The Kinesin Eg5 Inhibitor K858 Enhances Radiosensitivity in Esophageal Squamous Cell Carcinoma and Affects the Expression of Epithelial-mesenchymal Transition Related Markers: In vitro and In vivo Studies
- Авторлар: Liu R.1, Yu Z.2, Shen W.3, Zhu S.4
-
Мекемелер:
- Department of Radiation Oncology,, The Fourth Affiliated Hospital of Hebei Medical University
- College of Life Sciences, Hebei Normal University
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Hebei Medical University
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Hebei Medical University,
- Шығарылым: Том 25, № 15 (2025)
- Беттер: 1142-1159
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694450
- DOI: https://doi.org/10.2174/0118715206373782250211104402
- ID: 694450
Дәйексөз келтіру
Толық мәтін
Аннотация
Background: Radioresistance is the primary cause of treatment failure in esophageal squamous cell carcinoma, emphasizing the importance of identifying effective radiosensitizers.
Objectives:This study aimed to explore the effects and potential mechanisms of Eg5 inhibitor K858 on the radiosensitivity of esophageal squamous cell carcinoma TE-1 and KYSE150 cell lines, as well as xenografts (TE-1 cells).
Methods: Cellular function was assessed using CCK8, wound healing, and transwell invasion assays. Radiosensitivity parameters were derived from colony formation assays. Cell apoptosis and cell cycle were assessed using flow cytometry, whereas protein expression levels were detected using western blotting and immunohistochemistry. The xenograft model was used to observe the growth of tumors.
Results: K858 inhibited the malignant functions of TE-1 and KYSE150 cell lines. Radiosensitivity parameters were reduced after K858 treatment. The combination of K858 and irradiation markedly suppressed cell proliferation, induced apoptosis, and stimulated cell cycle arrest during the irradiation-sensitive phase. Additionally, K858, combined with irradiation, significantly increased the expression of the epithelial-mesenchymal transition marker E-cadherin and decreased the expression of N-cadherin, vimentin, MMP2, and MMP9. K858, combined with irradiation, significantly inhibited tumor growth in xenograft models.
Conclusion: K858 enhanced the radiosensitivity of esophageal squamous cell carcinoma and affected the expression of epithelial-mesenchymal transition-related markers.
Авторлар туралы
Ruixue Liu
Department of Radiation Oncology,, The Fourth Affiliated Hospital of Hebei Medical University
Email: info@benthamscience.net
Zhijun Yu
College of Life Sciences, Hebei Normal University
Email: info@benthamscience.net
Wenbin Shen
Department of Radiation Oncology, The Fourth Affiliated Hospital of Hebei Medical University
Email: info@benthamscience.net
Shuchai Zhu
Department of Radiation Oncology, The Fourth Affiliated Hospital of Hebei Medical University,
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Obermannová, R.; Alsina, M.; Cervantes, A.; Leong, T.; Lordick, F.; Nilsson, M.; van Grieken, N.C.T.; Vogel, A.; Smyth, E.C. Oesophageal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol., 2022, 33(10), 992-1004. doi: 10.1016/j.annonc.2022.07.003 PMID: 35914638
