Identification of Flavonoid-based Hypoxia-inducible Factor-2 Alpha Inhibitors for the Treatment of Breast Cancer– In silico and In vitro Evidence


Citar

Texto integral

Resumo

Background: Breast cancer (BC) is a common malignancy that poses a serious threat to women's health. The hypoxic tumor microenvironment in BC promotes drug resistance, making hypoxia-targeted therapies crucial. Targeting hypoxia-inducible factors (HIFs), particularly HIF-2α, has emerged as a promising approach to inhibit tumor growth and improve response to chemotherapy and radiotherapy. However, further research is required to fully understand the role of HIF-2α to develop more effective treatments for BC.

Aim:The aim of this study is to identify phytochemicals that target HIF-2α and evaluate their effects on the MCF-7 breast cancer cell line under hypoxic conditions.

Methods: Molecular docking identified phytochemicals targeting HIF-2α, with high-affinity compounds undergoing stability evaluation via GROMACS molecular dynamics simulations. ADMET and toxicity assessments were performed using SwissADME and ProTox-3.0. In-vitro assays on hypoxic MCF-7 cells examined cell viability and gene expression. The expression of HIF-2α-regulated genes (VEGFA, CCND1, GLUT1) was analyzed by using qRT-PCR.

Results: Molecular docking revealed that naringin (-8.2 Kcal/mol) and morin (-7.1 Kcal/mol) showed better binding affinity than the standard drug, belzutifan (-7.7 Kcal/mol). Dynamic simulations, including RMSD, RMSF, Hbond interactions, Rg, SASA, and PE, confirmed their strong binding potential. Morin, in particular, demonstrated more H-bond interactions and met Lipinski's Rule of Five, making it a promising candidate for in vitro studies. It reduced cell viability with an IC50 of 118 μM and significantly downregulated HIF-2α-associated genes.

Conclusion: Morin demonstrated promising anti-cancer activity under hypoxic conditions by inhibiting HIF-2α in the hypoxia signaling pathway.

Sobre autores

Shahinaz

Department of Pharmacy Practice, SRM Institute of Science and Technology

Email: info@benthamscience.net

Mursaleen Baba

Bioinformatics and Entomoinformatics lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology

Email: info@benthamscience.net

Ravi Gor

Department of Occupational and Environmental Health, The University of Oklahoma Health Sciences

Email: info@benthamscience.net

Chandrasudan Ramamurthy

Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology

Email: info@benthamscience.net

Habeeb Mohideen

Department of Genetic Engineering, School of Bioengineering, Bioinformatics and Entomoinformatics Lab, SRM Institute of Science and Technology

