Screening of Bioactive Fractions from Balanites aegyptiaca and Pterocarpus marsupium for Anticancer Effects in HepG2 and U87MG Cells


如何引用文章

全文:

详细

Introduction:Cancer is a group of diseases caused by uncontrollable cell growth. Herbal medicines, derived from plants, have been used for centuries across cultures for their therapeutic benefits, effectively treating conditions like cancer. This study represents the anticancer effects of fractions of some medicinal plant extracts along with their apoptotic studies and their induction through p53-mediated Bax and Bcl-2 mRNA expression in HepG2 and U87MG cells.

Methods:The fractionation of crude methanolic extracts was done using Column Chromatography and Thin Layer Chromatography. The fractions were analysed for cytotoxicity against both the cell lines by MTT assay. Cancer cells were treated with 2 most active fractions and their mechanism of apoptosis induction was assessed by Flow Cytometry studies and the mRNA expression levels of p53, Bax, and Bcl-2 were determined by Reverse Transcriptase PCR. The presence of phytoconstituents in the active fractions was analysed by GC-MS.

Results:The active fractions revealed the apoptosis induction in both the cell lines and the RT-PCR studies suggested the mechanism of apoptosis induction through upregulation of p53 and Bax and downregulation of Bcl-2 mRNA. The GC-MS analysis of active fractions from Balanites aegyptiaca and Pterocarpus marsupium revealed the presence of phytochemicals such as 4-O-Methylmannose, Oleic acid, Erucic acid, etc. which might have contributed to the anti-proliferative and apoptotic effects of these fractions.

Discussion:4-O-Methylmannose was the major component identified with the highest peak area of 59%. The fractions from all the 4 plant extracts demonstrated significant cytotoxic effects on the liver (HepG2) and brain (U87MG) cancer cell lines, with particular emphasis on the active fractions BA FII, PM FII, and PM FIII. Additionally, the mechanisms of apoptosis induction through the modulation of p53, Bax, and Bcl-2 pathways, along with the presence of bioactive compounds further support the anticancer efficacy of these plant extracts. Also, to the best of our knowledge, this is the first study on fractions of Balanites aegyptiaca and Pterocarpus marsupium against U87MG cells.

Conclusion:The results highlight the promising potential of plant-derived natural products as anticancer agents. These findings provide valuable insight into the potential of herbal medicines and encourage further exploration of plant-based therapies for cancer treatment.