- Abnet, C.C.; Arnold, M.; Wei, W.Q. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology, 2018, 154(2), 360-373. doi: 10.1053/j.gastro.2017.08.023 PMID: 28823862
- Feng, R.; Su, Q.; Huang, X.; Basnet, T.; Xu, X.; Ye, W. Cancer situation in China: What does the China cancer map indicate from the first national death survey to the latest cancer registration? Cancer Commun., 2023, 43(1), 75-86. doi: 10.1002/cac2.12393 PMID: 36397729
- Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, Z.; Yang, H.; Wang, J.; Pang, Q.; Zheng, X.; Yang, H.; Li, T.; Lordick, F.; D’Journo, X.B.; Cerfolio, R.J.; Korst, R.J.; Novoa, N.M.; Swanson, S.J.; Brunelli, A.; Ismail, M.; Fernando, H.C.; Zhang, X.; Li, Q.; Wang, G.; Chen, B.; Mao, T.; Kong, M.; Guo, X.; Lin, T.; Liu, M.; Fu, J. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the Esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial. J. Clin. Oncol., 2018, 36(27), 2796-2803. doi: 10.1200/JCO.2018.79.1483 PMID: 30089078
- An, L.; Li, M.; Jia, Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer, 2023, 22(1), 140. doi: 10.1186/s12943-023-01839-2 PMID: 37598158
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132. doi: 10.3322/caac.21338 PMID: 26808342
- Lucanus, A.J.; Yip, G.W. Kinesin superfamily: Roles in breast cancer, patient prognosis and therapeutics. Oncogene, 2018, 37(7), 833-838. doi: 10.1038/onc.2017.406 PMID: 29059174
- Wordeman, L. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays. Semin. Cell Dev. Biol., 2010, 21(3), 260-268. doi: 10.1016/j.semcdb.2010.01.018 PMID: 20109570
- Oki, E.; Hisamatsu, Y.; Ando, K.; Saeki, H.; Kakeji, Y.; Maehara, Y. Clinical aspect and molecular mechanism of DNA aneuploidy in gastric cancers. J. Gastroenterol., 2012, 47(4), 351-358. doi: 10.1007/s00535-012-0565-4 PMID: 22402775
- Castillo, A.; Morse, H.C., III; Godfrey, V.L.; Naeem, R.; Justice, M.J. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res., 2007, 67(21), 10138-10147. doi: 10.1158/0008-5472.CAN-07-0326 PMID: 17974955
- Liu, X.R.; Cai, Y.; Cao, X.; Wei, R.C.; Li, H.L.; Zhou, X.M.; Zhang, K.J.; Wu, S.; Qian, Q.J.; Cheng, B.; Huang, K.; Liu, X.Y. A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti‐tumour effect. J. Cell. Mol. Med., 2012, 16(6), 1298-1309. doi: 10.1111/j.1582-4934.2011.01396.x PMID: 21794078
- Almeida, A.C.; Maiato, H. Chromokinesins. Curr. Biol., 2018, 28(19), R1131-R1135. doi: 10.1016/j.cub.2018.07.017 PMID: 30300593
- Zhou, Y.; Xu, M.F.; Chen, J.; Zhang, J.L.; Wang, X.Y.; Huang, M.H.; Wei, Y.L.; She, Z.Y. Loss-of-function of kinesin-5 KIF11 causes microcephaly, chorioretinopathy, and developmental disorders through chromosome instability and cell cycle arrest. Exp. Cell Res., 2024, 436(1), 113975. doi: 10.1016/j.yexcr.2024.113975 PMID: 38367657
