The Kinesin Eg5 Inhibitor K858 Enhances Radiosensitivity in Esophageal Squamous Cell Carcinoma and Affects the Expression of Epithelial-mesenchymal Transition Related Markers: In vitro and In vivo Studies


Дәйексөз келтіру

Толық мәтін

Аннотация

Background: Radioresistance is the primary cause of treatment failure in esophageal squamous cell carcinoma, emphasizing the importance of identifying effective radiosensitizers.

Objectives:This study aimed to explore the effects and potential mechanisms of Eg5 inhibitor K858 on the radiosensitivity of esophageal squamous cell carcinoma TE-1 and KYSE150 cell lines, as well as xenografts (TE-1 cells).

Methods: Cellular function was assessed using CCK8, wound healing, and transwell invasion assays. Radiosensitivity parameters were derived from colony formation assays. Cell apoptosis and cell cycle were assessed using flow cytometry, whereas protein expression levels were detected using western blotting and immunohistochemistry. The xenograft model was used to observe the growth of tumors.

Results: K858 inhibited the malignant functions of TE-1 and KYSE150 cell lines. Radiosensitivity parameters were reduced after K858 treatment. The combination of K858 and irradiation markedly suppressed cell proliferation, induced apoptosis, and stimulated cell cycle arrest during the irradiation-sensitive phase. Additionally, K858, combined with irradiation, significantly increased the expression of the epithelial-mesenchymal transition marker E-cadherin and decreased the expression of N-cadherin, vimentin, MMP2, and MMP9. K858, combined with irradiation, significantly inhibited tumor growth in xenograft models.

Conclusion: K858 enhanced the radiosensitivity of esophageal squamous cell carcinoma and affected the expression of epithelial-mesenchymal transition-related markers.

Авторлар туралы

Ruixue Liu

Department of Radiation Oncology,, The Fourth Affiliated Hospital of Hebei Medical University

Email: info@benthamscience.net

Zhijun Yu

College of Life Sciences, Hebei Normal University

Email: info@benthamscience.net

Wenbin Shen

Department of Radiation Oncology, The Fourth Affiliated Hospital of Hebei Medical University

Email: info@benthamscience.net

Shuchai Zhu

Department of Radiation Oncology, The Fourth Affiliated Hospital of Hebei Medical University,

