Ulvan Microneedles Loaded with Photosensitizer 5-aminolevulinic Acid Inhibits Human Cervical Cancer HeLa Cells In vitro


Цитировать

Полный текст

Аннотация

Background: Cervical cancer encompasses highly invasive and metastatic malignant tumors with poor prognoses. Recently, microneedles have gained significant attention as a novel, non-invasive drug delivery method, offering unique advantages in tumor treatment.

Objective: This study aims to develop an ulvan-based microneedle delivery system encapsulating the photosensitizer 5-aminolevulinic acid (5-ALA-UMNs) and to investigate its inhibitory effects on the growth of human cervical cancer Hela cells.

Methods: The 5-ALA-UMNs and control microneedles (without photosensitizer) were fabricated using a twostep casting technique. The microneedles' morphology, puncture performance, and mechanical strength were assessed. Hela cells were treated in vitro with 5-ALA-UMNs, and the cellular uptake of the photosensitizer was observed using inverted fluorescence microscopy. Cell viability was determined by the CCK-8 assay to identify the optimal drug concentration. Additionally, the anti-tumor efficacy of 5-ALA-UMNs, induced via photodynamic therapy, was evaluated by Live-Dead staining and flow cytometry.

Results: The microneedles exhibited a uniform quadrangular pyramidal shape, orderly arrangement, intact needle tips, and robust mechanical strength. Inverted fluorescence microscopy confirmed the successful uptake of the photosensitizer by Hela cells, which enzymatically converted it to the fluorescent compound protoporphyrin IX. CCK-8 assays demonstrated that 5-ALA-UMNs displayed favorable cytocompatibility and safety. Live-dead staining revealed Hela cell survival rates as follows: 99.55% in the control group, 99.37% in the control microneedle group, 99.41% in the 5-ALA-UMNs group without light exposure, and 57.35% in the 5-ALA-UMNs group with light exposure (all p < 0.05). Flow cytometry results corroborated the live-dead staining findings, confirming the cytotoxic effect of 5-ALA-UMNs on tumor cells.

Conclusion: These results indicate that 5-ALA-UMNs hold promise as a tumor-targeting therapeutic.

Об авторах

Zhen Liang

Department of Obstetrics and Gynecology,, The Affiliated Clinical College of Xuzhou Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Wenxin Hu

Department of Obstetrics and Gynecology,, The Affiliated Clinical College of Xuzhou Medical University

Email: info@benthamscience.net

Jie Wei

Department of Obstetrics and Gynecology, Xuzhou Central Hospital

Email: info@benthamscience.net

Sen Zheng

Department of Obstetrics and Gynecology,, The Affiliated Clinical College of Xuzhou Medical University

Email: info@benthamscience.net

Guan Jiang

Department of Dermatology, The Second Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Bei Zhang

