Ulvan Microneedles Loaded with Photosensitizer 5-aminolevulinic Acid Inhibits Human Cervical Cancer HeLa Cells In vitro
- Авторы: Liang Z.1, Hu W.1, Wei J.2, Zheng S.1, Jiang G.3, Zhang B.2
-
Учреждения:
- Department of Obstetrics and Gynecology,, The Affiliated Clinical College of Xuzhou Medical University
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital
- Department of Dermatology, The Second Affiliated Hospital of Xuzhou Medical University
- Выпуск: Том 25, № 15 (2025)
- Страницы: 1113-1127
- Раздел: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694448
- DOI: https://doi.org/10.2174/0118715206358815250224043946
- ID: 694448
Цитировать
Полный текст
Аннотация
Background: Cervical cancer encompasses highly invasive and metastatic malignant tumors with poor prognoses. Recently, microneedles have gained significant attention as a novel, non-invasive drug delivery method, offering unique advantages in tumor treatment.
Objective: This study aims to develop an ulvan-based microneedle delivery system encapsulating the photosensitizer 5-aminolevulinic acid (5-ALA-UMNs) and to investigate its inhibitory effects on the growth of human cervical cancer Hela cells.
Methods: The 5-ALA-UMNs and control microneedles (without photosensitizer) were fabricated using a twostep casting technique. The microneedles' morphology, puncture performance, and mechanical strength were assessed. Hela cells were treated in vitro with 5-ALA-UMNs, and the cellular uptake of the photosensitizer was observed using inverted fluorescence microscopy. Cell viability was determined by the CCK-8 assay to identify the optimal drug concentration. Additionally, the anti-tumor efficacy of 5-ALA-UMNs, induced via photodynamic therapy, was evaluated by Live-Dead staining and flow cytometry.
Results: The microneedles exhibited a uniform quadrangular pyramidal shape, orderly arrangement, intact needle tips, and robust mechanical strength. Inverted fluorescence microscopy confirmed the successful uptake of the photosensitizer by Hela cells, which enzymatically converted it to the fluorescent compound protoporphyrin IX. CCK-8 assays demonstrated that 5-ALA-UMNs displayed favorable cytocompatibility and safety. Live-dead staining revealed Hela cell survival rates as follows: 99.55% in the control group, 99.37% in the control microneedle group, 99.41% in the 5-ALA-UMNs group without light exposure, and 57.35% in the 5-ALA-UMNs group with light exposure (all p < 0.05). Flow cytometry results corroborated the live-dead staining findings, confirming the cytotoxic effect of 5-ALA-UMNs on tumor cells.
Conclusion: These results indicate that 5-ALA-UMNs hold promise as a tumor-targeting therapeutic.
Об авторах
Zhen Liang
Department of Obstetrics and Gynecology,, The Affiliated Clinical College of Xuzhou Medical University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Wenxin Hu
Department of Obstetrics and Gynecology,, The Affiliated Clinical College of Xuzhou Medical University
Email: info@benthamscience.net
Jie Wei
Department of Obstetrics and Gynecology, Xuzhou Central Hospital
Email: info@benthamscience.net
Sen Zheng
Department of Obstetrics and Gynecology,, The Affiliated Clinical College of Xuzhou Medical University
Email: info@benthamscience.net
Guan Jiang
Department of Dermatology, The Second Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Bei Zhang
