A Systematic Quantitative Approach to Rational Drug Design and the Discovery of Novel Human Antigen R (HuR) Inhibitors
- Authors: Dey J.1, Kaushiki K.1, Mishra K.A.1, Sudheer P.1, Sethi K.K.2
-
Affiliations:
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research
- Issue: Vol 25, No 19 (2025)
- Pages: 1506-1520
- Section: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694469
- DOI: https://doi.org/10.2174/0118715206354755241220062707
- ID: 694469
Cite item
Full Text
Abstract
Background:1,4-Naphthoquinone and its derivatives are recognized for their potent anticancer effects, establishing this pharmacophore as a key focus in cancer research. Their potential to modulate cellular pathways suggests they could be effective in developing new HuR inhibitors, targeting a protein crucial for regulating cancer-related gene expression. Compounds C1-C20 were designed by using Discovery Studio (DS) software.
Methods:In this study, a systematic approach involves scaffold hopping followed by additional research such as molecular docking, ADMET, drug-likeness, toxicity prediction, molecular dynamic (MD) simulation, and binding free energy analysis was used to discover novel Human Antigen R (HuR) inhibitors.
Results:In molecular docking, 1,4-Naphthoquinone derivatives showed better interactions with the HuR protein compared to that of the conventional HuR inhibitor MS-444. Among twenty 1,4-Naphthoquinone derivatives, most of the compounds showed favorable pharmacokinetic characteristics. In the toxicity prediction model, most of the designed compounds were neither mutagenic nor carcinogenic. According to MD simulation, C5 is more stable than MS-444.
Conclusion:The designed 1,4-Naphthoquinone derivatives have been found to be crucial structural motifs for the discovery of novel HuR inhibitors, which was well supported by the in-silico screening and molecular modeling methods.
About the authors
Juhi Dey
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati
Email: info@benthamscience.net
Kumari Kaushiki
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati
Email: info@benthamscience.net
KM Abha Mishra
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati
Email: info@benthamscience.net
Paga Sudheer
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Guwahati
Email: info@benthamscience.net
Kalyan Kumar Sethi
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research
Author for correspondence.
Email: info@benthamscience.net
References
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health, 2020, 8(2), e180-e190. doi: 10.1016/S2214-109X(19)30488-7 PMID: 31862245
- Srikantan, S.; Gorospe, M. HuR function in disease. Front. Biosci., 2012, 17(1), 189-205. doi: 10.2741/3921 PMID: 22201738
- Baylin, S.B. Mechanisms underlying epigenetically mediated gene silencing in cancer. Semin. Cancer Biol., 2002, 12(5), 331-337. doi: 10.1016/S1044-579X(02)00053-6 PMID: 12191632
- Wurth, L. Versatility of RNA-binding proteins in cancer. Comp. Funct. Genomics, 2012, 2012(4), 178525. PMID: 22666083