Email: info@benthamscience.net

Satish Ramalingam

Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology

Email: info@benthamscience.net

Thangavel Vijayakumar

Department of Pharmacy Practice, SRM Institute of Science and Technology

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Tanaka, T.; Aoki, R.; Terasaki, M. Potential chemopreventive effects of dietary combination of phytochemicals against cancer development. Pharmaceuticals, 2023, 16(11), 1591. doi: 10.3390/ph16111591 PMID: 38004456
  2. Wang, J.; Wu, S.G. Breast cancer: An overview of current therapeutic strategies, challenge, and perspectives. Breast Cancer, 2023, 15, 721-730. doi: 10.2147/BCTT.S432526 PMID: 37881514
  3. Rudzińska, A.; Juchaniuk, P.; Oberda, J.; Wiśniewska, J.; Wojdan, W.; Szklener, K.; Mańdziuk, S. Phytochemicals in cancer treatment and cancer prevention—review on epidemiological data and clinical trials. Nutrients, 2023, 15(8), 1896. doi: 10.3390/nu15081896 PMID: 37111115
  4. He, J.; Zhang, H.P. Research progress on the anti-tumor effect of Naringin. Front. Pharmacol., 2023, 14, 1217001. doi: 10.3389/fphar.2023.1217001 PMID: 37663256
  5. Li, H.; Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Wan, J.; Luo, F.; Zhang, L.; Li, H.; Ren, G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol. Lett., 2013, 220(3), 219-228. doi: 10.1016/j.toxlet.2013.05.006 PMID: 23694763
  6. Solairaja, S.; Andrabi, M.Q.; Dunna, N.R.; Venkatabalasubramanian, S. Overview of morin and its complementary role as an adjuvant for anticancer agents. Nutr. Cancer, 2021, 73(6), 927-942. doi: 10.1080/01635581.2020.1778747 PMID: 32530303
  7. Gor, R.; Saha, L.; Agarwal, S.; Karri, U.; Sohani, A.; Madhavan, T.; Pachaiappan, R.; Ramalingam, S. Morin inhibits colon cancer stem cells by inhibiting PUM1 expression in vitro. Med. Oncol., 2022, 39(12), 251. doi: 10.1007/s12032-022-01851-4 PMID: 36224472
  8. Maharjan, S.; Kwon, Y.S.; Lee, M.G.; Lee, K.S.; Nam, K.S. Cell cycle arrest-mediated cell death by morin in MDA-MB-231 triple-negative breast cancer cells. Pharmacol. Rep., 2021, 73(5), 1315-1327. doi: 10.1007/s43440-021-00272-w PMID: 33993438
  9. Hwang-Bo, H.; Lee, W.S.; Nagappan, A.; Kim, H.J.; Panchanathan, R.; Park, C.; Chang, S.H.; Kim, N.D.; Leem, S.H.; Chang, Y.C.; Kwon, T.K.; Cheong, J.H.; Kim, G.S.; Jung, J.M.; Shin, S.C.; Hong, S.C.; Choi, Y.H. Morin enhances auranofin anticancer activity by up‐regulation of DR4 and DR5 and modulation of Bcl‐2 through reactive oxygen species generation in Hep3B human hepatocellular carcinoma cells. Phytother. Res., 2019, 33(5), 1384-1393. doi: 10.1002/ptr.6329 PMID: 30887612
  10. Singh, S.; Gupta, P.; Meena, A.; Luqman, S. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food Chem. Toxicol., 2020, 145, 111708. doi: 10.1016/j.fct.2020.111708 PMID: 32866514
  11. Li, J.; Zhong, X.; Zhao, Y.; Shen, J.; Xiao, Z.; Pilapong, C. Acacetin inhibited non-small-cell lung cancer (NSCLC) cell growth via upregulating miR-34a in vitro and in vivo. Sci. Rep., 2024, 14(1), 2348. doi: 10.1038/s41598-024-52896-6 PMID: 38287075
  12. Yun, S.; Lee, Y.J.; Choi, J.; Kim, N.D.; Han, D.C.; Kwon, B.M. Acacetin inhibits the growth of stat3-activated du145 prostate cancer cells by directly binding to signal transducer and activator of transcription 3 (Stat3). Molecules, 2021, 26(20), 6204. doi: 10.3390/molecules26206204 PMID: 34684783
  13. Zhang, G.; Dong, J.; Lu, L.; Liu, Y.; Hu, D.; Wu, Y.; Zhao, A.; Xu, H. Acacetin exerts antitumor effects on gastric cancer by targeting EGFR. Front. Pharmacol., 2023, 14, 1121643. doi: 10.3389/fphar.2023.1121643 PMID: 37266143
  14. Kim, J.K.; Park, S.U. Letter to the editor: Recent insights into the biological functions of apigenin. EXCLI J, 2020, 19, 984-991. doi: 10.17179/excli2020-2579
  15. Imran, M.; Aslam, G.T.; Atif, M.; Shahbaz, M.; Batool, Q.T.; Hanif, M.M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an anticancer agent. Phytother. Res., 2020, 34(8), 1812-1828. doi: 10.1002/ptr.6647 PMID: 32059077
  16. Chen, Y.H.; Wu, J.X.; Yang, S.F.; Yang, C.K.; Chen, T.H.; Hsiao, Y.H. Anticancer effects and molecular mechanisms of apigenin in cervical cancer cells. Cancers, 2022, 14(7), 1824. doi: 10.3390/cancers14071824 PMID: 35406599