Department of Obstetrics and Gynecology, Xuzhou Central Hospital

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Wu, S.; Jiao, J.; Yue, X.; Wang, Y. Cervical cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with England and India based on the global burden of disease study 2019. Front. Public Health, 2024, 12, 1358433. doi: 10.3389/fpubh.2024.1358433 PMID: 38510348
  2. Qiu, H.; Cao, S.; Xu, R. Cancer incidence, mortality, and burden in China: A time‐trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun., 2021, 41(10), 1037-1048. doi: 10.1002/cac2.12197 PMID: 34288593
  3. Burmeister, C.A.; Khan, S.F.; Schäfer, G.; Mbatani, N.; Adams, T.; Moodley, J.; Prince, S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res., 2022, 13, 200238. doi: 10.1016/j.tvr.2022.200238 PMID: 35460940
  4. Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
  5. Abu-Rustum, N.R.; Yashar, C.M.; Arend, R.; Barber, E.; Bradley, K.; Brooks, R.; Campos, S.M.; Chino, J.; Chon, H.S.; Crispens, M.A.; Damast, S.; Fisher, C.M.; Frederick, P.; Gaffney, D.K.; Gaillard, S.; Giuntoli, R.; Glaser, S.; Holmes, J.; Howitt, B.E.; Lea, J.; Mantia-Smaldone, G.; Mariani, A.; Mutch, D.; Nagel, C.; Nekhlyudov, L.; Podoll, M.; Rodabaugh, K.; Salani, R.; Schorge, J.; Siedel, J.; Sisodia, R.; Soliman, P.; Ueda, S.; Urban, R.; Wyse, E.; McMillian, N.R.; Aggarwal, S.; Espinosa, S. NCCN Guidelines® Insights: Cervical cancer, Version 1.2024. J. Natl. Compr. Canc. Netw., 2023, 21(12), 1224-1233. doi: 10.6004/jnccn.2023.0062 PMID: 38081139
  6. Girda, E.; Randall, L.M.; Chino, F.; Monk, B.J.; Farley, J.H.; O’Cearbhaill, R.E. Cervical cancer treatment update: A society of gynecologic oncology clinical practice statement. Gynecol. Oncol., 2023, 179, 115-122. doi: 10.1016/j.ygyno.2023.10.017 PMID: 37980766
  7. Bentivegna, E.; Gouy, S.; Maulard, A.; Chargari, C.; Leary, A.; Morice, P. Oncological outcomes after fertility-sparing surgery for cervical cancer: A systematic review. Lancet Oncol., 2016, 17(6), e240-e253. doi: 10.1016/S1470-2045(16)30032-8 PMID: 27299280
  8. Miyakoshi, K.; Itakura, A.; Abe, T.; Kondoh, E.; Terao, Y.; Tabata, T.; Hamada, H.; Tanaka, K.; Tanaka, M.; Kanayama, N.; Takeda, S. Risk of preterm birth after the excisional surgery for cervical lesions: A propensity-score matching study in Japan. J. Matern. Fetal Neonatal Med., 2021, 34(6), 845-851. doi: 10.1080/14767058.2019.1619687 PMID: 31092078
  9. Carobeli, L.R.; Meirelles, L.E.F.; Damke, G.M.Z.F.; Damke, E.; Souza, M.V.F.; Mari, N.L.; Mashiba, K.H.; Shinobu-Mesquita, C.S.; Souza, R.P.; Silva, V.R.S.; Gonçalves, R.S.; Caetano, W.; Consolaro, M.E.L. Phthalocyanine and its formulations: A promising photosensitizer for cervical cancer phototherapy. Pharmaceutics, 2021, 13(12), 2057. doi: 10.3390/pharmaceutics13122057 PMID: 34959339
  10. Zhu, Z.; Liu, Q.; Zhu, K.; Wang, K.; Lin, L.; Chen, Y.; Shao, F.; Qian, R.; Song, Y.; Gao, Y.; Yang, B.; Jiang, D.; Lan, X.; An, R. Aggregation-induced emission photosensitizer/bacteria biohybrids enhance Cerenkov radiation-induced photodynamic therapy by activating anti-tumor immunity for synergistic tumor treatment. Acta Biomater., 2023, 167, 519-533. doi: 10.1016/j.actbio.2023.06.009 PMID: 37328041
  11. Ji, B.; Wei, M.; Yang, B. Recent advances in nanomedicines for photodynamic therapy (PDT)-Driven cancer immunotherapy. Theranostics, 2022, 12(1), 434-458. doi: 10.7150/thno.67300 PMID: 34987658