作者简介

Divya Vashishth

Department of Zoology, Maharshi Dayanand University

Email: info@benthamscience.net

Mansi Yadav

Department of Zoology, Maharshi Dayanand University

Email: info@benthamscience.net

Ajay Kumar

Department of Zoology, Maharaja Neempal Singh Government College

Email: info@benthamscience.net

Gulshan Rohilla

Department of Genetics, Maharshi Dayanand University

Email: info@benthamscience.net

Minakshi Vashist

Department of Genetics, Maharshi Dayanand University

Email: info@benthamscience.net

Sudhir Kataria

Department of Zoology, Maharshi Dayanand University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Sengar, M.; Sachan, A. Traditional medicinal system: Significance and future. In: Medicinal Biotechnology; Academic Press, 2025, pp. 39-59. doi: 10.1016/B978-0-443-22264-1.00003-7
  2. Verma, S.; Singh, S. Current and future status of herbal medicines. Vet. World, 2008, 2(2), 347. doi: 10.5455/vetworld.2008.347-350
  3. Khan, M.S.A.; Ahmad, I. Herbal medicine: Current trends and future prospects. In: New Look to Phytomedicine; Academic Press, 2019, pp. 3-13.
  4. Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the definition of cancer. Mol. Cancer Res., 2023, 21(11), 1142-1147. doi: 10.1158/1541-7786.MCR-23-0411 PMID: 37409952
  5. Global cancer statistics. 2025. Available from: https://gco.iarc.fr/en
  6. Singh, S.P.; Madke, T.; Chand, P. Global epidemiology of hepatocellular carcinoma. J. Clin. Exp. Hepatol., 2025, 15(2), 102446. doi: 10.1016/j.jceh.2024.102446 PMID: 39659901
  7. Filho, A.M.; Znaor, A.; Sunguc, C.; Zahwe, M.; Marcos-Gragera, R.; Figueroa, J.D.; Bray, F. Cancers of the brain and central nervous system: global patterns and trends in incidence. J. Neurooncol., 2025, 172(3), 567-578. doi: 10.1007/s11060-025-04944-y PMID: 39883354
  8. Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med., 2013, 2013(1), 1-15. doi: 10.1155/2013/302426 PMID: 23956768
  9. Ahad, B.; Shahri, W.; Rasool, H.; Reshi, Z.A.; Rasool, S.; Hussain, T. Medicinal plants and herbal drugs: An overview.In: Medicinal and Aromatic Plants; Springer: Cham, 2021. doi: 10.1007/978-3-030-58975-2_1
  10. Costa, T.D.S.A.; Vieira, R.F.; Bizzo, H.R.; Silveira, D.; Gimenes, M.A. Secondary metabolites. In: Chromatography and Its Applications; InTech: Brazil, 2012.
  11. Jaiswal, J.; Siddiqi, N.J.; Fatima, S.; Abudawood, M.; AlDaihan, S.K.; Alharbi, M.G.; de Lourdes, P.M.; Sharma, P.; Sharma, B. Analysis of biochemical and antimicrobial properties of bioactive molecules of Argemone mexicana. Molecules, 2023, 28(11), 4428. doi: 10.3390/molecules28114428 PMID: 37298904
  12. Al-Thobaiti, S.A.; Abu Zeid, I.M. Medicinal properties of desert date plants (Balanites aegyptiaca)—An overview. Glob. J. Pharmacol., 2018, 12(1), 1-12.
  13. Abdelaziz, S.M.; Lemine, F.M.M.; Tfeil, H.O.; Filali-Maltouf, A.; Boukhary, A.O.M.S. Phytochemicals, antioxidant activity and ethnobotanical uses of Balanites aegyptiaca (L.) Del. fruits from the arid zone of Mauritania, Northwest Africa. Plants, 2020, 9(3), 401. doi: 10.3390/plants9030401 PMID: 32213817
  14. Chaudhary, K.K.; Kumar, G.; Varshney, A.; Meghvansi, M.K.; Ali, S.F.; Karthik, K.; Dhama, K.; Siddiqui, S.; Kaul, R.K. Ethnopharmacological and phytopharmaceutical evaluation of Prosopis cineraria: An overview and future prospects. Curr. Drug Metab., 2018, 19(3), 192-214. doi: 10.2174/1389200218666171031125439 PMID: 29086686
  15. Sharma, P.; Tomar, D.V. The pharmacognostic profile and therapeutic potential of the wonder tree, Prosopis cineraria: A review. J. Pharm. Negat. Results, 2022, 13(5), 2665-2670.