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Obermannová, R.; Alsina, M.; Cervantes, A.; Leong, T.; Lordick, F.; Nilsson, M.; van Grieken, N.C.T.; Vogel, A.; Smyth, E.C. Oesophageal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol., 2022, 33(10), 992-1004. doi: 10.1016/j.annonc.2022.07.003 PMID: 35914638
  3. Abnet, C.C.; Arnold, M.; Wei, W.Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology, 2018, 154(2), 360-373. doi: 10.1053/j.gastro.2017.08.023 PMID: 28823862
  4. Feng, R.; Su, Q.; Huang, X.; Basnet, T.; Xu, X.; Ye, W. Cancer situation in China: What does the China cancer map indicate from the first national death survey to the latest cancer registration? Cancer Commun., 2023, 43(1), 75-86. doi: 10.1002/cac2.12393 PMID: 36397729
  5. Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, Z.; Yang, H.; Wang, J.; Pang, Q.; Zheng, X.; Yang, H.; Li, T.; Lordick, F.; D’Journo, X.B.; Cerfolio, R.J.; Korst, R.J.; Novoa, N.M.; Swanson, S.J.; Brunelli, A.; Ismail, M.; Fernando, H.C.; Zhang, X.; Li, Q.; Wang, G.; Chen, B.; Mao, T.; Kong, M.; Guo, X.; Lin, T.; Liu, M.; Fu, J. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the Esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial. J. Clin. Oncol., 2018, 36(27), 2796-2803. doi: 10.1200/JCO.2018.79.1483 PMID: 30089078
  6. An, L.; Li, M.; Jia, Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer, 2023, 22(1), 140. doi: 10.1186/s12943-023-01839-2 PMID: 37598158
  7. Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132. doi: 10.3322/caac.21338 PMID: 26808342
  8. Lucanus, A.J.; Yip, G.W. Kinesin superfamily: Roles in breast cancer, patient prognosis and therapeutics. Oncogene, 2018, 37(7), 833-838. doi: 10.1038/onc.2017.406 PMID: 29059174
  9. Wordeman, L. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays. Semin. Cell Dev. Biol., 2010, 21(3), 260-268. doi: 10.1016/j.semcdb.2010.01.018 PMID: 20109570
  10. Oki, E.; Hisamatsu, Y.; Ando, K.; Saeki, H.; Kakeji, Y.; Maehara, Y. Clinical aspect and molecular mechanism of DNA aneuploidy in gastric cancers. J. Gastroenterol., 2012, 47(4), 351-358. doi: 10.1007/s00535-012-0565-4 PMID: 22402775
  11. Castillo, A.; Morse, H.C., III; Godfrey, V.L.; Naeem, R.; Justice, M.J. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res., 2007, 67(21), 10138-10147. doi: 10.1158/0008-5472.CAN-07-0326 PMID: 17974955
  12. Liu, X.R.; Cai, Y.; Cao, X.; Wei, R.C.; Li, H.L.; Zhou, X.M.; Zhang, K.J.; Wu, S.; Qian, Q.J.; Cheng, B.; Huang, K.; Liu, X.Y. A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti‐tumour effect. J. Cell. Mol. Med., 2012, 16(6), 1298-1309. doi: 10.1111/j.1582-4934.2011.01396.x PMID: 21794078
  13. Almeida, A.C.; Maiato, H. Chromokinesins. Curr. Biol., 2018, 28(19), R1131-R1135. doi: 10.1016/j.cub.2018.07.017 PMID: 30300593
  14. Zhou, Y.; Xu, M.F.; Chen, J.; Zhang, J.L.; Wang, X.Y.; Huang, M.H.; Wei, Y.L.; She, Z.Y. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp. Cell Res., 2024, 436(1), 113975. doi: 10.1016/j.yexcr.2024.113975 PMID: 38367657
  15. Li, S.; Ma, Y.; Wu, C.; Hou, X. Knockdown of kinesin family member 2C restricts cell proliferation and induces cell cycle arrest in gastric cancer. Histol. Histopathol., 2023, 38(8), 907-916. PMID: 36448588
  16. Zhang, J.; Buranjiang, G.; Mutalifu, Z.; Jin, H.; Yao, L. KIF14 affects cell cycle arrest and cell viability in cervical cancer by regulating the p27Kip1 pathway. World J. Surg. Oncol., 2022, 20(1), 125. doi: 10.1186/s12957-022-02585-3 PMID: 35439960