- Li, S.; Ma, Y.; Wu, C.; Hou, X. Knockdown of kinesin family member 2C restricts cell proliferation and induces cell cycle arrest in gastric cancer. Histol. Histopathol., 2023, 38(8), 907-916. PMID: 36448588
- Zhang, J.; Buranjiang, G.; Mutalifu, Z.; Jin, H.; Yao, L. KIF14 affects cell cycle arrest and cell viability in cervical cancer by regulating the p27Kip1 pathway. World J. Surg. Oncol., 2022, 20(1), 125. doi: 10.1186/s12957-022-02585-3 PMID: 35439960
- Guo, W.; Sun, S.; Sanchez, J.E.; Lopez-Hernandez, A.E.; Ale, T.A.; Chen, J.; Afrin, T.; Qiu, W.; Xie, Y.; Li, L. Using a comprehensive approach to investigate the interaction between Kinesin-5/Eg5 and the microtubule. Comput. Struct. Biotechnol. J., 2022, 20, 4305-4314. doi: 10.1016/j.csbj.2022.08.020 PMID: 36051882
- Sawin, K.E.; LeGuellec, K.; Philippe, M.; Mitchison, T.J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 1992, 359(6395), 540-543. doi: 10.1038/359540a0 PMID: 1406972
- Ding, S.; Xing, N.; Lu, J.; Zhang, H.; Nishizawa, K.; Liu, S.; Yuan, X.; Qin, Y.; Liu, Y.; Ogawa, O.; Nishiyama, H. Overexpression of Eg5 predicts unfavorable prognosis in non‐muscle invasive bladder urothelial carcinoma. Int. J. Urol., 2011, 18(6), 432-438. doi: 10.1111/j.1442-2042.2011.02751.x PMID: 21449971
- Liu, M.; Wang, X.; Yang, Y.; Li, D.; Ren, H.; Zhu, Q.; Chen, Q.; Han, S.; Hao, J.; Zhou, J. Ectopic expression of the microtubule‐dependent motor protein Eg5 promotes pancreatic tumourigenesis. J. Pathol., 2010, 221(2), 221-228. doi: 10.1002/path.2706 PMID: 20455257
- Carter, B.Z.; Mak, D.H.; Shi, Y.; Schober, W.D.; Wang, R.Y.; Konopleva, M.; Koller, E.; Dean, N.M.; Andreeff, M. Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: overcoming imatinib resistance. Cell Cycle, 2006, 5(19), 2223-2229. doi: 10.4161/cc.5.19.3255 PMID: 16969080
- Hansen, G.M.; Justice, M.J. Activation of Hex and mEg5 by retroviral insertion may contribute to mouse B-cell leukemia. Oncogene, 1999, 18(47), 6531-6539. doi: 10.1038/sj.onc.1203023 PMID: 10597256
- Liu, L.; Liu, X.; Mare, M.; Dumont, A.S.; Zhang, H.; Yan, D.; Xiong, Z. Overexpression of Eg5 correlates with high grade astrocytic neoplasm. J. Neurooncol., 2016, 126(1), 77-80. doi: 10.1007/s11060-015-1954-3 PMID: 26456023
- Shao, Y.Y.; Sun, N.Y.; Jeng, Y.M.; Wu, Y.M.; Hsu, C.; Hsu, C.H.; Hsu, H.C.; Cheng, A.L.; Lin, Z.Z. Eg5 as a prognostic biomarker and potential therapeutic target for hepatocellular carcinoma. Cells, 2021, 10(7), 1698. doi: 10.3390/cells10071698 PMID: 34359867
- Sun, D.; Lu, J.; Ding, K.; Bi, D.; Niu, Z.; Cao, Q.; Zhang, J.; Ding, S. The expression of Eg5 predicts a poor outcome for patients with renal cell carcinoma. Med. Oncol., 2013, 30(1), 476. doi: 10.1007/s12032-013-0476-0 PMID: 23371254
- Lu, M.; Zhu, H.; Wang, X.; Zhang, D.; Xiong, L.; Xu, L.; You, Y. The prognostic role of Eg5 expression in laryngeal squamous cell carcinoma. Pathology, 2016, 48(3), 214-218. doi: 10.1016/j.pathol.2016.02.008 PMID: 27020495
- Ricci, A.; Carradori, S.; Cataldi, A.; Zara, S. Eg5 and diseases: From the well‐known role in cancer to the less‐known activity in noncancerous pathological conditions. Biochem. Res. Int., 2024, 2024(1), 3649912. doi: 10.1155/2024/3649912 PMID: 38939361