- Benoit, R.M.; Meisner, N.C.; Kallen, J.; Graff, P.; Hemmig, R.; Cèbe, R.; Ostermeier, C.; Widmer, H.; Auer, M. The X-ray crystal structure of the first RNA recognition motif and site-directed mutagenesis suggest a possible HuR redox sensing mechanism. J. Mol. Biol., 2010, 397(5), 1231-1244. doi: 10.1016/j.jmb.2010.02.043 PMID: 20219472
- Blanco, F.F.; Preet, R.; Aguado, A.; Vishwakarma, V.; Stevens, L.E.; Vyas, A.; Padhye, S.; Xu, L.; Weir, S.J.; Anant, S.; Meisner-Kober, N.; Brody, J.R.; Dixon, D.A. Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis. Oncotarget, 2016, 7(45), 74043-74058. doi: 10.18632/oncotarget.12189 PMID: 27677075
- Kim, Y.; You, J.H.; Ryu, Y.; Park, G.; Lee, U.; Moon, H.E.; Park, H.R.; Song, C.W.; Ku, J.L.; Park, S.H.; Paek, S.H. ELAVL2 loss promotes aggressive mesenchymal transition in glioblastoma. NPJ Precis. Oncol., 2024, 8(1), 79. doi: 10.1038/s41698-024-00566-1 PMID: 38548861
- Ma, W.J.; Cheng, S.; Campbell, C.; Wright, A.; Furneaux, H. Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J. Biol. Chem., 1996, 271(14), 8144-8151. doi: 10.1074/jbc.271.14.8144 PMID: 8626503
- Ma, W.J.; Furneaux, H. Localization of the human HuR gene to chromosome 19p13.2. Hum. Genet., 1996, 99(1), 32-33. doi: 10.1007/s004390050305 PMID: 9003489
- Schultz, C.W.; Preet, R.; Dhir, T.; Dixon, D.A.; Brody, J.R. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR). Wiley Interdiscip. Rev. RNA, 2020, 11(3), e1581. doi: 10.1002/wrna.1581 PMID: 31970930
- Zucal, C.; D’Agostino, V.; Loffredo, R.; Mantelli, B. NatthakanThongon; Lal, P.; Latorre, E.; Provenzani, A. Targeting the multifaceted HuR protein, benefits and caveats. Curr. Drug Targets, 2015, 16(5), 499-515. doi: 10.2174/1389450116666150223163632 PMID: 25706256
- Blundell, T.L. Structure-based drug design. Nature, 1996, 384(6604)(Suppl.), 23-26. PMID: 8895597
- Amzel, L.M. Structure-based drug design. Curr. Opin. Biotechnol., 1998, 9(4), 366-369. doi: 10.1016/S0958-1669(98)80009-8 PMID: 9720263
- Whittle, P.J.; Blundell, T.L. Protein structure-based drug design. Annu. Rev. Biophys. Biomol. Struct., 1994, 23(1), 349-375. doi: 10.1146/annurev.bb.23.060194.002025 PMID: 7919786
- Khanna, I. Drug discovery in pharmaceutical industry: Productivity challenges and trends. Drug Discov. Today, 2012, 17(19-20), 1088-1102. doi: 10.1016/j.drudis.2012.05.007 PMID: 22627006
- Bruno, A.; Costantino, G.; Sartori, L.; Radi, M. The in silico drug discovery toolbox: Applications in lead discovery and optimization. Curr. Med. Chem., 2019, 26(21), 3838-3873. doi: 10.2174/0929867324666171107101035 PMID: 29110597
- Callis, T.B.; Garrett, T.R.; Montgomery, A.P.; Danon, J.J.; Kassiou, M. Recent scaffold hopping applications in central nervous system drug discovery. J. Med. Chem., 2022, 65(20), 13483-13504. doi: 10.1021/acs.jmedchem.2c00969 PMID: 36206553
- Hu, Y.; Stumpfe, D.; Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem., 2017, 60(4), 1238-1246. doi: 10.1021/acs.jmedchem.6b01437 PMID: 28001064
- Joseph, B.P.; Weber, V.; Knüpfer, L.; Giorgetti, A.; Alfonso-Prieto, M.; Krauß, S.; Carloni, P.; Rossetti, G. Low molecular weight inhibitors targeting the RNA-binding protein HuR. Int. J. Mol. Sci., 2023, 24(17), 13127. doi: 10.3390/ijms241713127 PMID: 37685931