Department of Obstetrics and Gynecology, Xuzhou Central Hospital
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Wu, S.; Jiao, J.; Yue, X.; Wang, Y. Cervical cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with England and India based on the global burden of disease study 2019. Front. Public Health, 2024, 12, 1358433. doi: 10.3389/fpubh.2024.1358433 PMID: 38510348
- Qiu, H.; Cao, S.; Xu, R. Cancer incidence, mortality, and burden in China: A time‐trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun., 2021, 41(10), 1037-1048. doi: 10.1002/cac2.12197 PMID: 34288593
- Burmeister, C.A.; Khan, S.F.; Schäfer, G.; Mbatani, N.; Adams, T.; Moodley, J.; Prince, S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res., 2022, 13, 200238. doi: 10.1016/j.tvr.2022.200238 PMID: 35460940
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
- Abu-Rustum, N.R.; Yashar, C.M.; Arend, R.; Barber, E.; Bradley, K.; Brooks, R.; Campos, S.M.; Chino, J.; Chon, H.S.; Crispens, M.A.; Damast, S.; Fisher, C.M.; Frederick, P.; Gaffney, D.K.; Gaillard, S.; Giuntoli, R.; Glaser, S.; Holmes, J.; Howitt, B.E.; Lea, J.; Mantia-Smaldone, G.; Mariani, A.; Mutch, D.; Nagel, C.; Nekhlyudov, L.; Podoll, M.; Rodabaugh, K.; Salani, R.; Schorge, J.; Siedel, J.; Sisodia, R.; Soliman, P.; Ueda, S.; Urban, R.; Wyse, E.; McMillian, N.R.; Aggarwal, S.; Espinosa, S. NCCN Guidelines® Insights: Cervical cancer, Version 1.2024. J. Natl. Compr. Canc. Netw., 2023, 21(12), 1224-1233. doi: 10.6004/jnccn.2023.0062 PMID: 38081139
- Girda, E.; Randall, L.M.; Chino, F.; Monk, B.J.; Farley, J.H.; O’Cearbhaill, R.E. Cervical cancer treatment update: A society of gynecologic oncology clinical practice statement. Gynecol. Oncol., 2023, 179, 115-122. doi: 10.1016/j.ygyno.2023.10.017 PMID: 37980766
- Bentivegna, E.; Gouy, S.; Maulard, A.; Chargari, C.; Leary, A.; Morice, P. Oncological outcomes after fertility-sparing surgery for cervical cancer: A systematic review. Lancet Oncol., 2016, 17(6), e240-e253. doi: 10.1016/S1470-2045(16)30032-8 PMID: 27299280
- Miyakoshi, K.; Itakura, A.; Abe, T.; Kondoh, E.; Terao, Y.; Tabata, T.; Hamada, H.; Tanaka, K.; Tanaka, M.; Kanayama, N.; Takeda, S. Risk of preterm birth after the excisional surgery for cervical lesions: A propensity-score matching study in Japan. J. Matern. Fetal Neonatal Med., 2021, 34(6), 845-851. doi: 10.1080/14767058.2019.1619687 PMID: 31092078
- Carobeli, L.R.; Meirelles, L.E.F.; Damke, G.M.Z.F.; Damke, E.; Souza, M.V.F.; Mari, N.L.; Mashiba, K.H.; Shinobu-Mesquita, C.S.; Souza, R.P.; Silva, V.R.S.; Gonçalves, R.S.; Caetano, W.; Consolaro, M.E.L. Phthalocyanine and its formulations: A promising photosensitizer for cervical cancer phototherapy. Pharmaceutics, 2021, 13(12), 2057. doi: 10.3390/pharmaceutics13122057 PMID: 34959339
- Zhu, Z.; Liu, Q.; Zhu, K.; Wang, K.; Lin, L.; Chen, Y.; Shao, F.; Qian, R.; Song, Y.; Gao, Y.; Yang, B.; Jiang, D.; Lan, X.; An, R. Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment. Acta Biomater., 2023, 167, 519-533. doi: 10.1016/j.actbio.2023.06.009 PMID: 37328041
- Ji, B.; Wei, M.; Yang, B. Recent advances in nanomedicines for photodynamic therapy (PDT)-Driven cancer immunotherapy. Theranostics, 2022, 12(1), 434-458. doi: 10.7150/thno.67300 PMID: 34987658
- Juarranz, Á.; Gilaberte, Y.; González, S. Photodynamic therapy (PDT) in oncology. Cancers, 2020, 12(11), 3341. doi: 10.3390/cancers12113341 PMID: 33198063