- De Monte, C.; Carradori, S.; Secci, D.; D’Ascenzio, M.; Guglielmi, P.; Mollica, A.; Morrone, S.; Scarpa, S.; Aglianò, A.M.; Giantulli, S.; Silvestri, I. Synthesis and pharmacological screening of a large library of 1,3,4-thiadiazolines as innovative therapeutic tools for the treatment of prostate cancer and melanoma. Eur. J. Med. Chem., 2015, 105, 245-262. doi: 10.1016/j.ejmech.2015.10.023 PMID: 26498571
- Wu, W.; Jingbo, S.; Xu, W.; Liu, J.; Huang, Y.; Sheng, Q.; Lv, Z. SS-trityl-L-cysteine, a novel Eg5 inhibitor, is a potent chemotherapeutic strategy in neuroblastoma. Oncol. Lett., 2018, 16(1), 1023-1030. doi: 10.3892/ol.2018.8755 PMID: 29963178
- Ding, S.; Nishizawa, K.; Kobayashi, T.; Oishi, S.; Lv, J.; Fujii, N.; Ogawa, O.; Nishiyama, H. A potent chemotherapeutic strategy for bladder cancer: (S)-methoxy-trityl-L-cystein, a novel Eg5 inhibitor. J. Urol., 2010, 184(3), 1175-1181. doi: 10.1016/j.juro.2010.04.073 PMID: 20663523
- Tallman, M.M.; Zalenski, A.A.; Stabl, I.; Schrock, M.S.; Kollin, L.; de Jong, E.; De, K.; Grubb, T.M.; Summers, M.K.; Venere, M. Improving localized radiotherapy for glioblastoma via small molecule inhibition of KIF11. Cancers, 2023, 15(12), 3173. doi: 10.3390/cancers15123173 PMID: 37370783
- Nakai, R.; Iida, S.; Takahashi, T.; Tsujita, T.; Okamoto, S.; Takada, C.; Akasaka, K.; Ichikawa, S.; Ishida, H.; Kusaka, H.; Akinaga, S.; Murakata, C.; Honda, S.; Nitta, M.; Saya, H.; Yamashita, Y. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. Cancer Res., 2009, 69(9), 3901-3909. doi: 10.1158/0008-5472.CAN-08-4373 PMID: 19351824
- Ricci, A.; Cataldi, A.; Carradori, S.; Zara, S. Kinesin Eg5 selective inhibition by newly synthesized molecules as an alternative approach to counteract breast cancer progression: An in vitro study. Biology, 2022, 11(10), 1450. doi: 10.3390/biology11101450 PMID: 36290354
- Giantulli, S.; De Iuliis, F.; Taglieri, L.; Carradori, S.; Menichelli, G.; Morrone, S.; Scarpa, S.; Silvestri, I. Growth arrest and apoptosis induced by kinesin Eg5 inhibitor K858 and by its 1,3,4-thiadiazoline analogue in tumor cells. Anticancer Drugs, 2018, 29(7), 674-681. doi: 10.1097/CAD.0000000000000641 PMID: 29738338
- Nicolai, A.; Taurone, S.; Carradori, S.; Artico, M.; Greco, A.; Costi, R.; Scarpa, S. The kinesin Eg5 inhibitor K858 exerts antiproliferative and proapoptotic effects and attenuates the invasive potential of head and neck squamous carcinoma cells. Invest. New Drugs, 2022, 40(3), 556-564. doi: 10.1007/s10637-022-01238-2 PMID: 35312942
- Taglieri, L.; Rubinacci, G.; Giuffrida, A.; Carradori, S.; Scarpa, S. The kinesin Eg5 inhibitor K858 induces apoptosis and reverses the malignant invasive phenotype in human glioblastoma cells. Invest. New Drugs, 2018, 36(1), 28-35. doi: 10.1007/s10637-017-0517-1 PMID: 28965307
- Marconi, G.D.; Carradori, S.; Ricci, A.; Guglielmi, P.; Cataldi, A.; Zara, S. Kinesin Eg5 targeting inhibitors as a new strategy for gastric adenocarcinoma treatment. Molecules, 2019, 24(21), 3948. doi: 10.3390/molecules24213948 PMID: 31683688
