The Role of Cisplatin Prodrugs Bonded to Polymer Carriers for Nanodrug-targeted Treatment of In situ Hepatocellular Carcinoma
- Authors: Li Z.1, Luo L.2, Wang Z.3, Hou J.3
-
Affiliations:
- Hepatobiliary Surgery Department, The People’s Hospital of Baoan Shenzhen
- Gastroenterology Department, The People’s Hospital of Baoan Shenzhen
- Gastrointestinal Surgery Department, The People’s Hospital of Baoan Shenzhen
- Issue: Vol 25, No 19 (2025)
- Pages: 1564-1570
- Section: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694473
- DOI: https://doi.org/10.2174/0118715206347681250312142125
- ID: 694473
Cite item
Full Text
Abstract
Background:The toxic effects of cisplatin limit its therapeutic efficacy on hepatocellular carcinoma (HCC). Cisplatin(IV) (Pt(IV)) with better stability needs an effective drug delivery strategy. Here, we explored the toxic and inhibitory effects and cell Pt contents of monomethoxyl poly(ethylene glycol)-block-poly(ecaprolactone)- block-poly(L-lysine) (MPEG-b-PCL-b-PLL)/Pt(IV) micelles (M(P3)) on HCC, and evaluated the therapeutic effect of (M (Pt (IV)) on HCC in vitro and in vivo.
Methods:We successfully constructed HCC model in BALB/c mice and prepared M(P3). The H22 and HepG2 cells were incubated with cisplatin, M(P3), and cisPt(IV)-(COOH)2 at 2, 10, 20, 50, 100 and 250 μM equivalent platinum (Pt) concentrations for 48 h and at 5 μM for 2/6 h. The HCC mice received cisplatin, M(P3), and cisPt(IV)-(COOH)2 (5 mg equivalent Pt/kg, once a week) for five weeks. The cell activity was assessed by MTT assay. The Pt contents were assayed by an inductively coupled plasma mass spectrometer (ICP-MS). The liver tumor weight was measured. The levels of liver tumor hepatorenal function indicators and malignant indicators were estimated by biochemical analysis and Western blot.
Results:The activity of H22 and HepG2 cells: cisPt(IV)-(COOH)2-treated > M(P3)-treated > cisplatin-treated. The Pt contents of H22 and HepG2 cells: M(P3)-treated > cisplatin-treated > cisPt(IV)-(COOH)2-treated cells. The hepatorenal function of HCC mice: M(P3)-treated > cisPt(IV)-(COOH)2-treated > cisplatin-treated. According to the weight and levels of malignant indicators of liver tumor, the therapeutic effect on HCC mice: cisplatintreated > M(P3)-treated > cisPt(IV)-(COOH)2-treated.
Conclusions:Although the inhibitory effect of M(P3) on HCC is not as good as cisplatin, M(P3) has significantly lower hepatorenal toxicity and remarkably higher cell Pt contents.
About the authors
Zhijian Li
Hepatobiliary Surgery Department, The People’s Hospital of Baoan Shenzhen
Email: info@benthamscience.net
Lan Luo
Gastroenterology Department, The People’s Hospital of Baoan Shenzhen
Email: info@benthamscience.net
Zhan Wang
Gastrointestinal Surgery Department, The People’s Hospital of Baoan Shenzhen
Email: info@benthamscience.net
Jie Hou
Gastrointestinal Surgery Department, The People’s Hospital of Baoan Shenzhen
Author for correspondence.