  12. Juarranz, Á.; Gilaberte, Y.; González, S. Photodynamic therapy (PDT) in oncology. Cancers, 2020, 12(11), 3341. doi: 10.3390/cancers12113341 PMID: 33198063
  13. Heo, S.Y.; Lee, Y.; Kim, T.H.; Heo, S.J.; Shin, H.; Lee, J.; Yi, M.; Kang, H.W.; Jung, W.K. Anti-cancer effect of chlorophyllin-assisted photodynamic therapy to induce apoptosis through oxidative stress on human cervical cancer. Int. J. Mol. Sci., 2023, 24(14), 11565. doi: 10.3390/ijms241411565 PMID: 37511323
  14. Razlog, R.; Kruger, C.A.; Abrahamse, H. Cytotoxic effects of combinative ZnPcS4 photosensitizer photodynamic therapy (PDT) and cannabidiol (CBD) on a cervical cancer cell line. Int. J. Mol. Sci., 2023, 24(7), 6151. doi: 10.3390/ijms24076151 PMID: 37047123
  15. Afanasiev, M.S.; Dushkin, A.D.; Grishacheva, T.G.; Afanasiev, S.K.; Academician, A.V. Photodynamic therapy for early-stage cervical cancer treatment. Photodiagn. Photodyn. Ther., 2022, 37, 102620. doi: 10.1016/j.pdpdt.2021.102620 PMID: 34752947
  16. Gilyadova, A.; Ishchenko, A.; Ishenko, A.; Samoilova, S.; Shiryaev, A.; Kiseleva, A.; Petukhova, N.; Efendiev, K.; Alekseeva, P.; Stranadko, E.; Loschenov, V.; Reshetov, I. Analysis of the results of severe intraepithelial squamous cell lesions and preinvasive cervical cancer phototheranostics in women of reproductive age. Biomedicines, 2022, 10(10), 2521. doi: 10.3390/biomedicines10102521 PMID: 36289783
  17. Bhattacharya, S.; Prajapati, B.G.; Singh, S.; Anjum, M.M. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: A critical review on biosynthesis, detection, and therapeutic applications. J. Cancer Res. Clin. Oncol., 2023, 149(19), 17607-17634. doi: 10.1007/s00432-023-05429-z PMID: 37776358
  18. Yang, J.; Chu, Z.; Jiang, Y.; Zheng, W.; Sun, J.; Xu, L.; Ma, Y.; Wang, W.; Shao, M.; Qian, H. Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc‐based composites for accelerating diabetes wound healing. Adv. Healthc. Mater., 2023, 12(24), 2300725. doi: 10.1002/adhm.202300725 PMID: 37086396
  19. He, Y.; Chen, N.; Zang, M.; Zhang, J.; Zhang, Y.; Lu, H.; Zhao, Q.; Mao, Y.; Yuan, Y.; Wang, S.; Gao, Y. Glucose-responsive insulin microneedle patches for long-acting delivery and release visualization. J. Control. Release, 2024, 368, 430-443. doi: 10.1016/j.jconrel.2024.03.001 PMID: 38447813
  20. Xia, T.; Zhu, Y.; Li, K.; Hao, K.; Chai, Y.; Jiang, H.; Lou, C.; Yu, J.; Yang, W.; Wang, J.; Deng, J.; Wang, Z. Microneedles loaded with cerium-manganese oxide nanoparticles for targeting macrophages in the treatment of rheumatoid arthritis. J. Nanobiotechnol., 2024, 22(1), 103. doi: 10.1186/s12951-024-02374-y PMID: 38468261
  21. Wang, R.; Zhong, T.; Bian, Q.; Zhang, S.; Ma, X.; Li, L.; Xu, Y.; Gu, Y.; Yuan, A.; Hu, W.; Qin, C.; Gao, J. PROTAC degraders of androgen receptor‐integrated dissolving microneedles for androgenetic alopecia and recrudescence treatment via single topical administration. Small Methods, 2023, 7(1), 2201293. doi: 10.1002/smtd.202201293 PMID: 36538748
  22. Liu, Y.; Zhao, Z.Q.; Liang, L.; Jing, L.Y.; Wang, J.; Dai, Y.; Chen, B.Z.; Guo, X.D. Toward a solid microneedle patch for rapid and enhanced local analgesic action. Drug Deliv. Transl. Res., 2024, 14(7), 1810-1819. doi: 10.1007/s13346-023-01486-6 PMID: 38236507
  23. Lopez-Ramirez, M.A.; Soto, F.; Wang, C.; Rueda, R.; Shukla, S.; Silva-Lopez, C.; Kupor, D.; McBride, D.A.; Pokorski, J.K.; Nourhani, A.; Steinmetz, N.F.; Shah, N.J.; Wang, J. Built ‐in active microneedle patch with enhanced autonomous drug delivery. Adv. Mater., 2020, 32(1), 1905740. doi: 10.1002/adma.201905740 PMID: 31682039