  16. Gairola, S.; Gupta, V.; Singh, B.; Maithani, M.; Bansal, P. Phytochemistry and pharmacological activities of Pterocarpus marsupium: A review. Int. Res. J. Pharm., 2010, 1(1), 100-104.
  17. Rahman, M.S.; Mujahid, M.D.; Siddiqui, M.A.; Rahman, M.A.; Arif, M.; Eram, S.; Azeemuddin, M.D. Ethnobotanical uses, phytochemistry and pharmacological activities of Pterocarpus marsupium: A review. Pharmacogn. J., 2018, 10(6s)
  18. Ashraf, A.; Sarfraz, R.A.; Mahmood, A.; Din, M. Chemical composition and in vitro antioxidant and antitumor activities of Eucalyptus camaldulensis Dehn. leaves. Ind. Crops Prod., 2015, 74, 241-248. doi: 10.1016/j.indcrop.2015.04.059
  19. Afsar, T.; Razak, S.; Khan, M.R.; Mawash, S.; Almajwal, A.; Shabir, M.; Haq, I.U. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC Complement. Altern. Med., 2016, 16(1), 258. doi: 10.1186/s12906-016-1240-8 PMID: 27473625
  20. Jung, B.S.; Lee, N.K.; Na, D.S.; Yu, H.H.; Paik, H.D. Comparative analysis of the antioxidant and anticancer activities of chestnut inner shell extracts prepared with various solvents. J. Sci. Food Agric., 2016, 96(6), 2097-2102. doi: 10.1002/jsfa.7324 PMID: 26119891
  21. Kamalia, A.Z.; Tunjung, W.A.S. Efficacy of different solvents in the extraction of bioactive compounds and anti-cancer activities of Thymus vulgaris leaves and twigs. Indones. J. Pharm., 2023, 34(3), 419-430.
  22. Yassin, A.M.; El-Deeb, N.M.; Metwaly, A.M.; El Fawal, G.F.; Radwan, M.M.; Hafez, E.E. Induction of apoptosis in human cancer cells through extrinsic and intrinsic pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated Silvernanoparticles. Appl. Biochem. Biotechnol., 2017, 182(4), 1675-1693. doi: 10.1007/s12010-017-2426-3 PMID: 28236195
  23. Zahran, M.F.; Ali, F.A.; Saad, A.; Mohamed, M.F.; Ahmed, E. Biochemical and phytochemical studies on Balanities aegyptiaca fruits. Biochem. Lett., 2015, 10(1), 13-26. doi: 10.21608/blj.2015.63388
  24. Gnoula, C.; Mégalizzi, V.; De Nève, N.; Sauvage, S.; Ribaucour, F.; Guissou, P.; Mijatovic, T. Balanitin-6 and -7: DiosgenylSaponins isolated from Balanites aegyptiaca Del. display significant anti-tumor activity in vitro and in vivo. Int. J. Oncol., 2008, 32(1), 5-15. doi: 10.3892/ijo.32.1.5 PMID: 18097538
  25. Alosi, J.A.; McDonald, D.E.; Schneider, J.S.; Privette, A.R.; McFadden, D.W. Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis. J. Surg. Res., 2010, 161(2), 195-201. doi: 10.1016/j.jss.2009.07.027 PMID: 20031172
  26. Chakraborty, A.; Gupta, N.; Ghosh, K.; Roy, P. In vitro evaluation of the cytotoxic, anti-proliferative and anti-oxidant properties of pterostilbene isolated from Pterocarpus marsupium. Toxicol. In Vitro, 2010, 24(4), 1215-1228. doi: 10.1016/j.tiv.2010.02.007 PMID: 20152895
  27. Chen, R.J.; Ho, C.T.; Wang, Y.J. Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Mol. Nutr. Food Res., 2010, 54(12), 1819-1832. doi: 10.1002/mnfr.201000067 PMID: 20603834
  28. Ibrahim, O.H.M.; Al-Qurashi, A.D.; Asiry, K.A.; Mousa, M.A.A.; Alhakamy, N.A.; Abo-Elyousr, K.A.M. Investigation of potential in vitro anticancer and antimicrobial activities of Balanites aegyptiaca (L.) delile fruit extract and its phytochemical components. Plants, 2022, 11(19), 2621. doi: 10.3390/plants11192621 PMID: 36235487
  29. Hemann, M.T.; Lowe, S.W. The p53–Bcl-2 connection. Cell Death Differ., 2006, 13(8), 1256-1259. doi: 10.1038/sj.cdd.4401962 PMID: 16710363
  30. Basu, A.; Haldar, S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol. Hum. Reprod., 1998, 4(12), 1099-1109. doi: 10.1093/molehr/4.12.1099 PMID: 9872359
