1374. doi: 10.1080/14786419.2017.1344662 PMID: 28669229
  7. Wang, K.; Ju, C.; Xiao, J.; Chen, Q. Methyl 4-(benzyloxy)-3-methoxybenzoate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2013, 69(10), o1562. doi: 10.1107/S1600536813025415 PMID: 24098242
  8. Liew, S.K.; Malagobadan, S.; Arshad, N.M.; Nagoor, N.H. A review of the structure–activity relationship of natural and synthetic antimetastatic compounds. Biomolecules, 2020, 10(1), 138. doi: 10.3390/biom10010138 PMID: 31947704
  9. Jungwirth, U.; Xanthos, D.N.; Gojo, J.; Bytzek, A.K.; Körner, W.; Heffeter, P.; Abramkin, S.A.; Jakupec, M.A.; Hartinger, C.G.; Windberger, U.; Galanski, M.; Keppler, B.K.; Berger, W. Anticancer activity of methyl-substituted oxaliplatin analogs. Mol. Pharmacol., 2012, 81(5), 719-728. doi: 10.1124/mol.111.077321 PMID: 22331606
  10. Banna, M.H.A.; Ansary, M.R.H.; Miyatake, R.; Sheikh, M.C.; Zangrando, E. Crystal structure of ethyl 4-(4-methylbenzyl)oxy benzoate. Acta Crystallogr. E Crystallogr. Commun., 2022, 78(10), 1077-1080. doi: 10.1107/S2056989022009380 PMID: 36250124
  11. Islam, F.; Ghosh, S.; Khanam, J.A. Antiproliferative and hepatoprotective activity of metabolites from Corynebacterium xerosis against ehrlich ascites carcinoma cells. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S284-S292. doi: 10.12980/APJTB.4.2014C1283 PMID: 25183099
  12. Hassan, I.; Islam, F.; Ozeki, Y.; Kabir, S.R. Antiproliferative activity of cytotoxic tuber lectins from Solanum tuberosum against experimentally induced Ehrlich ascites carcinoma in mice. Afr. J. Biotechnol., 2014, 13(15)
  13. Siddika, A.; Das, P.K.; Asha, S.Y.; Aktar, S.; Tareq, A.R.M.; Siddika, A.; Rakib, A.; Islam, F.; Khanam, J.A. Antiproliferative activity and apoptotic efficiency of Syzygium cumini bark methanolic extract against EAC cells in vivo. Anticancer. Agents Med. Chem., 2021, 21(6), 782-792. doi: 10.2174/1871520620666200811122137 PMID: 32781964
  14. Khatun, M.; Habib, M.R.; Rabbi, M.A.; Amin, R.; Islam, M.F.; Nurujjaman, M.; Karim, M.R.; Rahman, M.H. Antioxidant, cytotoxic and antineoplastic effects of Carissa carandas Linn. leaves. Exp. Toxicol. Pathol., 2017, 69(7), 469-476. doi: 10.1016/j.etp.2017.03.008 PMID: 28478952
  15. Yesmin, R.; Das, P.K.; Belal, H.; Aktar, S.; Siddika, M.A.; Asha, S.Y.; Habib, F.; Rakib, M.A.; Islam, F. Anticancer potential of Michelia champaca Linn. bark against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice. Nat. Prod. J., 2021, 11(1), 85-96. doi: 10.2174/2210315509666191120105647
  16. Yesmin, R.; Das, P.K.; Belal, H.; Aktar, S.; Ayesha, M.A.; Rakib, M.A.; Islam, F.; Khanam, J.A. In vitro antioxidant and antidiabetic assessment of extracts from the bark of Michelia champaca, a medicinal plant in Bangladesh. World J. Pharm. Res., 2019, 8(9), 1505-1526.