- Heo, S.Y.; Lee, Y.; Kim, T.H.; Heo, S.J.; Shin, H.; Lee, J.; Yi, M.; Kang, H.W.; Jung, W.K. Anti-cancer effect of chlorophyllin-assisted photodynamic therapy to induce apoptosis through oxidative stress on human cervical cancer. Int. J. Mol. Sci., 2023, 24(14), 11565. doi: 10.3390/ijms241411565 PMID: 37511323
- Razlog, R.; Kruger, C.A.; Abrahamse, H. Cytotoxic effects of combinative ZnPcS4 photosensitizer photodynamic therapy (PDT) and cannabidiol (CBD) on a cervical cancer cell line. Int. J. Mol. Sci., 2023, 24(7), 6151. doi: 10.3390/ijms24076151 PMID: 37047123
- Afanasiev, M.S.; Dushkin, A.D.; Grishacheva, T.G.; Afanasiev, S.K.; Academician, A.V. Photodynamic therapy for early-stage cervical cancer treatment. Photodiagn. Photodyn. Ther., 2022, 37, 102620. doi: 10.1016/j.pdpdt.2021.102620 PMID: 34752947
- Gilyadova, A.; Ishchenko, A.; Ishenko, A.; Samoilova, S.; Shiryaev, A.; Kiseleva, A.; Petukhova, N.; Efendiev, K.; Alekseeva, P.; Stranadko, E.; Loschenov, V.; Reshetov, I. Analysis of the results of severe intraepithelial squamous cell lesions and preinvasive cervical cancer phototheranostics in women of reproductive age. Biomedicines, 2022, 10(10), 2521. doi: 10.3390/biomedicines10102521 PMID: 36289783
- Bhattacharya, S.; Prajapati, B.G.; Singh, S.; Anjum, M.M. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: A critical review on biosynthesis, detection, and therapeutic applications. J. Cancer Res. Clin. Oncol., 2023, 149(19), 17607-17634. doi: 10.1007/s00432-023-05429-z PMID: 37776358
- Yang, J.; Chu, Z.; Jiang, Y.; Zheng, W.; Sun, J.; Xu, L.; Ma, Y.; Wang, W.; Shao, M.; Qian, H. Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc‐based composites for accelerating diabetes wound healing. Adv. Healthc. Mater., 2023, 12(24), 2300725. doi: 10.1002/adhm.202300725 PMID: 37086396
- He, Y.; Chen, N.; Zang, M.; Zhang, J.; Zhang, Y.; Lu, H.; Zhao, Q.; Mao, Y.; Yuan, Y.; Wang, S.; Gao, Y. Glucose-responsive insulin microneedle patches for long-acting delivery and release visualization. J. Control. Release, 2024, 368, 430-443. doi: 10.1016/j.jconrel.2024.03.001 PMID: 38447813
- Xia, T.; Zhu, Y.; Li, K.; Hao, K.; Chai, Y.; Jiang, H.; Lou, C.; Yu, J.; Yang, W.; Wang, J.; Deng, J.; Wang, Z. Microneedles loaded with cerium-manganese oxide nanoparticles for targeting macrophages in the treatment of rheumatoid arthritis. J. Nanobiotechnol., 2024, 22(1), 103. doi: 10.1186/s12951-024-02374-y PMID: 38468261
- Wang, R.; Zhong, T.; Bian, Q.; Zhang, S.; Ma, X.; Li, L.; Xu, Y.; Gu, Y.; Yuan, A.; Hu, W.; Qin, C.; Gao, J. PROTAC degraders of androgen receptor‐integrated dissolving microneedles for androgenetic alopecia and recrudescence treatment via single topical administration. Small Methods, 2023, 7(1), 2201293. doi: 10.1002/smtd.202201293 PMID: 36538748
- Liu, Y.; Zhao, Z.Q.; Liang, L.; Jing, L.Y.; Wang, J.; Dai, Y.; Chen, B.Z.; Guo, X.D. Toward a solid microneedle patch for rapid and enhanced local analgesic action. Drug Deliv. Transl. Res., 2024, 14(7), 1810-1819. doi: 10.1007/s13346-023-01486-6 PMID: 38236507
- Lopez-Ramirez, M.A.; Soto, F.; Wang, C.; Rueda, R.; Shukla, S.; Silva-Lopez, C.; Kupor, D.; McBride, D.A.; Pokorski, J.K.; Nourhani, A.; Steinmetz, N.F.; Shah, N.J.; Wang, J. Built ‐in active microneedle patch with enhanced autonomous drug delivery. Adv. Mater., 2020, 32(1), 1905740. doi: 10.1002/adma.201905740 PMID: 31682039