  24. Bhatnagar, S.; Bankar, N.G.; Kulkarni, M.V.; Venuganti, V.V.K. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int. J. Pharm., 2019, 556, 263-275. doi: 10.1016/j.ijpharm.2018.12.022 PMID: 30557681
  25. Adigweme, I.; Yisa, M.; Ooko, M.; Akpalu, E.; Bruce, A.; Donkor, S.; Jarju, L.B.; Danso, B.; Mendy, A.; Jeffries, D.; Segonds-Pichon, A.; Njie, A.; Crooke, S.; El-Badry, E.; Johnstone, H.; Royals, M.; Goodson, J.L.; Prausnitz, M.R.; McAllister, D.V.; Rota, P.A.; Henry, S.; Clarke, E. A measles and rubella vaccine microneedle patch in The Gambia: A phase 1/2, double-blind, double-dummy, randomised, active-controlled, age de-escalation trial. Lancet, 2024, 403(10439), 1879-1892. doi: 10.1016/S0140-6736(24)00532-4 PMID: 38697170
  26. Lee, J.; Beukema, M.; Zaplatynska, O.A.; O’Mahony, C.; Hinrichs, W.L.J.; Huckriede, A.L.W.; Bouwstra, J.A.; van der Maaden, K. Efficient fabrication of thermo-stable dissolving microneedle arrays for intradermal delivery of influenza whole inactivated virus vaccine. Biomater. Sci., 2023, 11(20), 6790-6800. doi: 10.1039/D3BM00377A PMID: 37622228
  27. McAllister, D.V.; Wang, P.M.; Davis, S.P.; Park, J.H.; Canatella, P.J.; Allen, M.G.; Prausnitz, M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13755-13760. doi: 10.1073/pnas.2331316100 PMID: 14623977
  28. Lee, Y.; Kang, T.; Cho, H.R.; Lee, G.J.; Park, O.K.; Kim, S.; Lee, B.; Kim, H.M.; Cha, G.D.; Shin, Y.; Lee, W.; Kim, M.; Kim, H.; Song, Y.M.; Choi, S.H.; Hyeon, T.; Kim, D.H. Localized delivery of theranostic nanoparticles and high‐energy photons using microneedles on bioelectronics. Adv. Mater., 2021, 33(24), 2100425. doi: 10.1002/adma.202100425 PMID: 33955598
  29. Montaseri, H.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy using alloyed nanoparticle-conjugated 5-aminolevulinic acid for breast cancer. Pharmaceutics, 2021, 13(9), 1375. doi: 10.3390/pharmaceutics13091375 PMID: 34575450
  30. Zhang, L.; Guo, R.; Wang, S.; Yang, X.; Ling, G.; Zhang, P. Fabrication, evaluation and applications of dissolving microneedles. Int. J. Pharm., 2021, 604, 120749. doi: 10.1016/j.ijpharm.2021.120749 PMID: 34051319
  31. Don, T.M.; Chen, M.; Lee, I.C.; Huang, Y.C. Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. Int. J. Biol. Macromol., 2022, 207, 90-99. doi: 10.1016/j.ijbiomac.2022.02.127 PMID: 35218808
  32. Carobeli, L.R.; Santos, A.B.C.; Martins, L.B.M.; Damke, E.; Consolaro, M.E.L. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: A systematic review. Expert Rev. Anticancer Ther., 2024, 24(5), 263-282. doi: 10.1080/14737140.2024.2337259 PMID: 38549400
  33. Sabri, A.H.; Kim, Y.; Marlow, M.; Scurr, D.J.; Segal, J.; Banga, A.K.; Kagan, L.; Lee, J.B. Intradermal and transdermal drug delivery using microneedles – Fabrication, performance evaluation and application to lymphatic delivery. Adv. Drug Deliv. Rev., 2020, 153, 195-215. doi: 10.1016/j.addr.2019.10.004 PMID: 31634516
  34. Ando, D.; Miyatsuji, M.; Sakoda, H.; Yamamoto, E.; Miyazaki, T.; Koide, T.; Sato, Y.; Izutsu, K. Mechanical characterization of dissolving microneedles: Factors affecting physical strength of needles. Pharmaceutics, 2024, 16(2), 200. doi: 10.3390/pharmaceutics16020200 PMID: 38399254
  35. Khuanekkaphan, M.; Netsomboon, K.; Fristiohady, A.; Asasutjarit, R. Development of quercetin solid dispersion-loaded dissolving microneedles and in vitro investigation of their anti-melanoma activities. Pharmaceutics, 2024, 16(10), 1276. doi: 10.3390/pharmaceutics16101276 PMID: 39458607