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715. doi: 10.1016/j.cell.2008.03.027 PMID: 18485877
- Chen, C.; Wei, Y.; Hummel, M.; Hoffmann, T.K.; Gross, M.; Kaufmann, A.M.; Albers, A.E. Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One, 2011, 6(1), e16466. doi: 10.1371/journal.pone.0016466 PMID: 21304586
- Huang, R.; Zong, X. Aberrant cancer metabolism in epithelial–mesenchymal transition and cancer metastasis: Mechanisms in cancer progression. Crit. Rev. Oncol. Hematol., 2017, 115, 13-22. doi: 10.1016/j.critrevonc.2017.04.005 PMID: 28602165
- Lee, S.Y.; Jeong, E.K.; Ju, M.K.; Jeon, H.M.; Kim, M.Y.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer, 2017, 16(1), 10. doi: 10.1186/s12943-016-0577-4 PMID: 28137309
- Theys, J.; Jutten, B.; Habets, R.; Paesmans, K.; Groot, A.J.; Lambin, P.; Wouters, B.G.; Lammering, G.; Vooijs, M. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother. Oncol., 2011, 99(3), 392-397. doi: 10.1016/j.radonc.2011.05.044 PMID: 21680037
- Nantajit, D.; Lin, D.; Li, J.J. The network of epithelial–mesenchymal transition: Potential new targets for tumor resistance. J. Cancer Res. Clin. Oncol., 2015, 141(10), 1697-1713. doi: 10.1007/s00432-014-1840-y PMID: 25270087
- Su, H.; Jin, X.; Zhang, X.; Zhao, L.; Lin, B.; Li, L.; Fei, Z.; Shen, L.; Fang, Y.; Pan, H.; Xie, C. FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R. J. Transl. Med., 2015, 13(1), 104. doi: 10.1186/s12967-015-0464-6 PMID: 25888911
- Gao, Y.; Chen, Z.; Wang, R.; Tan, X.; Huang, C.; Chen, G.; Chen, Z. LXRα promotes the differentiation of human gastric cancer cells through inactivation of Wnt/β-catenin signaling. J. Cancer, 2019, 10(1), 156-167. doi: 10.7150/jca.28600 PMID: 30662536
- Yang, S.; Liu, Y.; Li, M.Y.; Ng, C.S.H.; Yang, S.; Wang, S.; Zou, C.; Dong, Y.; Du, J.; Long, X.; Liu, L.Z.; Wan, I.Y.P.; Mok, T.; Underwood, M.J.; Chen, G.G. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer, 2017, 16(1), 124. doi: 10.1186/s12943-017-0700-1 PMID: 28716029
- Colak, S.; ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer, 2017, 3(1), 56-71. doi: 10.1016/j.trecan.2016.11.008 PMID: 28718426
- Heldin, C.H.; Landström, M.; Moustakas, A. Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Curr. Opin. Cell Biol., 2009, 21(2), 166-176. doi: 10.1016/j.ceb.2009.01.021 PMID: 19237272
- Xie, C.; Wu, Y.; Fei, Z.; Fang, Y.; Xiao, S.; Su, H. MicroRNA‐1275 induces radiosensitization in oesophageal cancer by regulating epithelial‐to‐mesenchymal transition via Wnt/β‐catenin pathway. J. Cell. Mol. Med., 2020, 24(1), 747-759. doi: 10.1111/jcmm.14784 PMID: 31733028
- Centurione, L.; Aiello, F.B. DNA repair and cytokines: TGF-β, IL-6, and thrombopoietin as different biomarkers of radioresistance. Front. Oncol., 2016, 6, 175. doi: 10.3389/fonc.2016.00175 PMID: 27500125
- Wang, J.; Xu, Z.; Wang, Z.; Du, G.; Lun, L. TGF-beta signaling in cancer radiotherapy. Cytokine, 2021, 148, 155709. doi: 10.1016/j.cyto.2021.155709 PMID: 34597918