- Bhatnagar, S.; Bankar, N.G.; Kulkarni, M.V.; Venuganti, V.V.K. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int. J. Pharm., 2019, 556, 263-275. doi: 10.1016/j.ijpharm.2018.12.022 PMID: 30557681
- Adigweme, I.; Yisa, M.; Ooko, M.; Akpalu, E.; Bruce, A.; Donkor, S.; Jarju, L.B.; Danso, B.; Mendy, A.; Jeffries, D.; Segonds-Pichon, A.; Njie, A.; Crooke, S.; El-Badry, E.; Johnstone, H.; Royals, M.; Goodson, J.L.; Prausnitz, M.R.; McAllister, D.V.; Rota, P.A.; Henry, S.; Clarke, E. A measles and rubella vaccine microneedle patch in The Gambia: A phase 1/2, double-blind, double-dummy, randomised, active-controlled, age de-escalation trial. Lancet, 2024, 403(10439), 1879-1892. doi: 10.1016/S0140-6736(24)00532-4 PMID: 38697170
- Lee, J.; Beukema, M.; Zaplatynska, O.A.; O’Mahony, C.; Hinrichs, W.L.J.; Huckriede, A.L.W.; Bouwstra, J.A.; van der Maaden, K. Efficient fabrication of thermo-stable dissolving microneedle arrays for intradermal delivery of influenza whole inactivated virus vaccine. Biomater. Sci., 2023, 11(20), 6790-6800. doi: 10.1039/D3BM00377A PMID: 37622228
- McAllister, D.V.; Wang, P.M.; Davis, S.P.; Park, J.H.; Canatella, P.J.; Allen, M.G.; Prausnitz, M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13755-13760. doi: 10.1073/pnas.2331316100 PMID: 14623977
- Lee, Y.; Kang, T.; Cho, H.R.; Lee, G.J.; Park, O.K.; Kim, S.; Lee, B.; Kim, H.M.; Cha, G.D.; Shin, Y.; Lee, W.; Kim, M.; Kim, H.; Song, Y.M.; Choi, S.H.; Hyeon, T.; Kim, D.H. Localized delivery of theranostic nanoparticles and high‐energy photons using microneedles on bioelectronics. Adv. Mater., 2021, 33(24), 2100425. doi: 10.1002/adma.202100425 PMID: 33955598
- Montaseri, H.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy using alloyed nanoparticle-conjugated 5-aminolevulinic acid for breast cancer. Pharmaceutics, 2021, 13(9), 1375. doi: 10.3390/pharmaceutics13091375 PMID: 34575450
- Zhang, L.; Guo, R.; Wang, S.; Yang, X.; Ling, G.; Zhang, P. Fabrication, evaluation and applications of dissolving microneedles. Int. J. Pharm., 2021, 604, 120749. doi: 10.1016/j.ijpharm.2021.120749 PMID: 34051319
- Don, T.M.; Chen, M.; Lee, I.C.; Huang, Y.C. Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. Int. J. Biol. Macromol., 2022, 207, 90-99. doi: 10.1016/j.ijbiomac.2022.02.127 PMID: 35218808
- Carobeli, L.R.; Santos, A.B.C.; Martins, L.B.M.; Damke, E.; Consolaro, M.E.L. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: A systematic review. Expert Rev. Anticancer Ther., 2024, 24(5), 263-282. doi: 10.1080/14737140.2024.2337259 PMID: 38549400
- Sabri, A.H.; Kim, Y.; Marlow, M.; Scurr, D.J.; Segal, J.; Banga, A.K.; Kagan, L.; Lee, J.B. Intradermal and transdermal drug delivery using microneedles – Fabrication, performance evaluation and application to lymphatic delivery. Adv. Drug Deliv. Rev., 2020, 153, 195-215. doi: 10.1016/j.addr.2019.10.004 PMID: 31634516
- Ando, D.; Miyatsuji, M.; Sakoda, H.; Yamamoto, E.; Miyazaki, T.; Koide, T.; Sato, Y.; Izutsu, K. Mechanical characterization of dissolving microneedles: Factors affecting physical strength of needles. Pharmaceutics, 2024, 16(2), 200. doi: 10.3390/pharmaceutics16020200 PMID: 38399254
- Khuanekkaphan, M.; Netsomboon, K.; Fristiohady, A.; Asasutjarit, R. Development of quercetin solid dispersion-loaded dissolving microneedles and in vitro investigation of their anti-melanoma activities. Pharmaceutics, 2024, 16(10), 1276. doi: 10.3390/pharmaceutics16101276 PMID: 39458607