- Wang, H.; Zeng, F.; Liu, Q.; Liu, H.; Liu, Z.; Niu, L.; Teng, M.; Li, X. The structure of the ARE-binding domains of Hu antigen R (HuR) undergoes conformational changes during RNA binding. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(3), 373-380. doi: 10.1107/S0907444912047828 PMID: 23519412
- Abdelmohsen, K.; Gorospe, M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip. Rev. RNA, 2010, 1(2), 214-229. doi: 10.1002/wrna.4 PMID: 21935886
- Denkert, C.; Weichert, W.; Winzer, K.J.; Müller, B.M.; Noske, A.; Niesporek, S.; Kristiansen, G.; Guski, H.; Dietel, M.; Hauptmann, S. Expression of the ELAV-like protein HuR is associated with higher tumor grade and increased cyclooxygenase-2 expression in human breast carcinoma. Clin. Cancer Res., 2004, 10(16), 5580-5586. doi: 10.1158/1078-0432.CCR-04-0070 PMID: 15328200
- Dixon, D.A.; Tolley, N.D.; King, P.H.; Nabors, L.B.; McIntyre, T.M.; Zimmerman, G.A.; Prescott, S.M. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J. Clin. Invest., 2001, 108(11), 1657-1665. doi: 10.1172/JCI12973 PMID: 11733561
- Heinonen, M.; Bono, P.; Narko, K.; Chang, S.H.; Lundin, J.; Joensuu, H.; Furneaux, H.; Hla, T.; Haglund, C.; Ristimäki, A. Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res., 2005, 65(6), 2157-2161. doi: 10.1158/0008-5472.CAN-04-3765 PMID: 15781626
- Sommer, G.; Heise, T. Role of the RNA-binding protein La in cancer pathobiology. RNA Biol., 2021, 18(2), 218-236. doi: 10.1080/15476286.2020.1792677 PMID: 32687431
- Meisner, N.C.; Hintersteiner, M.; Mueller, K.; Bauer, R.; Seifert, J.M.; Naegeli, H.U.; Ottl, J.; Oberer, L.; Guenat, C.; Moss, S.; Harrer, N.; Woisetschlaeger, M.; Buehler, C.; Uhl, V.; Auer, M. Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat. Chem. Biol., 2007, 3(8), 508-515. doi: 10.1038/nchembio.2007.14 PMID: 17632515
- Chae, M.J.; Sung, H.Y.; Kim, E.H.; Lee, M.; Kwak, H.; Chae, C.H.; Kim, S.; Park, W.Y. Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-α mRNA. Exp. Mol. Med., 2009, 41(11), 824-831. doi: 10.3858/emm.2009.41.11.088 PMID: 19949288
- Sun, L.; Zhang, S.; Jiang, Z.; Huang, X.; Wang, T.; Huang, X.; Li, H.; Zhang, L. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-α-treated A549 cells. Biochem. Biophys. Res. Commun., 2011, 416(1-2), 99-105. doi: 10.1016/j.bbrc.2011.11.004 PMID: 22093832
- D’Agostino, V.G.; Lal, P.; Mantelli, B.; Tiedje, C.; Zucal, C.; Thongon, N.; Gaestel, M.; Latorre, E.; Marinelli, L.; Seneci, P.; Amadio, M.; Provenzani, A. Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Sci. Rep., 2015, 5(1), 16478. doi: 10.1038/srep16478 PMID: 26553968
- Guo, J.; Lv, J.; Chang, S.; Chen, Z.; Lu, W.; Xu, C.; Liu, M.; Pang, X. Inhibiting cytoplasmic accumulation of HuR synergizes genotoxic agents in urothelial carcinoma of the bladder. Oncotarget, 2016, 7(29), 45249-45262. doi: 10.18632/oncotarget.9932 PMID: 27303922
- Wu, X.; Lan, L.; Wilson, D.M.; Marquez, R.T.; Tsao, W.; Gao, P.; Roy, A.; Turner, B.A.; McDonald, P.; Tunge, J.A.; Rogers, S.A.; Dixon, D.A.; Aubé, J.; Xu, L. Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem. Biol., 2015, 10(6), 1476-1484. doi: 10.1021/cb500851u PMID: 25750985