- Garcia-Saez, I.; Skoufias, D.A. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem. Pharmacol., 2021, 184, 114364. doi: 10.1016/j.bcp.2020.114364 PMID: 33310050
- Sun, L.; Lu, J.; Niu, Z.; Ding, K.; Bi, D.; Liu, S.; Li, J.; Wu, F.; Zhang, H.; Zhao, Z.; Ding, S. A potent chemotherapeutic strategy with Eg5 inhibitor against gemcitabine resistant bladder cancer. PLoS One, 2015, 10(12), e0144484. doi: 10.1371/journal.pone.0144484 PMID: 26658059
- Marcus, A.I.; Peters, U.; Thomas, S.L.; Garrett, S.; Zelnak, A.; Kapoor, T.M.; Giannakakou, P. Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J. Biol. Chem., 2005, 280(12), 11569-11577. doi: 10.1074/jbc.M413471200 PMID: 15653676
- Qin, W.J.; Su, Y.G.; Ding, X.L.; Zhao, R.; Zhao, Z.J.; Wang, Y.Y. CDK4/6 inhibitor enhances the radiosensitization of esophageal squamous cell carcinoma (ESCC) by activating autophagy signaling via the suppression of mTOR. Am. J. Transl. Res., 2022, 14(3), 1616-1627. PMID: 35422963
- Gu, M.M.; Li, M.; Gao, D.; Liu, L.H.; Lang, Y.; Yang, S.M.; Ou, H.; Huang, B.; Zhou, P.K.; Shang, Z.F. The vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde induces aberrant mitotic progression and enhances radio-sensitivity accompanying suppression the expression of PLK1 in esophageal squamous cell carcinoma. Toxicol. Appl. Pharmacol., 2018, 348, 76-84. doi: 10.1016/j.taap.2018.04.021 PMID: 29679654
- Liu, X.F.; Xia, Y.F.; Li, M.Z.; Wang, H.M.; He, Y.X.; Zheng, M.L.; Yang, H.L.; Huang, W.L. The effect of p21 antisense oligodeoxynucleotides on the radiosensitivity of nasopharyngeal carcinoma cells with normal p53 function. Cell Biol. Int., 2006, 30(3), 283-287. doi: 10.1016/j.cellbi.2005.11.010 PMID: 16448826
- Thames, H.D.; Suit, H.D. Tumor radioresponsiveness versus fractionation sensitivity. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12(4), 687-691. doi: 10.1016/0360-3016(86)90081-7 PMID: 3700173
- Bristow, R.G.; Hardy, P.A.; Hill, R.P. Comparison between in vitro radiosensitivity and in vivo radioresponse of murine tumor cell lines I: Parameters of in vitro radiosensitivity and endogenous cellular glutathione levels. Int. J. Radiat. Oncol. Biol. Phys., 1990, 18(1), 133-145. doi: 10.1016/0360-3016(90)90277-Q PMID: 2298617
- Mitsuhashi, N.; Takahashi, T.; Sakurai, H.; Nozaki, M.; Akimoto, T.; Hasegawa, M.; Saito, Y.; Matsumoto, H.; Higuchi, K.; Maebayashi, K.; Niibe, H. A radioresistant variant cell line, NMT-1R, isolated from a radiosensitive rat yolk sac tumour cell line, NMT-1: Differences of early radiation-induced morphological changes, especially apoptosis. Int. J. Radiat. Biol., 1996, 69(3), 329-336. doi: 10.1080/095530096145887 PMID: 8613682
- Pawlik, T.M.; Keyomarsi, K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(4), 928-942. doi: 10.1016/j.ijrobp.2004.03.005 PMID: 15234026
- Park, S.; Choi, C.; Kim, H.; Shin, Y.J.; Oh, Y.; Park, W.; Cho, W.K.; Kim, N. Olaparib enhances sensitization of BRCA-proficient breast cancer cells to x-rays and protons. Breast Cancer Res. Treat., 2024, 203(3), 449-461. doi: 10.1007/s10549-023-07150-4 PMID: 37902934