  36. Colditz, M.J.; Jeffree, R.L. Aminolevulinic acid (ALA)–protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies. J. Clin. Neurosci., 2012, 19(11), 1471-1474. doi: 10.1016/j.jocn.2012.03.009 PMID: 22959448
  37. Shriky, B.; Babenko, M.; Whiteside, B.R. Dissolving and swelling hydrogel-based microneedles: An overview of their materials, fabrication, characterization methods, and challenges. gels, 2023, 9(10), 806. doi: 10.3390/gels9100806 PMID: 37888379
  38. Andranilla, R.K.; Anjani, Q.K.; Hartrianti, P.; Donnelly, R.F.; Ramadon, D. Fabrication of dissolving microneedles for transdermal delivery of protein and peptide drugs: Polymer materials and solvent casting micromoulding method. Pharm. Dev. Technol., 2023, 28(10), 1016-1031. doi: 10.1080/10837450.2023.2285498 PMID: 37987717
  39. Li, C.; Tang, T.; Du, Y.; Jiang, L.; Yao, Z.; Ning, L.; Zhu, B. Ulvan and Ulva oligosaccharides: A systematic review of structure, preparation, biological activities and applications. Bioresour. Bioprocess., 2023, 10(1), 66. doi: 10.1186/s40643-023-00690-z PMID: 38647949
  40. Ning, L.; Yao, Z.; Zhu, B. Ulva (Enteromorpha) polysaccharides and oligosaccharides: A potential functional food source from green-tide-forming macroalgae. Mar. Drugs, 2022, 20(3), 202. doi: 10.3390/md20030202 PMID: 35323501
  41. Li, C.; Tang, T.; Jiang, J.; Yao, Z.; Zhu, B. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides. Glycobiology, 2023, 33(10), 837-845. doi: 10.1093/glycob/cwad068 PMID: 37593920
  42. Flórez-Fernández, N.; Rodríguez-Coello, A.; Latire, T.; Bourgougnon, N.; Torres, M.D.; Buján, M.; Muíños, A.; Muiños, A.; Meijide-Faílde, R.; Blanco, F.J.; Vaamonde-García, C.; Domínguez, H. Anti-inflammatory potential of ulvan. Int. J. Biol. Macromol., 2023, 253(Pt 4), 126936. doi: 10.1016/j.ijbiomac.2023.126936 PMID: 37722645
  43. Morelli, A.; Chiellini, F. Ulvan as a new type of biomaterial from renewable res-ources: Functionalization and hydrogel preparation. Macromol. Chem. Phys., 2010, 211(7), 821-832. doi: 10.1002/macp.200900562
  44. Madany, M.A.; Abdel-Kareem, M.S.; Al-Oufy, A.K.; Haroun, M.; Sheweita, S.A. The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int. J. Biol. Macromol., 2021, 177, 401-412. doi: 10.1016/j.ijbiomac.2021.02.047 PMID: 33577821
  45. Iaconisi, G.N.; Lunetti, P.; Gallo, N.; Cappello, A.R.; Fiermonte, G.; Dolce, V.; Capobianco, L. Hyaluronic acid: A powerful biomolecule with wide-ranging applications—A comprehensive review. Int. J. Mol. Sci., 2023, 24(12), 10296. doi: 10.3390/ijms241210296 PMID: 37373443
  46. Li, M.; Sun, J.; Zhang, W.; Zhao, Y.; Zhang, S.; Zhang, S. Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy. Carbohydr. Polym., 2021, 251, 117103. doi: 10.1016/j.carbpol.2020.117103 PMID: 33142641
  47. Bhattacharyya, M.; Jariyal, H.; Srivastava, A. Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer. Carbohydr. Polym., 2023, 317, 121081. doi: 10.1016/j.carbpol.2023.121081 PMID: 37364954
  48. Ronnander, P.; Simon, L.; Spilgies, H.; Koch, A. Modelling the in-vitro dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur. J. Pharm. Sci., 2018, 125, 54-63. doi: 10.1016/j.ejps.2018.09.010 PMID: 30223035
  49. Franco, P.; De Marco, I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polymers, 2020, 12(5), 1114. doi: 10.3390/polym12051114 PMID: 32414187