  17. Guo, W.; Sun, S.; Sanchez, J.E.; Lopez-Hernandez, A.E.; Ale, T.A.; Chen, J.; Afrin, T.; Qiu, W.; Xie, Y.; Li, L. Using a comprehensive approach to investigate the interaction between Kinesin-5/Eg5 and the microtubule. Comput. Struct. Biotechnol. J., 2022, 20, 4305-4314. doi: 10.1016/j.csbj.2022.08.020 PMID: 36051882
  18. Sawin, K.E.; LeGuellec, K.; Philippe, M.; Mitchison, T.J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 1992, 359(6395), 540-543. doi: 10.1038/359540a0 PMID: 1406972
  19. Ding, S.; Xing, N.; Lu, J.; Zhang, H.; Nishizawa, K.; Liu, S.; Yuan, X.; Qin, Y.; Liu, Y.; Ogawa, O.; Nishiyama, H. Overexpression of Eg5 predicts unfavorable prognosis in non‐muscle invasive bladder urothelial carcinoma. Int. J. Urol., 2011, 18(6), 432-438. doi: 10.1111/j.1442-2042.2011.02751.x PMID: 21449971
  20. Liu, M.; Wang, X.; Yang, Y.; Li, D.; Ren, H.; Zhu, Q.; Chen, Q.; Han, S.; Hao, J.; Zhou, J. Ectopic expression of the microtubule‐dependent motor protein Eg5 promotes pancreatic tumourigenesis. J. Pathol., 2010, 221(2), 221-228. doi: 10.1002/path.2706 PMID: 20455257
  21. Carter, B.Z.; Mak, D.H.; Shi, Y.; Schober, W.D.; Wang, R.Y.; Konopleva, M.; Koller, E.; Dean, N.M.; Andreeff, M. Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: overcoming imatinib resistance. Cell Cycle, 2006, 5(19), 2223-2229. doi: 10.4161/cc.5.19.3255 PMID: 16969080
  22. Hansen, G.M.; Justice, M.J. Activation of Hex and mEg5 by retroviral insertion may contribute to mouse B-cell leukemia. Oncogene, 1999, 18(47), 6531-6539. doi: 10.1038/sj.onc.1203023 PMID: 10597256
  23. Liu, L.; Liu, X.; Mare, M.; Dumont, A.S.; Zhang, H.; Yan, D.; Xiong, Z. Overexpression of Eg5 correlates with high grade astrocytic neoplasm. J. Neurooncol., 2016, 126(1), 77-80. doi: 10.1007/s11060-015-1954-3 PMID: 26456023
  24. Shao, Y.Y.; Sun, N.Y.; Jeng, Y.M.; Wu, Y.M.; Hsu, C.; Hsu, C.H.; Hsu, H.C.; Cheng, A.L.; Lin, Z.Z. Eg5 as a prognostic biomarker and potential therapeutic target for hepatocellular carcinoma. Cells, 2021, 10(7), 1698. doi: 10.3390/cells10071698 PMID: 34359867
  25. Sun, D.; Lu, J.; Ding, K.; Bi, D.; Niu, Z.; Cao, Q.; Zhang, J.; Ding, S. The expression of Eg5 predicts a poor outcome for patients with renal cell carcinoma. Med. Oncol., 2013, 30(1), 476. doi: 10.1007/s12032-013-0476-0 PMID: 23371254
  26. Lu, M.; Zhu, H.; Wang, X.; Zhang, D.; Xiong, L.; Xu, L.; You, Y. The prognostic role of Eg5 expression in laryngeal squamous cell carcinoma. Pathology, 2016, 48(3), 214-218. doi: 10.1016/j.pathol.2016.02.008 PMID: 27020495
  27. Ricci, A.; Carradori, S.; Cataldi, A.; Zara, S. Eg5 and diseases: From the well‐known role in cancer to the less‐known activity in noncancerous pathological conditions. Biochem. Res. Int., 2024, 2024(1), 3649912. doi: 10.1155/2024/3649912 PMID: 38939361
  28. De Monte, C.; Carradori, S.; Secci, D.; D’Ascenzio, M.; Guglielmi, P.; Mollica, A.; Morrone, S.; Scarpa, S.; Aglianò, A.M.; Giantulli, S.; Silvestri, I. Synthesis and pharmacological screening of a large library of 1,3,4-thiadiazolines as innovative therapeutic tools for the treatment of prostate cancer and melanoma. Eur. J. Med. Chem., 2015, 105, 245-262. doi: 10.1016/j.ejmech.2015.10.023 PMID: 26498571
  29. Wu, W.; Jingbo, S.; Xu, W.; Liu, J.; Huang, Y.; Sheng, Q.; Lv, Z. SS-trityl-L-cysteine, a novel Eg5 inhibitor, is a potent chemotherapeutic strategy in neuroblastoma. Oncol. Lett., 2018, 16(1), 1023-1030. doi: 10.3892/ol.2018.8755 PMID: 29963178
  30. Ding, S.; Nishizawa, K.; Kobayashi, T.; Oishi, S.; Lv, J.; Fujii, N.; Ogawa, O.; Nishiyama, H. A potent chemotherapeutic strategy for bladder cancer: (S)-methoxy-trityl-L-cystein, a novel Eg5 inhibitor. J. Urol., 2010, 184(3), 1175-1181. doi: 10.1016/j.juro.2010.04.073 PMID: 20663523