Email: info@benthamscience.net
References
- Li, X.; Wu, Q.; Ma, F.; Zhang, X.; Cai, L.; Yang, X. Mitochondrial fission factor promotes cisplatin resistance in hepatocellular carcinoma. Acta Biochim. Biophys. Sin., 2022, 54(3), 301-310. doi: 10.3724/abbs.2022007 PMID: 35538029
- Nevola, R.; Ruocco, R.; Criscuolo, L.; Villani, A.; Alfano, M.; Beccia, D.; Imbriani, S.; Claar, E.; Cozzolino, D.; Sasso, F.C.; Marrone, A.; Adinolfi, L.E.; Rinaldi, L. Predictors of early and late hepatocellular carcinoma recurrence. World J. Gastroenterol., 2023, 29(8), 1243-1260. doi: 10.3748/wjg.v29.i8.1243 PMID: 36925456
- Moawad, A.W.; Morshid, A.; Khalaf, A.M.; Elmohr, M.M.; Hazle, J.D.; Fuentes, D.; Badawy, M.; Kaseb, A.O.; Hassan, M.; Mahvash, A.; Szklaruk, J.; Qayyum, A.; Abusaif, A.; Bennett, W.C.; Nolan, T.S.; Camp, B.; Elsayes, K.M. Multimodality annotated hepatocellular carcinoma data set including pre- and post-TACE with imaging segmentation. Sci. Data, 2023, 10(1), 33. doi: 10.1038/s41597-023-01928-3 PMID: 36653372
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res., 2021, 149, 1-61. doi: 10.1016/bs.acr.2020.10.001 PMID: 33579421
- Hou, Z.; Liu, J.; Jin, Z.; Qiu, G.; Xie, Q.; Mi, S.; Huang, J. Use of chemotherapy to treat hepatocellular carcinoma. Biosci. Trends, 2022, 16(1), 31-45. doi: 10.5582/bst.2022.01044 PMID: 35173139
- El-Demiry, S.M.; El-Yamany, M.; El-Gendy, S.M.; Salem, H.A.; Saber, M.M. Necroptosis modulation by cisplatin and sunitinib in hepatocellular carcinoma cell line. Life Sci., 2022, 301, 120594. doi: 10.1016/j.lfs.2022.120594 PMID: 35500680
- Xu, X.; Yang, X.; Song, Y.; Chen, B.; Yu, X.; Xu, T.; Chen, Z. Dysregulation of non-coding RNAs mediates cisplatin resistance in hepatocellular carcinoma and therapeutic strategies. Pharmacol. Res., 2022, 176, 105906. doi: 10.1016/j.phrs.2021.105906 PMID: 34543740
- Szefler, B.; Czeleń, P. Will the interactions of some platinum (II)-based drugs with B-vitamins reduce their therapeutic effect in cancer patients? Comparison of chemotherapeutic agents such as cisplatin, carboplatin and oxaliplatin-a review. Int. J. Mol. Sci., 2023, 24(2), 1548. doi: 10.3390/ijms24021548
- Su, S.; Chen, Y.; Zhang, P.; Ma, R.; Zhang, W.; Liu, J.; Li, T.; Niu, H.; Cao, Y.; Hu, B.; Gao, J.; Sun, H.; Fang, D.; Wang, J.; Wang, P.G.; Xie, S.; Wang, C.; Ma, J. The role of Platinum(IV)-based antitumor drugs and the anticancer immune response in medicinal inorganic chemistry. A systematic review from 2017 to 2022. Eur. J. Med. Chem., 2022, 243, 114680. doi: 10.1016/j.ejmech.2022.114680 PMID: 36152386
- Hamaya, S.; Oura, K.; Morishita, A.; Masaki, T. Cisplatin in liver cancer therapy. Int. J. Mol. Sci., 2023, 24(13), 10858. doi: 10.3390/ijms241310858 PMID: 37446035
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925. doi: 10.1016/j.bioorg.2019.102925 PMID: 31003078
- Aputen, A.D.; Elias, M.G.; Gilbert, J.; Sakoff, J.A.; Gordon, C.P.; Scott, K.F.; Aldrich-Wright, J.R. Potent Chlorambucil-Platinum(IV) prodrugs. Int. J. Mol. Sci., 2022, 23(18), 10471. doi: 10.3390/ijms231810471 PMID: 36142383
- Basu, U.; Banik, B.; Wen, R.; Pathak, R.K.; Dhar, S. The Platin-X series: Activation, targeting, and delivery. Dalton Transactions., 2016, 45(33), 12992-13004. doi: 10.1039/C6DT01738J
- Wexselblatt, E.; Gibson, D. What do we know about the reduction of Pt(IV) pro-drugs? J. Inorg. Biochem., 2012, 117, 220-229. doi: 10.1016/j.jinorgbio.2012.06.013 PMID: 22877926