  17. Islam, F.; Gopalan, V.; Lam, A.K.Y.; Kabir, S.R. Kaempferia rotunda tuberous rhizome lectin induces apoptosis and growth inhibition of colon cancer cells in vitro. Int. J. Biol. Macromol., 2019, 141, 775-782. doi: 10.1016/j.ijbiomac.2019.09.051 PMID: 31505204
  18. Lee, K.T.W.; Islam, F.; Vider, J.; Martin, J.; Chruścik, A.; Lu, C.T.; Gopalan, V.; Lam, A.K. Overexpression of family with sequence similarity 134, member B (FAM134B) in colon cancers and its tumor suppressive properties in vitro. Cancer Biol. Ther., 2020, 21(10), 954-962. doi: 10.1080/15384047.2020.1810535 PMID: 32857678
  19. Mamoori, A.; Wahab, R.; Islam, F.; Lee, K.; Vider, J.; Lu, C.T.; Gopalan, V.; Lam, A.K. Clinical and biological significance of miR-193a-3p targeted KRAS in colorectal cancer pathogenesis. Hum. Pathol., 2018, 71, 145-156. doi: 10.1016/j.humpath.2017.10.024 PMID: 29104111
  20. Gopalan, V.; Islam, F.; Pillai, S.; Tang, J.C.O.; Tong, D.K.H.; Law, S.; Chan, K.W.; Lam, A.K.Y. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Exp. Cell Res., 2016, 348(2), 146-154. doi: 10.1016/j.yexcr.2016.09.010 PMID: 27658568
  21. Islam, F.; Gopalan, V.; Wahab, R.; Lee, K.T.; Haque, M.H.; Mamoori, A.; Lu, C.; Smith, R.A.; Lam, A.K.Y. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum. Genet., 2017, 136(3), 321-337. doi: 10.1007/s00439-017-1760-4 PMID: 28144752
  22. Islam, F.; Ali, S.M.M.; Khanam, J.A. Hepatoprotective effect of acetone semicarbazone on Ehrlich ascites carcinoma induced carcinogenesis in experimental mice. Asian Pac. J. Trop. Biomed., 2013, 3(2), 105-110. doi: 10.1016/S2221-1691(13)60033-7 PMID: 23593588
  23. Nurujjaman, M.; Mashhoor, T.; Pronoy, T.U.; Auwal, A.; Hasan, M.R.; Islam, S.S.; Hasan, I.; Asaduzzaman, A.K.; Uddin, M.B.; Kabir, S.R.; Islam, F. Antitumor activity of a lectin purified from Punica granatum Pulps against Ehrlich Ascites Carcinoma (EAC) cells. Anti-Cancer Agent. Med. Chem., 2024, 24(3), 193-202.
  24. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
  25. Negi, A.S. 2-benzyl-indanone compounds as anticancer agent and a process for preparation thereof. WO Patent 2017009860A1, 2017.
  26. Mahabalarao, S.K.H.; Saxena, A.K. Spiro derivatives of parthenin as novel anticancer agents. US Patent 8609858B2, 2009.
  27. Islam, F.; Khatun, H.; Ghosh, S.; Ali, M.M.; Khanam, J.A. Bioassay of Eucalyptus extracts for anticancer activity against Ehrlich ascites carcinoma (eac) cells in Swiss albino mice. Asian Pac. J. Trop. Biomed., 2012, 2(5), 394-398. doi: 10.1016/S2221-1691(12)60063-X PMID: 23569937
  28. Wang, X.; Dong, Y.; Qi, X.; Huang, C.; Hou, L. Cholesterol levels and risk of hemorrhagic stroke: A systematic review and meta-analysis. Stroke, 2013, 44(7), 1833-1839. doi: 10.1161/STROKEAHA.113.001326 PMID: 23704101
  29. Chauhan, P.; Yadav, R.; Kaushal, V.; Beniwal, P. Evaluation of serum biochemical profile of breast cancer patients. Int. J. Med. Res. Health Sci., 2016, 5(7), 1.