  31. Tallman, M.M.; Zalenski, A.A.; Stabl, I.; Schrock, M.S.; Kollin, L.; de Jong, E.; De, K.; Grubb, T.M.; Summers, M.K.; Venere, M. Improving localized radiotherapy for glioblastoma via small molecule inhibition of KIF11. Cancers, 2023, 15(12), 3173. doi: 10.3390/cancers15123173 PMID: 37370783
  32. Nakai, R.; Iida, S.; Takahashi, T.; Tsujita, T.; Okamoto, S.; Takada, C.; Akasaka, K.; Ichikawa, S.; Ishida, H.; Kusaka, H.; Akinaga, S.; Murakata, C.; Honda, S.; Nitta, M.; Saya, H.; Yamashita, Y. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. Cancer Res., 2009, 69(9), 3901-3909. doi: 10.1158/0008-5472.CAN-08-4373 PMID: 19351824
  33. Ricci, A.; Cataldi, A.; Carradori, S.; Zara, S. Kinesin Eg5 selective inhibition by newly synthesized molecules as an alternative approach to counteract breast cancer progression: An in vitro study. Biology, 2022, 11(10), 1450. doi: 10.3390/biology11101450 PMID: 36290354
  34. Giantulli, S.; De Iuliis, F.; Taglieri, L.; Carradori, S.; Menichelli, G.; Morrone, S.; Scarpa, S.; Silvestri, I. Growth arrest and apoptosis induced by kinesin Eg5 inhibitor K858 and by its 1,3,4-thiadiazoline analogue in tumor cells. Anticancer Drugs, 2018, 29(7), 674-681. doi: 10.1097/CAD.0000000000000641 PMID: 29738338
  35. Nicolai, A.; Taurone, S.; Carradori, S.; Artico, M.; Greco, A.; Costi, R.; Scarpa, S. The kinesin Eg5 inhibitor K858 exerts antiproliferative and proapoptotic effects and attenuates the invasive potential of head and neck squamous carcinoma cells. Invest. New Drugs, 2022, 40(3), 556-564. doi: 10.1007/s10637-022-01238-2 PMID: 35312942
  36. Taglieri, L.; Rubinacci, G.; Giuffrida, A.; Carradori, S.; Scarpa, S. The kinesin Eg5 inhibitor K858 induces apoptosis and reverses the malignant invasive phenotype in human glioblastoma cells. Invest. New Drugs, 2018, 36(1), 28-35. doi: 10.1007/s10637-017-0517-1 PMID: 28965307
  37. Marconi, G.D.; Carradori, S.; Ricci, A.; Guglielmi, P.; Cataldi, A.; Zara, S. Kinesin Eg5 targeting inhibitors as a new strategy for gastric adenocarcinoma treatment. Molecules, 2019, 24(21), 3948. doi: 10.3390/molecules24213948 PMID: 31683688
  38. Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715. doi: 10.1016/j.cell.2008.03.027 PMID: 18485877
  39. Chen, C.; Wei, Y.; Hummel, M.; Hoffmann, T.K.; Gross, M.; Kaufmann, A.M.; Albers, A.E. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One, 2011, 6(1), e16466. doi: 10.1371/journal.pone.0016466 PMID: 21304586
  40. Huang, R.; Zong, X. Aberrant cancer metabolism in epithelial–mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit. Rev. Oncol. Hematol., 2017, 115, 13-22. doi: 10.1016/j.critrevonc.2017.04.005 PMID: 28602165
  41. Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Jeon, H.M.; Kim, M.Y.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer, 2017, 16(1), 10. doi: 10.1186/s12943-016-0577-4 PMID: 28137309
  42. Theys, J.; Jutten, B.; Habets, R.; Paesmans, K.; Groot, A.J.; Lambin, P.; Wouters, B.G.; Lammering, G.; Vooijs, M. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother. Oncol., 2011, 99(3), 392-397. doi: 10.1016/j.radonc.2011.05.044 PMID: 21680037
  43. Nantajit, D.; Lin, D.; Li, J.J. The network of epithelial–mesenchymal transition: Potential new targets for tumor resistance. J. Cancer Res. Clin. Oncol., 2015, 141(10), 1697-1713. doi: 10.1007/s00432-014-1840-y PMID: 25270087
  44. Su, H.; Jin, X.; Zhang, X.; Zhao, L.; Lin, B.; Li, L.; Fei, Z.; Shen, L.; Fang, Y.; Pan, H.; Xie, C. FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R. J. Transl. Med., 2015, 13(1), 104. doi: 10.1186/s12967-015-0464-6 PMID: 25888911