  50. Ronnander, P.; Simon, L.; Koch, A. Experimental and mathematical study of the transdermal delivery of sumatriptan succinate from polyvinylpyrrolidone-based microneedles. Eur. J. Pharm. Biopharm., 2020, 146, 32-40. doi: 10.1016/j.ejpb.2019.11.007 PMID: 31786322
  51. Mangang, K.N.; Thakran, P.; Halder, J.; Yadav, K.S.; Ghosh, G.; Pradhan, D.; Rath, G.; Rai, V.K. PVP-microneedle array for drug delivery: Mechanical insight, biodegradation, and recent advances. J. Biomater. Sci. Polym. Ed., 2023, 34(7), 986-1017. doi: 10.1080/09205063.2022.2155778 PMID: 36541167
  52. Liu, H.; Zhou, X.; Nail, A.; Yu, H.; Yu, Z.; Sun, Y.; Wang, K.; Bao, N.; Meng, D.; Zhu, L.; Li, H. Multi-material 3D printed eutectogel microneedle patches integrated with fast customization and tunable drug delivery. J. Control. Release, 2024, 368, 115-130. doi: 10.1016/j.jconrel.2024.02.023 PMID: 38367865
  53. Du, B.; Jia, S.; Wang, Q.; Ding, X.; Liu, Y.; Yao, H.; Zhou, J. A self-targeting, dual ROS/pH-responsive apoferritin nanocage for spatiotemporally controlled drug delivery to breast cancer. Biomacromolecules, 2018, 19(3), 1026-1036. doi: 10.1021/acs.biomac.8b00012 PMID: 29455519
  54. Kang, Y.; Kong, N.; Ou, M.; Wang, Y.; Xiao, Q.; Mei, L.; Liu, B.; Chen, L.; Zeng, X.; Ji, X. A novel cascaded energy conversion system inducing efficient and precise cancer therapy. Bioact. Mater., 2023, 20, 663-676. doi: 10.1016/j.bioactmat.2022.07.007 PMID: 35891799
  55. Lee, Y.J.; Yi, Y.C.; Lin, Y.C.; Chen, C.C.; Hung, J.H.; Lin, J.Y.; Ng, I.S. Purification and biofabrication of 5-aminolevulinic acid for photodynamic therapy against pathogens and cancer cells. Bioresour. Bioprocess., 2022, 9(1), 68. doi: 10.1186/s40643-022-00557-9 PMID: 38647835
  56. Pignatelli, P.; Umme, S.; D’Antonio, D.L.; Piattelli, A.; Curia, M.C. Reactive oxygen species produced by 5-aminolevulinic acid photodynamic therapy in the treatment of cancer. Int. J. Mol. Sci., 2023, 24(10), 8964. doi: 10.3390/ijms24108964 PMID: 37240309
  57. Herbst, J.; Pang, X.; Roling, L.; Grimm, B. A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis. J. Exp. Bot., 2024, 75(7), 2027-2045. doi: 10.1093/jxb/erad491 PMID: 38070484
  58. Jackson, L.K.; Dailey, T.A.; Anderle, B.; Warren, M.J.; Bergonia, H.A.; Dailey, H.A.; Phillips, J.D. Exploiting differences in heme biosynthesis between bacterial species to screen for novel antimicrobials. Biomolecules, 2023, 13(10), 1485. doi: 10.3390/biom13101485 PMID: 37892169
  59. Shi, L.; Wang, H.; Chen, K.; Yan, J.; Yu, B.; Wang, S.; Yin, R.; Nong, X.; Zou, X.; Chen, Z.; Li, C. Chinese guidelines on the clinical application of 5-aminolevulinic acid-based photodynamic therapy in dermatology (2021 edition). Photodiagn. Photodyn. Ther., 2021, 35, 102340. doi: 10.1016/j.pdpdt.2021.102340 PMID: 33991660
  60. Chen, M.; Zhou, A.; Khachemoune, A. Photodynamic therapy in treating a subset of basal cell carcinoma: Strengths, shortcomings, comparisons with surgical modalities, and potential role as adjunctive therapy. Am. J. Clin. Dermatol., 2024, 25(1), 99-118. doi: 10.1007/s40257-023-00829-w PMID: 38042767
  61. Jhanker, Y.; Mbano, M.N.; Ponto, T.; Espartero, L.J.L.; Yamada, M.; Prow, T.; Benson, H.A.E. Comparison of physical enhancement technologies in the skin permeation of methyl amino levulinic acid (mALA). Int. J. Pharm., 2021, 610, 121258. doi: 10.1016/j.ijpharm.2021.121258 PMID: 34740760
  62. Bian, Q.; Huang, L.; Xu, Y.; Wang, R.; Gu, Y.; Yuan, A.; Ma, X.; Hu, J.; Rao, Y.; Xu, D.; Wang, H.; Gao, J. A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect. ACS Nano, 2021, 15(12), 19468-19479. doi: 10.1021/acsnano.1c06225 PMID: 34859990