- Song, Y.; Cheng, Y.; Lan, T.; Bai, Z.; Liu, Y.; Bi, Z.; Alu, A.; Cheng, D.; Wei, Y.; Wei, X. ERK inhibitor: A candidate enhancing therapeutic effects of conventional chemo-radiotherapy in esophageal squamous cell carcinoma. Cancer Lett., 2023, 554, 216012. doi: 10.1016/j.canlet.2022.216012 PMID: 36470544
- Weigert, V.; Jost, T.; Hecht, M.; Knippertz, I.; Heinzerling, L.; Fietkau, R.; Distel, L.V. PARP inhibitors combined with ionizing radiation induce different effects in melanoma cells and healthy fibroblasts. BMC Cancer, 2020, 20(1), 775. doi: 10.1186/s12885-020-07190-9 PMID: 32811446
- Abal, M.; Keryer, G.; Bornens, M. Centrioles resist forces applied on centrosomes during G2/M transition. Biol. Cell, 2005, 97(6), 425-434. doi: 10.1042/BC20040112 PMID: 15898952
- Hashemi, M.; Arani, H.Z.; Orouei, S.; Fallah, S.; Ghorbani, A.; Khaledabadi, M.; Kakavand, A.; Tavakolpournegari, A.; Saebfar, H.; Heidari, H.; Salimimoghadam, S.; Entezari, M.; Taheriazam, A.; Hushmandi, K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed. Pharmacother., 2022, 155, 113774. doi: 10.1016/j.biopha.2022.113774 PMID: 36271556
- Marie-Egyptienne, D.T.; Lohse, I.; Hill, R.P. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: Potential role of hypoxia. Cancer Lett., 2013, 341(1), 63-72. doi: 10.1016/j.canlet.2012.11.019 PMID: 23200673
- Kanamoto, A.; Ninomiya, I.; Harada, S.; Tsukada, T.; Okamoto, K.; Nakanuma, S.; Sakai, S.; Makino, I.; Kinoshita, J.; Hayashi, H.; Oyama, K.; Miyashita, T.; Tajima, H.; Takamura, H.; Fushida, S.; Ohta, T. Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma. Int. J. Oncol., 2016, 49(5), 1859-1869. doi: 10.3892/ijo.2016.3712 PMID: 27826618
- Zang, C.; Liu, X.; Li, B.; He, Y.; Jing, S.; He, Y.; Wu, W.; Zhang, B.; Ma, S.; Dai, W.; Li, S.; Peng, Z. IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma. Oncotarget, 2017, 8(7), 11228-11238. doi: 10.18632/oncotarget.14495 PMID: 28061440
- Luo, W. Nasopharyngeal carcinoma ecology theory: Cancer as multidimensional spatiotemporal “unity of ecology and evolution” pathological ecosystem. Theranostics, 2023, 13(5), 1607-1631. doi: 10.7150/thno.82690 PMID: 37056571
- Rajput, S.; Kumar, B.N.P.; Banik, P.; Parida, S.; Mandal, M. Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells. J. Cell. Physiol., 2015, 230(3), 620-629. doi: 10.1002/jcp.24780 PMID: 25164250
- Li, Y.; Zhou, Y.; Zhao, C.; Liu, L.; He, Q.; Shang, K.; Xu, X.; Luo, X.; Zhou, D.; Jin, F. The circadian clock gene, BMAL1, promotes radiosensitization in nasopharyngeal carcinoma by inhibiting the epithelial-to-mesenchymal transition via the TGF-β1/Smads/Snail1 axis. Oral Oncol., 2024, 152, 106798. doi: 10.1016/j.oraloncology.2024.106798 PMID: 38615583
- Emons, G.; Spitzner, M.; Reineke, S.; Möller, J.; Auslander, N.; Kramer, F.; Hu, Y.; Beissbarth, T.; Wolff, H.A.; Rave-Fränk, M.; Heßmann, E.; Gaedcke, J.; Ghadimi, B.M.; Johnsen, S.A.; Ried, T.; Grade, M. Chemoradiotherapy resistance in colorectal cancer cells is mediated by Wnt/β-catenin signaling. Mol. Cancer Res., 2017, 15(11), 1481-1490. doi: 10.1158/1541-7786.MCR-17-0205 PMID: 28811361