  30. Islam, F.; Khatun, H.; Khatun, M.; Ali, S.M.M.; Khanam, J.A. Growth inhibition and apoptosis of Ehrlich ascites carcinoma cells by the methanol extract of Eucalyptus camaldulensis. Pharm. Biol., 2014, 52(3), 281-290. doi: 10.3109/13880209.2013.834365 PMID: 24102623
  31. Islam, F.; Raihan, O.; Chowdhury, D.; Khatun, M.; Zuberi, N.; Khatun, L.; Brishti, A.; Bahar, E. Apoptotic and antioxidant activities of methanol extract of Mussaenda roxburghii leaves. Pak. J. Pharm. Sci., 2015, 28(6), 2027-2034. PMID: 26639496
  32. Ricci, M.S.; Zong, W.X. Chemotherapeutic approaches for targeting cell death pathways. Oncologist, 2006, 11(4), 342-357. doi: 10.1634/theoncologist.11-4-342 PMID: 16614230
  33. Gradilone, A.; Gazzaniga, P.; Ribuffo, D.; Scarpa, S.; Cigna, E.; Vasaturo, F.; Bottoni, U.; Innocenzi, D.; Calvieri, S.; Scuderi, N.; Frati, L.; Aglianò, A.M. Survivin, BCL-2, BAX, and BCL-X gene expression in sentinel lymph nodes from melanoma patients. J. Clin. Oncol., 2003, 21(2), 306-312. doi: 10.1200/JCO.2003.08.066 PMID: 12525523
  34. Yuen, A.P.W.; Lam, K.Y.; Choy, J.T.H.; Ho, W.K.; Wei, W.I. The clinicopathological significance of BCL-2 expression in the surgical treatment of laryngeal carcinoma. Clin. Otolaryngol. Allied Sci., 2001, 26(2), 129-133. doi: 10.1046/j.1365-2273.2001.00441.x PMID: 11309054
  35. Kabir, S.R.; Islam, F.; Asaduzzaman, A.K.M. Biogenic silver/silver chloride nanoparticles inhibit human cancer cells proliferation in vitro and Ehrlich ascites carcinoma cells growth in vivo. Sci. Rep., 2022, 12(1), 8909. doi: 10.1038/s41598-022-12974-z PMID: 35618812
  36. Green, D.R.; Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature, 2009, 458(7242), 1127-1130. doi: 10.1038/nature07986 PMID: 19407794
  37. Li, J.; Yuan, J. Caspases in apoptosis and beyond. Oncogene, 2008, 27(48), 6194-6206. doi: 10.1038/onc.2008.297 PMID: 18931687
  38. Lanvin, O.; Gouilleux, F.; Mullié, C.; Mazière, C.; Fuentes, V.; Bissac, E.; Dantin, F.; Mazière, J.C.; Régnier, A.; Lassoued, K.; Gouilleux-Gruart, V. Interleukin-7 induces apoptosis of 697 pre-B cells expressing dominant-negative forms of STAT5: Evidence for caspase-dependent and -independent mechanisms. Oncogene, 2004, 23(17), 3040-3047. doi: 10.1038/sj.onc.1207450 PMID: 15048088
  39. Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 47-59. doi: 10.1038/nrm2308 PMID: 18097445
  40. Tsuruo, T.; Naito, M.; Tomida, A.; Fujita, N.; Mashima, T.; Sakamoto, H.; Haga, N. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci., 2003, 94(1), 15-21. doi: 10.1111/j.1349-7006.2003.tb01345.x PMID: 12708468
  41. Perlman, H.; Zhang, X.; Chen, M.W.; Walsh, K.; Buttyan, R. An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ., 1999, 6(1), 48-54. doi: 10.1038/sj.cdd.4400453 PMID: 10200547
  42. Reyna, D.E.; Garner, T.P.; Lopez, A.; Kopp, F.; Choudhary, G.S.; Sridharan, A.; Narayanagari, S.R.; Mitchell, K.; Dong, B.; Bartholdy, B.A.; Walensky, L.D.; Verma, A.; Steidl, U.; Gavathiotis, E. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in Acute Myeloid Leukemia. Cancer Cell, 2017, 32(4), 490-505.e10. doi: 10.1016/j.ccell.2017.09.001 PMID: 29017059
  43. Khodapasand, E.; Jafarzadeh, N.; Farrokhi, F.; Kamalidehghan, B.; Houshmand, M. Is BAX/BCL-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iran. Biomed. J., 2015, 19(2), 69-75. PMID: 25864810
  44. Herceg, Z.; Wang, Z.Q. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat. Res., 2001, 477(1-2), 97-110. doi: 10.1016/S0027-5107(01)00111-7 PMID: 11376691

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025