- Ye, T.; Zhu, S.; Zhu, Y.; Feng, Q.; He, B.; Xiong, Y.; Zhao, L.; Zhang, Y.; Yu, L.; Yang, L. Cryptotanshinone induces melanoma cancer cells apoptosis via ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed. Pharmacother., 2016, 82, 319-326. doi: 10.1016/j.biopha.2016.05.015 PMID: 27470369
- Kaur, K.; Wu, X.; Fields, J.K.; Johnson, D.K.; Lan, L.; Pratt, M.; Somoza, A.D.; Wang, C.C.C.; Karanicolas, J.; Oakley, B.R.; Xu, L.; De Guzman, R.N. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS One, 2017, 12(4), e0175471. doi: 10.1371/journal.pone.0175471 PMID: 28414767
- Sun, H.; Tawa, G.; Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today, 2012, 17(7-8), 310-324. doi: 10.1016/j.drudis.2011.10.024 PMID: 22056715
- Zheng, S.; Lei, Z.; Ai, H.; Chen, H.; Deng, D.; Yang, Y. Deep scaffold hopping with multimodal transformer neural networks. J. Cheminform., 2021, 13(1), 87. doi: 10.1186/s13321-021-00565-5 PMID: 34774103
- Campora, M.; Francesconi, V.; Schenone, S.; Tasso, B.; Tonelli, M. Journey on naphthoquinone and anthraquinone derivatives: New insights in Alzheimer’s disease. Pharmaceuticals (Basel), 2021, 14(1), 33. doi: 10.3390/ph14010033 PMID: 33466332
- Verma, R.P. Anti-cancer activities of 1,4-naphthoquinones: A QSAR study. Anticancer. Agents Med. Chem., 2006, 6(5), 489-499. doi: 10.2174/187152006778226512 PMID: 17017857
- O’Brien, P.J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact., 1991, 80(1), 1-41. doi: 10.1016/0009-2797(91)90029-7 PMID: 1913977
- Benites, J.; Valderrama, J.A.; Bettega, K.; Pedrosa, R.C.; Calderon, P.B.; Verrax, J. Biological evaluation of donor-acceptor aminonaphthoquinones as antitumor agents. Eur. J. Med. Chem., 2010, 45(12), 6052-6057. doi: 10.1016/j.ejmech.2010.10.006 PMID: 20980080
- Song, Y.; Buettner, G.R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic. Biol. Med., 2010, 49(6), 919-962. doi: 10.1016/j.freeradbiomed.2010.05.009 PMID: 20493944
- Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213. doi: 10.1016/j.bmc.2021.116213 PMID: 33992862
- Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur. J. Med. Chem., 2014, 84, 247-263. doi: 10.1016/j.ejmech.2014.07.024 PMID: 25019480
- Wang, R.; Gao, Y.; Lai, L. LigBuilder: A multi-purpose program for structure-based drug design. J. Mol. Model., 2000, 6(7-8), 498-516. doi: 10.1007/s0089400060498
- Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov., 2005, 4(8), 649-663. doi: 10.1038/nrd1799 PMID: 16056391
- Jorgensen, W.L. The many roles of computation in drug discovery. Science, 2004, 303(5665), 1813-1818. doi: 10.1126/science.1096361 PMID: 15031495
- Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783. doi: 10.3390/ijms20112783 PMID: 31174387
- Della Volpe, S.; Nasti, R.; Queirolo, M.; Unver, M.Y.; Jumde, V.K.; Dömling, A.; Vasile, F.; Potenza, D.; Ambrosio, F.A.; Costa, G.; Alcaro, S.; Zucal, C.; Provenzani, A.; Di Giacomo, M.; Rossi, D.; Hirsch, A.K.H.; Collina, S. Novel compounds targeting the RNA-binding protein HuR. Structure-based design, synthesis, and interaction studies. ACS Med. Chem. Lett., 2019, 10(4), 615-620. doi: 10.1021/acsmedchemlett.8b00600 PMID: 30996806
- Nadendla, R.R. Molecular modeling: A powerful tool for drug design and molecular docking. Resonance, 2004, 9(5), 51-60. doi: 10.1007/BF02834015