- Colditz, M.J.; Jeffree, R.L. Aminolevulinic acid (ALA)–protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies. J. Clin. Neurosci., 2012, 19(11), 1471-1474. doi: 10.1016/j.jocn.2012.03.009 PMID: 22959448
- Shriky, B.; Babenko, M.; Whiteside, B.R. Dissolving and swelling hydrogel-based microneedles: An overview of their materials, fabrication, characterization methods, and challenges. gels, 2023, 9(10), 806. doi: 10.3390/gels9100806 PMID: 37888379
- Andranilla, R.K.; Anjani, Q.K.; Hartrianti, P.; Donnelly, R.F.; Ramadon, D. Fabrication of dissolving microneedles for transdermal delivery of protein and peptide drugs: Polymer materials and solvent casting micromoulding method. Pharm. Dev. Technol., 2023, 28(10), 1016-1031. doi: 10.1080/10837450.2023.2285498 PMID: 37987717
- Li, C.; Tang, T.; Du, Y.; Jiang, L.; Yao, Z.; Ning, L.; Zhu, B. Ulvan and Ulva oligosaccharides: A systematic review of structure, preparation, biological activities and applications. Bioresour. Bioprocess., 2023, 10(1), 66. doi: 10.1186/s40643-023-00690-z PMID: 38647949
- Ning, L.; Yao, Z.; Zhu, B. Ulva (Enteromorpha) polysaccharides and oligosaccharides: A potential functional food source from green-tide-forming macroalgae. Mar. Drugs, 2022, 20(3), 202. doi: 10.3390/md20030202 PMID: 35323501
- Li, C.; Tang, T.; Jiang, J.; Yao, Z.; Zhu, B. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides. Glycobiology, 2023, 33(10), 837-845. doi: 10.1093/glycob/cwad068 PMID: 37593920
- Flórez-Fernández, N.; Rodríguez-Coello, A.; Latire, T.; Bourgougnon, N.; Torres, M.D.; Buján, M.; Muíños, A.; Muiños, A.; Meijide-Faílde, R.; Blanco, F.J.; Vaamonde-García, C.; Domínguez, H. Anti-inflammatory potential of ulvan. Int. J. Biol. Macromol., 2023, 253(Pt 4), 126936. doi: 10.1016/j.ijbiomac.2023.126936 PMID: 37722645
- Morelli, A.; Chiellini, F. Ulvan as a new type of biomaterial from renewable res-ources: Functionalization and hydrogel preparation. Macromol. Chem. Phys., 2010, 211(7), 821-832. doi: 10.1002/macp.200900562
- Madany, M.A.; Abdel-Kareem, M.S.; Al-Oufy, A.K.; Haroun, M.; Sheweita, S.A. The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int. J. Biol. Macromol., 2021, 177, 401-412. doi: 10.1016/j.ijbiomac.2021.02.047 PMID: 33577821
- Iaconisi, G.N.; Lunetti, P.; Gallo, N.; Cappello, A.R.; Fiermonte, G.; Dolce, V.; Capobianco, L. Hyaluronic acid: A powerful biomolecule with wide-ranging applications—A comprehensive review. Int. J. Mol. Sci., 2023, 24(12), 10296. doi: 10.3390/ijms241210296 PMID: 37373443
- Li, M.; Sun, J.; Zhang, W.; Zhao, Y.; Zhang, S.; Zhang, S. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym., 2021, 251, 117103. doi: 10.1016/j.carbpol.2020.117103 PMID: 33142641
- Bhattacharyya, M.; Jariyal, H.; Srivastava, A. Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr. Polym., 2023, 317, 121081. doi: 10.1016/j.carbpol.2023.121081 PMID: 37364954
- Ronnander, P.; Simon, L.; Spilgies, H.; Koch, A. Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur. J. Pharm. Sci., 2018, 125, 54-63. doi: 10.1016/j.ejps.2018.09.010 PMID: 30223035
- Franco, P.; De Marco, I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers, 2020, 12(5), 1114. doi: 10.3390/polym12051114 PMID: 32414187