  63. Zhuang, J.; Rao, F.; Wu, D.; Huang, Y.; Xu, H.; Gao, W.; Zhang, J.; Sun, J. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery. Eur. J. Pharm. Biopharm., 2020, 157, 66-73. doi: 10.1016/j.ejpb.2020.10.002 PMID: 33059004
  64. Hoesly, F.J.; Borovicka, J.; Gordon, J.; Nardone, B.; Holbrook, J.S.; Pace, N.; Ibrahim, O.; Bolotin, D.; Warycha, M.; Kwasny, M.; West, D.; Alam, M. Safety of a novel microneedle device applied to facial skin: A subject- and rater-blinded, sham-controlled, randomized trial. Arch. Dermatol., 2012, 148(6), 711-717. doi: 10.1001/archdermatol.2012.280 PMID: 22431712
  65. Min, H.S.; Kim, Y.; Nam, J.; Ahn, H.; Kim, M.; Kang, G.; Jang, M.; Yang, H.; Jung, H. Shape of dissolving microneedles determines skin penetration ability and efficacy of drug delivery. Biomater. Adv., 2023, 145, 213248. doi: 10.1016/j.bioadv.2022.213248 PMID: 36610239
  66. Ding, Y.W.; Li, Y.; Zhang, Z.W.; Dao, J.W.; Wei, D.X. Hydrogel forming microneedles loaded with VEGF and Ritlecitinib/polyhydroxyalkanoates nanoparticles for mini-invasive androgenetic alopecia treatment. Bioact. Mater., 2024, 38, 95-108. doi: 10.1016/j.bioactmat.2024.04.020 PMID: 38699241
  67. Jeong, H.R.; Lee, H.S.; Choi, I.J.; Park, J.H. Considerations in the use of microneedles: Pain, convenience, anxiety and safety. J. Drug Target., 2017, 25(1), 29-40. doi: 10.1080/1061186X.2016.1200589 PMID: 27282644
  68. Huang, S.; Liu, H.; Huang, S.; Fu, T.; Xue, W.; Guo, R. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr. Polym., 2020, 246, 116650. doi: 10.1016/j.carbpol.2020.116650 PMID: 32747282
  69. Bui, V.D.; Son, S.; Xavier, W.; Nguyen, V.Q.; Jung, J.M.; Lee, J.; Shin, S.; Um, W.; An, J.Y.; Kim, C.H.; Song, Y.; Li, Y.; Park, J.H. Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles. Biomaterials, 2022, 287, 121644. doi: 10.1016/j.biomaterials.2022.121644 PMID: 35772350
  70. Sartawi, Z.; Blackshields, C.; Faisal, W. Dissolving microneedles: Applications and growing therapeutic potential. J. Control. Release, 2022, 348, 186-205. doi: 10.1016/j.jconrel.2022.05.045 PMID: 35662577
  71. Lu, X.; Sun, Y.; Han, M.; Chen, D.; He, X.; Wang, S.; Sun, K. Triptorelin nanoparticle-loaded microneedles for use in assisted reproductive technology. Drug Deliv., 2023, 30(1), 2226367. doi: 10.1080/10717544.2023.2226367 PMID: 37387211
  72. Xiao, M.; Tang, Q.; Zeng, S.; Yang, Q.; Yang, X.; Tong, X.; Zhu, G.; Lei, L.; Li, S. Emerging biomaterials for tumor immunotherapy. Biomater. Res., 2023, 27(1), 47. doi: 10.1186/s40824-023-00369-8 PMID: 37194085
  73. Zhang, X.P.; He, Y.T.; Li, W.X.; Chen, B.Z.; Zhang, C.Y.; Cui, Y.; Guo, X.D. An update on biomaterials as microneedle matrixes for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(32), 6059-6077. doi: 10.1039/D2TB00905F PMID: 35916308
  74. Barnum, L.; Quint, J.; Derakhshandeh, H.; Samandari, M.; Aghabaglou, F.; Farzin, A.; Abbasi, L.; Bencherif, S.; Memic, A.; Mostafalu, P.; Tamayol, A.; Tamayol, A. 3D printed hydrogel‐filled microneedle arrays. Adv. Healthc. Mater., 2021, 10(13), 2001922. doi: 10.1002/adhm.202001922 PMID: 34050600
  75. Loh, J.M.; Lim, Y.J.L.; Tay, J.T.; Cheng, H.M.; Tey, H.L.; Liang, K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact. Mater., 2024, 32, 222-241. doi: 10.1016/j.bioactmat.2023.09.022 PMID: 37869723

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025