  45. Gao, Y.; Chen, Z.; Wang, R.; Tan, X.; Huang, C.; Chen, G.; Chen, Z. LXRα promotes the differentiation of human gastric cancer cells through inactivation of Wnt/β-catenin signaling. J. Cancer, 2019, 10(1), 156-167. doi: 10.7150/jca.28600 PMID: 30662536
  46. Yang, S.; Liu, Y.; Li, M.Y.; Ng, C.S.H.; Yang, S.; Wang, S.; Zou, C.; Dong, Y.; Du, J.; Long, X.; Liu, L.Z.; Wan, I.Y.P.; Mok, T.; Underwood, M.J.; Chen, G.G. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer, 2017, 16(1), 124. doi: 10.1186/s12943-017-0700-1 PMID: 28716029
  47. Colak, S.; ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer, 2017, 3(1), 56-71. doi: 10.1016/j.trecan.2016.11.008 PMID: 28718426
  48. Heldin, C.H.; Landström, M.; Moustakas, A. Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Curr. Opin. Cell Biol., 2009, 21(2), 166-176. doi: 10.1016/j.ceb.2009.01.021 PMID: 19237272
  49. Xie, C.; Wu, Y.; Fei, Z.; Fang, Y.; Xiao, S.; Su, H. MicroRNA‐1275 induces radiosensitization in oesophageal cancer by regulating epithelial‐to‐mesenchymal transition via Wnt/β‐catenin pathway. J. Cell. Mol. Med., 2020, 24(1), 747-759. doi: 10.1111/jcmm.14784 PMID: 31733028
  50. Centurione, L.; Aiello, F.B. DNA repair and cytokines: TGF-β, IL-6, and thrombopoietin as different biomarkers of radioresistance. Front. Oncol., 2016, 6, 175. doi: 10.3389/fonc.2016.00175 PMID: 27500125
  51. Wang, J.; Xu, Z.; Wang, Z.; Du, G.; Lun, L. TGF-beta signaling in cancer radiotherapy. Cytokine, 2021, 148, 155709. doi: 10.1016/j.cyto.2021.155709 PMID: 34597918
  52. Garcia-Saez, I.; Skoufias, D.A. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem. Pharmacol., 2021, 184, 114364. doi: 10.1016/j.bcp.2020.114364 PMID: 33310050
  53. Sun, L.; Lu, J.; Niu, Z.; Ding, K.; Bi, D.; Liu, S.; Li, J.; Wu, F.; Zhang, H.; Zhao, Z.; Ding, S. A potent chemotherapeutic strategy with Eg5 inhibitor against gemcitabine resistant bladder cancer. PLoS One, 2015, 10(12), e0144484. doi: 10.1371/journal.pone.0144484 PMID: 26658059
  54. Marcus, A.I.; Peters, U.; Thomas, S.L.; Garrett, S.; Zelnak, A.; Kapoor, T.M.; Giannakakou, P. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J. Biol. Chem., 2005, 280(12), 11569-11577. doi: 10.1074/jbc.M413471200 PMID: 15653676
  55. Qin, W.J.; Su, Y.G.; Ding, X.L.; Zhao, R.; Zhao, Z.J.; Wang, Y.Y. CDK4/6 inhibitor enhances the radiosensitization of esophageal squamous cell carcinoma (ESCC) by activating autophagy signaling via the suppression of mTOR. Am. J. Transl. Res., 2022, 14(3), 1616-1627. PMID: 35422963
  56. Gu, M.M.; Li, M.; Gao, D.; Liu, L.H.; Lang, Y.; Yang, S.M.; Ou, H.; Huang, B.; Zhou, P.K.; Shang, Z.F. The vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde induces aberrant mitotic progression and enhances radio-sensitivity accompanying suppression the expression of PLK1 in esophageal squamous cell carcinoma. Toxicol. Appl. Pharmacol., 2018, 348, 76-84. doi: 10.1016/j.taap.2018.04.021 PMID: 29679654
  57. Liu, X.F.; Xia, Y.F.; Li, M.Z.; Wang, H.M.; He, Y.X.; Zheng, M.L.; Yang, H.L.; Huang, W.L. The effect of p21 antisense oligodeoxynucleotides on the radiosensitivity of nasopharyngeal carcinoma cells with normal p53 function. Cell Biol. Int., 2006, 30(3), 283-287. doi: 10.1016/j.cellbi.2005.11.010 PMID: 16448826
  58. Thames, H.D.; Suit, H.D. Tumor radioresponsiveness versus fractionation sensitivity. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12(4), 687-691. doi: 10.1016/0360-3016(86)90081-7 PMID: 3700173