  17. Motallebi, M.; Bhia, M.; Rajani, H.F.; Bhia, I.; Tabarraei, H.; Mohammadkhani, N.; Pereira-Silva, M.; Kasaii, M.S.; Nouri-Majd, S.; Mueller, A.L.; Veiga, F.J.B.; Paiva-Santos, A.C.; Shakibaei, M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci., 2022, 305, 120752. doi: 10.1016/j.lfs.2022.120752 PMID: 35779626
  18. Martínez-Rodríguez, O.P.; Thompson-Bonilla, M.R.; Jaramillo-Flores, M.E. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways. Crit. Rev. Food Sci. Nutr., 2020, 60(22), 3770-3792. doi: 10.1080/10408398.2019.1708262 PMID: 31899947
  19. Chang, T.M.; Chi, M.C.; Chiang, Y.C.; Lin, C.M.; Fang, M.L.; Lee, C.W.; Liu, J.F.; Kou, Y.R. Promotion of ROS-mediated apoptosis, G2/M arrest, and autophagy by naringenin in non-small cell lung cancer. Int. J. Biol. Sci., 2024, 20(3), 1093-1109. doi: 10.7150/ijbs.85443 PMID: 38322119
  20. Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther., 2023, 8(1), 70. doi: 10.1038/s41392-023-01332-8 PMID: 36797231
  21. Ren, X.; Diao, X.; Zhuang, J.; Wu, D. Structural basis for the allosteric inhibition of hypoxia-inducible factor (HIF)-2 by belzutifan. Mol. Pharmacol., 2022, 102(6), 240-247. doi: 10.1124/molpharm.122.000525 PMID: 36167425
  22. Sravya, G.; Jeyaraj, G.; Vadivelu, A.; Mohideen, H.S.; Geetanjali, A.S. Molecular characterization of chilli leaf curl Ahmedabad virus: Homology modelling and evaluation of viral proteins interacting with host protein SnRK1 and docking against flavonoids—an in silico approach. Theory Biosci., 2023, 142(1), 47-60. doi: 10.1007/s12064-022-00383-9 PMID: 36607541
  23. Moulishankar, A.; Sundarrajan, T. Pharmacophore, QSAR, molecular docking, molecular dynamics and ADMET study of trisubstituted benzimidazole derivatives as potent anti-tubercular agents. Chemical Physics Impact, 2024, 8, 100512. doi: 10.1016/j.chphi.2024.100512
  24. Mao, Y.; Li, Y.; Hao, M.; Zhang, S.; Ai, C. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors. J. Mol. Model., 2012, 18(5), 2185-2198. doi: 10.1007/s00894-011-1236-8 PMID: 21947448
  25. Moulishankar, A.; Sundarrajan, T. QSAR modeling, molecular docking, dynamic simulation and ADMET study of novel tetrahydronaphthalene derivatives as potent antitubercular agents. Beni. Suef Univ. J. Basic Appl. Sci., 2023, 12(1), 111. doi: 10.1186/s43088-023-00451-z
  26. Saravanan, V.; Chagaleti, B.K.; Packiapalavesam, S.D.; Kathiravan, M. Ligand based pharmacophore modelling and integrated computational approaches in the quest for small molecule inhibitors against hCA IX. RSC Advances, 2024, 14(5), 3346-3358. doi: 10.1039/D3RA08618F PMID: 38259989
  27. Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol., 2019, 39(4), 556-570. doi: 10.1002/jat.3749 PMID: 30484873
  28. Rana, N.K.; Singh, P.; Koch, B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol. Res., 2019, 52(1), 12. doi: 10.1186/s40659-019-0221-z PMID: 30876462
  29. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
  30. Bai, J.; Chen, W.B.; Zhang, X.Y.; Kang, X.N.; Jin, L.J.; Zhang, H.; Wang, Z.Y. HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J. Stem Cells, 2020, 12(1), 87-99. doi: 10.4252/wjsc.v12.i1.87 PMID: 32110277
  31. Chen, S.; Liu, Y.; Wang, Z.; Qi, C.; Yu, Y.; Xu, L.; Hou, T.; Sheng, R. Identification of 3-aryl-5-methyl-isoxazole-4-carboxamide derivatives and analogs as novel HIF-2α agonists through docking-based virtual screening and structural modification. Eur. J. Med. Chem., 2024, 268, 116227. doi: 10.1016/j.ejmech.2024.116227 PMID: 38387335
  32. Balkrishna, A.; Sharma, D.; Thapliyal, M.; Arya, V.; Dabas, A. Unraveling the therapeutic potential of Senna singueana phytochemicals to attenuate pancreatic cancer using protein-protein interactions, molecular docking, and MD simulation. In Silico Pharmacol., 2023, 12(1), 3. doi: 10.1007/s40203-023-00179-9
  33. Wallace, E.M.; Rizzi, J.P.; Han, G.; Wehn, P.M.; Cao, Z.; Du, X.; Cheng, T.; Czerwinski, R.M.; Dixon, D.D.; Goggin, B.S.; Grina, J.A.; Halfmann, M.M.; Maddie, M.A.; Olive, S.R.; Schlachter, S.T.; Tan, H.; Wang, B.; Wang, K.; Xie, S.; Xu, R.; Yang, H.; Josey, J.A. A small-molecule antagonist of HIF2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res., 2016, 76(18), 5491-5500. doi: 10.1158/0008-5472.CAN-16-0473 PMID: 27635045

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2025