- Ronnander, P.; Simon, L.; Koch, A. Experimental and mathematical study of the transdermal delivery of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur. J. Pharm. Biopharm., 2020, 146, 32-40. doi: 10.1016/j.ejpb.2019.11.007 PMID: 31786322
- Mangang, K.N.; Thakran, P.; Halder, J.; Yadav, K.S.; Ghosh, G.; Pradhan, D.; Rath, G.; Rai, V.K. PVP-microneedle array for drug delivery: Mechanical insight, biodegradation, and recent advances. J. Biomater. Sci. Polym. Ed., 2023, 34(7), 986-1017. doi: 10.1080/09205063.2022.2155778 PMID: 36541167
- Liu, H.; Zhou, X.; Nail, A.; Yu, H.; Yu, Z.; Sun, Y.; Wang, K.; Bao, N.; Meng, D.; Zhu, L.; Li, H. Multi-material 3D printed eutectogel microneedle patches integrated with fast customization and tunable drug delivery. J. Control. Release, 2024, 368, 115-130. doi: 10.1016/j.jconrel.2024.02.023 PMID: 38367865
- Du, B.; Jia, S.; Wang, Q.; Ding, X.; Liu, Y.; Yao, H.; Zhou, J. A self-targeting, dual ROS/pH-responsive apoferritin nanocage for spatiotemporally controlled drug delivery to breast cancer. Biomacromolecules, 2018, 19(3), 1026-1036. doi: 10.1021/acs.biomac.8b00012 PMID: 29455519
- Kang, Y.; Kong, N.; Ou, M.; Wang, Y.; Xiao, Q.; Mei, L.; Liu, B.; Chen, L.; Zeng, X.; Ji, X. A novel cascaded energy conversion system inducing efficient and precise cancer therapy. Bioact. Mater., 2023, 20, 663-676. doi: 10.1016/j.bioactmat.2022.07.007 PMID: 35891799
- Lee, Y.J.; Yi, Y.C.; Lin, Y.C.; Chen, C.C.; Hung, J.H.; Lin, J.Y.; Ng, I.S. Purification and biofabrication of 5-aminolevulinic acid for photodynamic therapy against pathogens and cancer cells. Bioresour. Bioprocess., 2022, 9(1), 68. doi: 10.1186/s40643-022-00557-9 PMID: 38647835
- Pignatelli, P.; Umme, S.; D’Antonio, D.L.; Piattelli, A.; Curia, M.C. Reactive oxygen species produced by 5-aminolevulinic acid photodynamic therapy in the treatment of cancer. Int. J. Mol. Sci., 2023, 24(10), 8964. doi: 10.3390/ijms24108964 PMID: 37240309
- Herbst, J.; Pang, X.; Roling, L.; Grimm, B. A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis. J. Exp. Bot., 2024, 75(7), 2027-2045. doi: 10.1093/jxb/erad491 PMID: 38070484
- Jackson, L.K.; Dailey, T.A.; Anderle, B.; Warren, M.J.; Bergonia, H.A.; Dailey, H.A.; Phillips, J.D. Exploiting differences in heme biosynthesis between bacterial species to screen for novel antimicrobials. Biomolecules, 2023, 13(10), 1485. doi: 10.3390/biom13101485 PMID: 37892169
- Shi, L.; Wang, H.; Chen, K.; Yan, J.; Yu, B.; Wang, S.; Yin, R.; Nong, X.; Zou, X.; Chen, Z.; Li, C. Chinese guidelines on the clinical application of 5-aminolevulinic acid-based photodynamic therapy in dermatology (2021 edition). Photodiagn. Photodyn. Ther., 2021, 35, 102340. doi: 10.1016/j.pdpdt.2021.102340 PMID: 33991660
- Chen, M.; Zhou, A.; Khachemoune, A. Photodynamic therapy in treating a subset of basal cell carcinoma: Strengths, shortcomings, comparisons with surgical modalities, and potential role as adjunctive therapy. Am. J. Clin. Dermatol., 2024, 25(1), 99-118. doi: 10.1007/s40257-023-00829-w PMID: 38042767
- Jhanker, Y.; Mbano, M.N.; Ponto, T.; Espartero, L.J.L.; Yamada, M.; Prow, T.; Benson, H.A.E. Comparison of physical enhancement technologies in the skin permeation of methyl amino levulinic acid (mALA). Int. J. Pharm., 2021, 610, 121258. doi: 10.1016/j.ijpharm.2021.121258 PMID: 34740760