  59. Bristow, R.G.; Hardy, P.A.; Hill, R.P. Comparison between in vitro radiosensitivity and in vivo radioresponse of murine tumor cell lines I: Parameters of in vitro radiosensitivity and endogenous cellular glutathione levels. Int. J. Radiat. Oncol. Biol. Phys., 1990, 18(1), 133-145. doi: 10.1016/0360-3016(90)90277-Q PMID: 2298617
  60. Mitsuhashi, N.; Takahashi, T.; Sakurai, H.; Nozaki, M.; Akimoto, T.; Hasegawa, M.; Saito, Y.; Matsumoto, H.; Higuchi, K.; Maebayashi, K.; Niibe, H. A radioresistant variant cell line, NMT-1R, isolated from a radiosensitive rat yolk sac tumour cell line, NMT-1: Differences of early radiation-induced morphological changes, especially apoptosis. Int. J. Radiat. Biol., 1996, 69(3), 329-336. doi: 10.1080/095530096145887 PMID: 8613682
  61. Pawlik, T.M.; Keyomarsi, K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(4), 928-942. doi: 10.1016/j.ijrobp.2004.03.005 PMID: 15234026
  62. Park, S.; Choi, C.; Kim, H.; Shin, Y.J.; Oh, Y.; Park, W.; Cho, W.K.; Kim, N. Olaparib enhances sensitization of BRCA-proficient breast cancer cells to x-rays and protons. Breast Cancer Res. Treat., 2024, 203(3), 449-461. doi: 10.1007/s10549-023-07150-4 PMID: 37902934
  63. Song, Y.; Cheng, Y.; Lan, T.; Bai, Z.; Liu, Y.; Bi, Z.; Alu, A.; Cheng, D.; Wei, Y.; Wei, X. ERK inhibitor: A candidate enhancing therapeutic effects of conventional chemo-radiotherapy in esophageal squamous cell carcinoma. Cancer Lett., 2023, 554, 216012. doi: 10.1016/j.canlet.2022.216012 PMID: 36470544
  64. Weigert, V.; Jost, T.; Hecht, M.; Knippertz, I.; Heinzerling, L.; Fietkau, R.; Distel, L.V. PARP inhibitors combined with ionizing radiation induce different effects in melanoma cells and healthy fibroblasts. BMC Cancer, 2020, 20(1), 775. doi: 10.1186/s12885-020-07190-9 PMID: 32811446
  65. Abal, M.; Keryer, G.; Bornens, M. Centrioles resist forces applied on centrosomes during G2/M transition. Biol. Cell, 2005, 97(6), 425-434. doi: 10.1042/BC20040112 PMID: 15898952
  66. Hashemi, M.; Arani, H.Z.; Orouei, S.; Fallah, S.; Ghorbani, A.; Khaledabadi, M.; Kakavand, A.; Tavakolpournegari, A.; Saebfar, H.; Heidari, H.; Salimimoghadam, S.; Entezari, M.; Taheriazam, A.; Hushmandi, K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed. Pharmacother., 2022, 155, 113774. doi: 10.1016/j.biopha.2022.113774 PMID: 36271556
  67. Marie-Egyptienne, D.T.; Lohse, I.; Hill, R.P. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia. Cancer Lett., 2013, 341(1), 63-72. doi: 10.1016/j.canlet.2012.11.019 PMID: 23200673
  68. Kanamoto, A.; Ninomiya, I.; Harada, S.; Tsukada, T.; Okamoto, K.; Nakanuma, S.; Sakai, S.; Makino, I.; Kinoshita, J.; Hayashi, H.; Oyama, K.; Miyashita, T.; Tajima, H.; Takamura, H.; Fushida, S.; Ohta, T. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma. Int. J. Oncol., 2016, 49(5), 1859-1869. doi: 10.3892/ijo.2016.3712 PMID: 27826618
  69. Zang, C.; Liu, X.; Li, B.; He, Y.; Jing, S.; He, Y.; Wu, W.; Zhang, B.; Ma, S.; Dai, W.; Li, S.; Peng, Z. IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma. Oncotarget, 2017, 8(7), 11228-11238. doi: 10.18632/oncotarget.14495 PMID: 28061440
  70. Luo, W. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem. Theranostics, 2023, 13(5), 1607-1631. doi: 10.7150/thno.82690 PMID: 37056571
  71. Rajput, S.; Kumar, B.N.P.; Banik, P.; Parida, S.; Mandal, M. Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells. J. Cell. Physiol., 2015, 230(3), 620-629. doi: 10.1002/jcp.24780 PMID: 25164250