- QSAR, ADMET and Predictive Toxicology - BIOVIA - Dassault Systèmes® Available from: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/qsar-admet-and-predictive-toxicology/
- Assoni, G.; La Pietra, V.; Digilio, R.; Ciani, C.; Licata, N.V.; Micaelli, M.; Facen, E.; Tomaszewska, W.; Cerofolini, L.; Pérez-Ràfols, A.; Varela Rey, M.; Fragai, M.; Woodhoo, A.; Marinelli, L.; Arosio, D.; Bonomo, I.; Provenzani, A.; Seneci, P. HuR-targeted agents: An insight into medicinal chemistry, biophysical, computational studies and pharmacological effects on cancer models. Adv. Drug Deliv. Rev., 2022, 181, 114088. doi: 10.1016/j.addr.2021.114088 PMID: 34942276
- Lal, P.; Cerofolini, L.; D’Agostino, V.G.; Zucal, C.; Fuccio, C.; Bonomo, I.; Dassi, E.; Giuntini, S.; Di Maio, D.; Vishwakarma, V.; Preet, R.; Williams, S.N.; Fairlamb, M.S.; Munk, R.; Lehrmann, E.; Abdelmohsen, K.; Elezgarai, S.R.; Luchinat, C.; Novellino, E.; Quattrone, A.; Biasini, E.; Manzoni, L.; Gorospe, M.; Dixon, D.A.; Seneci, P.; Marinelli, L.; Fragai, M.; Provenzani, A. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res., 2017, 45(16), 9514-9527. doi: 10.1093/nar/gkx623 PMID: 28934484
- Lachiondo-Ortega, S.; Delgado, T.C.; Baños-Jaime, B.; Velázquez-Cruz, A.; Díaz-Moreno, I.; Martínez-Chantar, M.L. Hu Antigen R (HuR) protein structure, function and regulation in hepatobiliary tumors. Cancers (Basel), 2022, 14(11), 2666-2666. doi: 10.3390/cancers14112666 PMID: 35681645
- Della Volpe, S.; Linciano, P.; Listro, R.; Tumminelli, E.; Amadio, M.; Bonomo, I.; Elgaher, W.A.M.; Adam, S.; Hirsch, A.K.H.; Boeckler, F.M.; Vasile, F.; Rossi, D.; Collina, S. Identification of N,N-arylalkyl-picolinamide derivatives targeting the RNA-binding protein HuR, by combining biophysical fragment-screening and molecular hybridization. Bioorg. Chem., 2021, 116, 105305-105305. doi: 10.1016/j.bioorg.2021.105305 PMID: 34482166
- Shukla, R.; Shukla, H.; Sonkar, A.; Pandey, T.; Tripathi, T. Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J. Biomol. Struct. Dyn., 2018, 36(8), 2045-2057. doi: 10.1080/07391102.2017.1341337 PMID: 28605994
- Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm. J. Comput. Chem., 2003, 24(13), 1549-1562. doi: 10.1002/jcc.10306 PMID: 12925999
- Hussein, M.F. New sulfonamide hybrids: Synthesis, in vitro antimicrobial activity and docking study of some novel sulfonamide derivatives bearing carbamate/acyl-thiourea scaffolds. Mediterr. J. Chem., 2018, 7(5), 370-385. doi: 10.13171/mjc751912111445mh
- Van Rompay, A.R.; Norda, A.; Lindén, K.; Johansson, M.; Karlsson, A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. Mol. Pharmacol., 2001, 59(5), 1181-1186. doi: 10.1124/mol.59.5.1181 PMID: 11306702
- Brennan, C.; Steitz, J.A. HuR and MRNA stability. Cell. Mol. Life Sci., 2001, 58(2), 266-277. doi: 10.1007/PL00000854 PMID: 11289308
- Trisciuzzi, D.; Nicolotti, O.; Miteva, M.A.; Villoutreix, B.O. Analysis of solvent-exposed and buried co-crystallized ligands: A case study to support the design of novel protein–protein interaction inhibitors. Drug Discov. Today, 2019, 24(2), 551-559. doi: 10.1016/j.drudis.2018.11.013 PMID: 30472428