- Bian, Q.; Huang, L.; Xu, Y.; Wang, R.; Gu, Y.; Yuan, A.; Ma, X.; Hu, J.; Rao, Y.; Xu, D.; Wang, H.; Gao, J. A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect. ACS Nano, 2021, 15(12), 19468-19479. doi: 10.1021/acsnano.1c06225 PMID: 34859990
- Zhuang, J.; Rao, F.; Wu, D.; Huang, Y.; Xu, H.; Gao, W.; Zhang, J.; Sun, J. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery. Eur. J. Pharm. Biopharm., 2020, 157, 66-73. doi: 10.1016/j.ejpb.2020.10.002 PMID: 33059004
- Hoesly, F.J.; Borovicka, J.; Gordon, J.; Nardone, B.; Holbrook, J.S.; Pace, N.; Ibrahim, O.; Bolotin, D.; Warycha, M.; Kwasny, M.; West, D.; Alam, M. Safety of a novel microneedle device applied to facial skin: A subject- and rater-blinded, sham-controlled, randomized trial. Arch. Dermatol., 2012, 148(6), 711-717. doi: 10.1001/archdermatol.2012.280 PMID: 22431712
- Min, H.S.; Kim, Y.; Nam, J.; Ahn, H.; Kim, M.; Kang, G.; Jang, M.; Yang, H.; Jung, H. Shape of dissolving microneedles determines skin penetration ability and efficacy of drug delivery. Biomater. Adv., 2023, 145, 213248. doi: 10.1016/j.bioadv.2022.213248 PMID: 36610239
- Ding, Y.W.; Li, Y.; Zhang, Z.W.; Dao, J.W.; Wei, D.X. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment. Bioact. Mater., 2024, 38, 95-108. doi: 10.1016/j.bioactmat.2024.04.020 PMID: 38699241
- Jeong, H.R.; Lee, H.S.; Choi, I.J.; Park, J.H. Considerations in the use of microneedles: Pain, convenience, anxiety and safety. J. Drug Target., 2017, 25(1), 29-40. doi: 10.1080/1061186X.2016.1200589 PMID: 27282644
- Huang, S.; Liu, H.; Huang, S.; Fu, T.; Xue, W.; Guo, R. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr. Polym., 2020, 246, 116650. doi: 10.1016/j.carbpol.2020.116650 PMID: 32747282
- Bui, V.D.; Son, S.; Xavier, W.; Nguyen, V.Q.; Jung, J.M.; Lee, J.; Shin, S.; Um, W.; An, J.Y.; Kim, C.H.; Song, Y.; Li, Y.; Park, J.H. Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles. Biomaterials, 2022, 287, 121644. doi: 10.1016/j.biomaterials.2022.121644 PMID: 35772350
- Sartawi, Z.; Blackshields, C.; Faisal, W. Dissolving microneedles: Applications and growing therapeutic potential. J. Control. Release, 2022, 348, 186-205. doi: 10.1016/j.jconrel.2022.05.045 PMID: 35662577
- Lu, X.; Sun, Y.; Han, M.; Chen, D.; He, X.; Wang, S.; Sun, K. Triptorelin nanoparticle-loaded microneedles for use in assisted reproductive technology. Drug Deliv., 2023, 30(1), 2226367. doi: 10.1080/10717544.2023.2226367 PMID: 37387211
- Xiao, M.; Tang, Q.; Zeng, S.; Yang, Q.; Yang, X.; Tong, X.; Zhu, G.; Lei, L.; Li, S. Emerging biomaterials for tumor immunotherapy. Biomater. Res., 2023, 27(1), 47. doi: 10.1186/s40824-023-00369-8 PMID: 37194085
- Zhang, X.P.; He, Y.T.; Li, W.X.; Chen, B.Z.; Zhang, C.Y.; Cui, Y.; Guo, X.D. An update on biomaterials as microneedle matrixes for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(32), 6059-6077. doi: 10.1039/D2TB00905F PMID: 35916308
- Barnum, L.; Quint, J.; Derakhshandeh, H.; Samandari, M.; Aghabaglou, F.; Farzin, A.; Abbasi, L.; Bencherif, S.; Memic, A.; Mostafalu, P.; Tamayol, A.; Tamayol, A. 3D printed hydrogel‐filled microneedle arrays. Adv. Healthc. Mater., 2021, 10(13), 2001922. doi: 10.1002/adhm.202001922 PMID: 34050600
- Loh, J.M.; Lim, Y.J.L.; Tay, J.T.; Cheng, H.M.; Tey, H.L.; Liang, K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact. Mater., 2024, 32, 222-241. doi: 10.1016/j.bioactmat.2023.09.022 PMID: 37869723
Дополнительные файлы