  72. Li, Y.; Zhou, Y.; Zhao, C.; Liu, L.; He, Q.; Shang, K.; Xu, X.; Luo, X.; Zhou, D.; Jin, F. The circadian clock gene, BMAL1, promotes radiosensitization in nasopharyngeal carcinoma by inhibiting the epithelial-to-mesenchymal transition via the TGF-β1/Smads/Snail1 axis. Oral Oncol., 2024, 152, 106798. doi: 10.1016/j.oraloncology.2024.106798 PMID: 38615583
  73. Emons, G.; Spitzner, M.; Reineke, S.; Möller, J.; Auslander, N.; Kramer, F.; Hu, Y.; Beissbarth, T.; Wolff, H.A.; Rave-Fränk, M.; Heßmann, E.; Gaedcke, J.; Ghadimi, B.M.; Johnsen, S.A.; Ried, T.; Grade, M. Chemoradiotherapy resistance in colorectal cancer cells is mediated by Wnt/β-catenin signaling. Mol. Cancer Res., 2017, 15(11), 1481-1490. doi: 10.1158/1541-7786.MCR-17-0205 PMID: 28811361
  74. Barcellos-Hoff, M.H. The radiobiology of TGFβ. Semin. Cancer Biol., 2022, 86(Pt 3), 857-867. doi: 10.1016/j.semcancer.2022.02.001 PMID: 35122974
  75. Wang, Y.; Yao, N.; Sun, J. Upregulation of miR-194-5p or silencing of PRC1 enhances radiotherapy sensitivity in esophageal squamous carcinoma cells. Heliyon, 2023, 9(12), e22282. doi: 10.1016/j.heliyon.2023.e22282 PMID: 38046164
  76. Lu, Y.; Ma, J.; Li, Y.; Huang, J.; Zhang, S.; Yin, Z.; Ren, J.; Huang, K.; Wu, G.; Yang, K.; Xu, S. CDP138 silencing inhibits TGF-β/Smad signaling to impair radioresistance and metastasis via GDF15 in lung cancer. Cell Death Dis., 2017, 8(9), e3036. doi: 10.1038/cddis.2017.434 PMID: 28880265
  77. Du, S.; Bouquet, S.; Lo, C.H.; Pellicciotta, I.; Bolourchi, S.; Parry, R.; Barcellos-Hoff, M.H. Attenuation of the DNA damage response by transforming growth factor-beta inhibitors enhances radiation sensitivity of non-small-cell lung cancer cells in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys., 2015, 91(1), 91-99. doi: 10.1016/j.ijrobp.2014.09.026 PMID: 25835621
  78. Massagué, J. TGFβ in cancer. Cell, 2008, 134(2), 215-230. doi: 10.1016/j.cell.2008.07.001 PMID: 18662538
  79. Wu, M.Y.; Hill, C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev. Cell, 2009, 16(3), 329-343. doi: 10.1016/j.devcel.2009.02.012 PMID: 19289080
  80. Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol., 2012, 13(10), 616-630. doi: 10.1038/nrm3434 PMID: 22992590
  81. Shi, J.; Xing, H.; Wang, Y.; Zhang, X.; Zhan, Q.; Geng, M.; Ding, J.; Meng, L. PI3Kα inhibitors sensitize esophageal squamous cell carcinoma to radiation by abrogating survival signals in tumor cells and tumor microenvironment. Cancer Lett., 2019, 459, 145-155. doi: 10.1016/j.canlet.2019.05.040 PMID: 31173854
  82. Ricci, A.; Gallorini, M.; Del Bufalo, D.; Cataldi, A.; D’Agostino, I.; Carradori, S.; Zara, S. Negative modulation of the angiogenic cascade induced by Allosteric Kinesin Eg5 inhibitors in a gastric adenocarcinoma in vitro model. Molecules, 2022, 27(3), 957. doi: 10.3390/molecules27030957 PMID: 35164221
  83. Li, Z.; Yu, B.; Qi, F.; Li, F. KIF11 serves as an independent prognostic factor and therapeutic target for patients with lung adenocarcinoma. Front. Oncol., 2021, 11, 670218. doi: 10.3389/fonc.2021.670218 PMID: 33968780
  84. Hou, Y.; Li, J.; Yu, A.; Deng, K.; Chen, J.; Wang, Z.; Huang, L.; Ma, S.; Dai, X. FANCI is associated with poor prognosis and immune infiltration in liver hepatocellular carcinoma. Int. J. Med. Sci., 2023, 20(7), 918-932. doi: 10.7150/ijms.83760 PMID: 37324186
  85. Lin, X.; Liu, J.; Zhang, N.; Zhou, D.; Liu, Y. Decoding the immune microenvironment: Unveiling CD8+ T cell-related biomarkers and developing a prognostic signature for personalized glioma treatment. Cancer Cell Int., 2024, 24(1), 331. doi: 10.1186/s12935-024-03517-9 PMID: 39354483

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025