- Castro-Alvarez, A.; Costa, A.; Vilarrasa, J. The performance of several docking programs at reproducing protein–macrolide-like crystal structures. Molecules, 2017, 22(1), 136. doi: 10.3390/molecules22010136 PMID: 28106755
- Ghersi, D.; Sanchez, R. Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Proteins, 2009, 74(2), 417-424. doi: 10.1002/prot.22154 PMID: 18636505
- Jha, P.; Rajoria, P.; Poonia, P.; Chopra, M. Identification of novel PAD2 inhibitors using pharmacophore-based virtual screening, molecular docking, and MD simulation studies. Sci. Rep., 2024, 14(1), 28097. doi: 10.1038/s41598-024-78330-5
- Clark, A.M.; Labute, P. 2D depiction of protein-ligand complexes. J. Chem. Inf. Model., 2007, 47(5), 1933-1944. doi: 10.1021/ci7001473 PMID: 17715911
- Marques da Fonseca, A.; Caluaco, B.J.; Madureira, J.M.C.; Cabongo, S.Q.; Gaieta, E.M.; Djata, F.; Colares, R.P.; Neto, M.M.; Fernandes, C.F.C.; Marinho, G.S.; Santos, H.S.D.; Marinho, E.S. Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-Bond, SASA and MMGBSA. Mol. Biotechnol., 2024, 66(8), 1919-1933. doi: 10.1007/s12033-023-00831-x PMID: 37490200
- Anthony, L.A.; Rajaraman, D.; Sundararajan, G.; Suresh, M.; Nethaji, P.; Jaganathan, R.; Poomani, K. Synthesis, crystal structure, Hirshfeld surface analysis, DFT, molecular docking and molecular dynamic simulation studies of (E)-2,6-bis(4-chlorophenyl)-3-methyl-4-(2-(2,4,6-trichlorophenyl)hydrazono)piperidine derivatives. J. Mol. Struct., 2022, 1266, 133483. doi: 10.1016/j.molstruc.2022.133483 PMID: 35692554
- Shivanika, C.; Deepak, K.S.; Ragunathan, V.; Tiwari, P.; Sumitha, A.; Brindha, D.P. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn., 2022, 40(2), 585-611. doi: 10.1080/07391102.2020.1815584 PMID: 32897178
- Abbott, N.J. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis., 2013, 36(3), 437-449. doi: 10.1007/s10545-013-9608-0 PMID: 23609350
- Chlebek, J.; Korábečný, J.; Doležal, R.; Štěpánková, Š.; Pérez, D.I.; Hošťálková, A.; Opletal, L.; Cahlíková, L.; Macáková, K.; Kučera, T.; Hrabinová, M.; Jun, D. In vitro and in silico acetylcholinesterase inhibitory activity of thalictricavine and canadine and their predicted penetration across the blood-brain barrier. Molecules, 2019, 24(7), 1340. doi: 10.3390/molecules24071340 PMID: 30959739
- Wang, B.; Yang, L.P.; Zhang, X.Z.; Huang, S.Q.; Bartlam, M.; Zhou, S.F. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab. Rev., 2009, 41(4), 573-643. doi: 10.1080/03602530903118729 PMID: 19645588
- Gómez-Lechón, M.J.; Lahoz, A.; Gombau, L.; Castell, J.V.; Donato, M.T. In vitro evaluation of potential hepatotoxicity induced by drugs. Curr. Pharm. Des., 2010, 16(17), 1963-1977. doi: 10.2174/138161210791208910 PMID: 20236064
- Chandrasekaran, B.; Abed, S.N.; Al-Attraqchi, O.; Kuche, K.; Tekade, R.K. Computer-Aided Prediction of Pharmacokinetic (ADMET) properties. Dosage Form Design Parameters, 2018, 2, 731-755. doi: 10.1016/B978-0-12-814421-3.00021-X
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
- Svensson, F.; Norinder, U.; Bender, A. Modelling compound cytotoxicity using conformal prediction and PubChem HTS data. Toxicol. Res. (Camb.), 2017, 6(1), 73-80. doi: 10.1039/C6TX00252H PMID: 30090478
Supplementary files