  31. Schuler, M.; Green, D.R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans., 2001, 29(6), 684-688. doi: 10.1042/bst0290684 PMID: 11709054
  32. Gao, C.; Wang, A.Y. Significance of increased apoptosis and Bax expression in human small intestinal adenocarcinoma. J. Histochem. Cytochem., 2009, 57(12), 1139-1148. doi: 10.1369/jhc.2009.954446 PMID: 19729672
  33. Moyer, A.; Tanaka, K.; Cheng, E.H. Apoptosis in cancer biology and therapy. Annu. Rev. Pathol., 2025, 20(1), 303-328. doi: 10.1146/annurev-pathmechdis-051222-115023 PMID: 39854189
  34. Raisova, M.; Hossini, A.M.; Eberle, J.; Riebeling, C.; Orfanos, C.E.; Geilen, C.C.; Wieder, T.; Sturm, I.; Daniel, P.T. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol., 2001, 117(2), 333-340. doi: 10.1046/j.0022-202x.2001.01409.x PMID: 11511312
  35. Nurhayat, O.D.; Putra, I.P.; Sibero, M.T.; Karimah, S.N.; Anita, S.H.; Yanto, D.H.Y.; Kristanto, M.A. First identification of potential bioactive compounds from ethanol extracts of Lepistasordida from Indonesia. IOP Conf. Ser. Earth Environ. Sci., 2023, 1271, 012058.
  36. Sousa, B.C.M.; Gomes, D.A.; Viana, A.F.S.; Silva, B.A.; Barata, L.E.S.; Sartoratto, A.; Lustosa, D.C.; Vieira, T.A. Phytochemical analysis and antioxidant activity of ethanolic extracts from different parts of Dipteryx punctata (S. F. Blake). Amshoff. Appl. Sci. (Basel), 2023, 13(17), 9600. doi: 10.3390/app13179600
  37. Joel, O.O.; Maharjan, R. Effects of 5-Hydroxymethylfurfural isolated from Cola hispida on oral adenosquamous carcinoma and MDR Staphylococcus aureus. JMPHTR, 2021, 8, 1-7.
  38. Al-Baadani, W.A.; Al-Samman, A.M.M.A.; Anantacharya, R.; Satyanarayan, N.D.; Siddique, N.A.; Maqati, A.A. Kahkashan, Cytotoxicity effect and antioxidant potential of 5-Hydroxymethyl Furfural (5-HMF) analogues-An advance approach. J. Phytol., 2024, 16, 114-120. doi: 10.25081/jp.2024.v16.8817
  39. Altinoz, M.A.; Elmaci, İ.; Hacimuftuoglu, A.; Ozpinar, A.; Hacker, E.; Ozpinar, A. PPARδ and its ligand erucic acid may act anti-tumoral, neuroprotective, and myelin protective in neuroblastoma, glioblastoma, and Parkinson’s disease. Mol. Aspects Med., 2021, 78, 100871. doi: 10.1016/j.mam.2020.100871 PMID: 32703610
  40. Nazıroğlu, A.; Çarhan, A.; Nazıroğlu, M. Erucic acid increases the potency of cisplatin‐induced colorectal cancer cell death and oxidative stress by upregulating the TRPM2 channel. Cell Biol. Int., 2024, 48(12), 1862-1876. doi: 10.1002/cbin.12248 PMID: 39308167
  41. Giulitti, F.; Petrungaro, S.; Mandatori, S.; Tomaipitinca, L.; de Franchis, V.; D’Amore, A.; Filippini, A.; Gaudio, E.; Ziparo, E.; Giampietri, C. Anti-tumor effect of oleic acid in hepatocellular carcinoma cell lines via autophagy reduction. Front. Cell Dev. Biol., 2021, 9, 629182. doi: 10.3389/fcell.2021.629182 PMID: 33614661
  42. Deng, B.; Kong, W.; Suo, H.; Shen, X.; Newton, M.A.; Burkett, W.C.; Zhao, Z.; John, C.; Sun, W.; Zhang, X.; Fan, Y.; Hao, T.; Zhou, C.; Bae-Jump, V.L. Oleic acid exhibits anti-proliferative and anti-invasive activities via the PTEN/AKT/mTOR pathway in endometrial cancer. Cancers , 2023, 15(22), 5407. doi: 10.3390/cancers15225407 PMID: 38001668
  43. Kim, J.S.; Kim, D.K.; Moon, J.Y.; Lee, M.Y.; Cho, S.K. Oleic acid inhibits the migration and invasion of breast cancer cells with stemness characteristics through oxidative stress-mediated attenuation of the FAK/AKT/NF-κB pathway. J. Funct. Foods, 2024, 116, 106224. doi: 10.1016/j.jff.2024.106224

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2025