- Barcellos-Hoff, M.H. The radiobiology of TGFβ. Semin. Cancer Biol., 2022, 86(Pt 3), 857-867. doi: 10.1016/j.semcancer.2022.02.001 PMID: 35122974
- Wang, Y.; Yao, N.; Sun, J. Upregulation of miR-194-5p or silencing of PRC1 enhances radiotherapy sensitivity in esophageal squamous carcinoma cells. Heliyon, 2023, 9(12), e22282. doi: 10.1016/j.heliyon.2023.e22282 PMID: 38046164
- Lu, Y.; Ma, J.; Li, Y.; Huang, J.; Zhang, S.; Yin, Z.; Ren, J.; Huang, K.; Wu, G.; Yang, K.; Xu, S. CDP138 silencing inhibits TGF-β/Smad signaling to impair radioresistance and metastasis via GDF15 in lung cancer. Cell Death Dis., 2017, 8(9), e3036. doi: 10.1038/cddis.2017.434 PMID: 28880265
- Du, S.; Bouquet, S.; Lo, C.H.; Pellicciotta, I.; Bolourchi, S.; Parry, R.; Barcellos-Hoff, M.H. Attenuation of the DNA damage response by transforming growth factor-beta inhibitors enhances radiation sensitivity of non-small-cell lung cancer cells in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys., 2015, 91(1), 91-99. doi: 10.1016/j.ijrobp.2014.09.026 PMID: 25835621
- Massagué, J. TGFβ in cancer. Cell, 2008, 134(2), 215-230. doi: 10.1016/j.cell.2008.07.001 PMID: 18662538
- Wu, M.Y.; Hill, C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev. Cell, 2009, 16(3), 329-343. doi: 10.1016/j.devcel.2009.02.012 PMID: 19289080
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol., 2012, 13(10), 616-630. doi: 10.1038/nrm3434 PMID: 22992590
- Shi, J.; Xing, H.; Wang, Y.; Zhang, X.; Zhan, Q.; Geng, M.; Ding, J.; Meng, L. PI3Kα inhibitors sensitize esophageal squamous cell carcinoma to radiation by abrogating survival signals in tumor cells and tumor microenvironment. Cancer Lett., 2019, 459, 145-155. doi: 10.1016/j.canlet.2019.05.040 PMID: 31173854
- Ricci, A.; Gallorini, M.; Del Bufalo, D.; Cataldi, A.; D’Agostino, I.; Carradori, S.; Zara, S. Negative modulation of the angiogenic cascade induced by Allosteric Kinesin Eg5 inhibitors in a gastric adenocarcinoma in vitro model. Molecules, 2022, 27(3), 957. doi: 10.3390/molecules27030957 PMID: 35164221
- Li, Z.; Yu, B.; Qi, F.; Li, F. KIF11 serves as an independent prognostic factor and therapeutic target for patients with lung adenocarcinoma. Front. Oncol., 2021, 11, 670218. doi: 10.3389/fonc.2021.670218 PMID: 33968780
- Hou, Y.; Li, J.; Yu, A.; Deng, K.; Chen, J.; Wang, Z.; Huang, L.; Ma, S.; Dai, X. FANCI is associated with poor prognosis and immune infiltration in liver hepatocellular carcinoma. Int. J. Med. Sci., 2023, 20(7), 918-932. doi: 10.7150/ijms.83760 PMID: 37324186
- Lin, X.; Liu, J.; Zhang, N.; Zhou, D.; Liu, Y. Decoding the immune microenvironment: Unveiling CD8+ T cell-related biomarkers and developing a prognostic signature for personalized glioma treatment. Cancer Cell Int., 2024, 24(1), 331. doi: 10.1186/s12935-024-03517-9 PMID: 39354483
Қосымша файлдар