- Hall, M.D.; Hambley, T.W. Platinum(IV) antitumour compounds: Their bioinorganic chemistry. Coord. Chem. Rev., 2002, 232(1), 49-67. doi: 10.1016/S0010-8545(02)00026-7
- Wong, D.Y.Q.; Ang, W.H. Development of platinum(IV) complexes as anticancer prodrugs: The story so far. COSMOS, 2012, 08(01), 121-134. doi: 10.1142/S0219607712300020
- Wang, R.; He, D.; Wang, H.; Wang, J.; Yu, Y.; Chen, Q.; Sun, C.; Shen, Y.; Tu, J.; Xiong, Y. Redox-sensitive polyglutamic acid-platinum(IV) prodrug grafted nanoconjugates for efficient delivery of cisplatin into breast tumor. Nanomedicine , 2020, 29, 102252. doi: 10.1016/j.nano.2020.102252 PMID: 32615336
- Xiao, H.; Qi, R.; Liu, S.; Hu, X.; Duan, T.; Zheng, Y.; Huang, Y.; Jing, X. Biodegradable polymer − cisplatin(IV) conjugate as a pro-drug of cisplatin(II). Biomaterials, 2011, 32(30), 7732-7739. doi: 10.1016/j.biomaterials.2011.06.072 PMID: 21783244
- Gao, J.; Chen, L.; Qi, R.; Zhou, Z.; Deng, Z.; Shi, J.; Qin, T.; Zhao, S.; Qian, Y.; Shen, J. Simultaneous delivery of gene and chemotherapeutics via copolymeric micellar nanoparticles to overcome multiple drug resistance to promote synergistic tumor suppression. J. Biomater. Appl., 2019, 34(1), 130-140. doi: 10.1177/0885328219839254 PMID: 30971178
- Patravale, V.B.; Upadhaya, P.G.; Jain, R.D. Preparation and characterization of micelles. Methods Mol. Biol., 2019, 2000, 19-29. doi: 10.1007/978-1-4939-9516-5_2
- Qi, R.; Liu, S.; Chen, J. Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery. J. Control. Release, 2012, 159(2), 251-260. doi: 10.1016/j.jconrel.2012.01.015
- Hall, M.D.; Dillon, C.T.; Zhang, M. The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J. Biol. Inorg. Chem., 2003, 8(7), 726-732. doi: 10.1007/s00775-003-0471-6
- Song, H.; Wang, R.; Xiao, H. A cross-linked polymeric micellar delivery system for cisplatin(IV) complex. Eur. J. Pharm. Biopharm., 2013, 83(1), 63-75. doi: 10.1016/j.ejpb.2012.09.004
- Xu, H.; Wei, Y.; Zhang, Y.; Xu, Y.; Li, F.; Liu, J.; Zhang, W.; Han, X.; Tan, R.; Shen, P. Oestrogen attenuates tumour progression in hepatocellular carcinoma. J. Pathol., 2012, 228(2), 216-229. doi: 10.1002/path.4009 PMID: 22374713
- Yu, H.; Shi, G. Cisplatin chemotherapy-induced miRNA-210 signaling inhibits hepatocellular carcinoma cell growth. Transl. Cancer Res., 2019, 8(2), 626-634. doi: 10.21037/tcr.2019.03.26 PMID: 35116795
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6. doi: 10.1038/s41572-020-00240-3 PMID: 33479224
- Sun, Y.; Zhang, W.; Bi, X.; Yang, Z.; Tang, Y.; Jiang, L.; Bi, F.; Chen, M.; Cheng, S.; Chi, Y.; Han, Y.; Huang, J.; Huang, Z.; Ji, Y.; Jia, L.; Jiang, Z.; Jin, J.; Jin, Z.; Li, X.; Li, Z.; Liang, J.; Liu, L.; Liu, Y.; Lu, Y.; Lu, S.; Meng, Q.; Niu, Z.; Pan, H.; Qin, S.; Qu, W.; Shao, G.; Shen, F.; Song, T.; Song, Y.; Tao, K.; Tian, A.; Wang, J.; Wang, W.; Wang, Z.; Wu, L.; Xia, F.; Xing, B.; Xu, J.; Xue, H.; Yan, D.; Yang, L.; Ying, J.; Yun, J.; Zeng, Z.; Zhang, X.; Zhang, Y.; Zhang, Y.; Zhao, J.; Zhou, J.; Zhu, X.; Zou, Y.; Dong, J.; Fan, J.; Lau, W.Y.; Sun, Y.; Yu, J.; Zhao, H.; Zhou, A.; Cai, J. Systemic therapy for hepatocellular carcinoma: Chinese consensus-based interdisciplinary expert statements. Liver Cancer, 2022, 11(3), 192-208. doi: 10.1159/000521596 PMID: 35949289
- Huang, Y.; Kou, Q.; Su, Y.; Lu, L.; Li, X.; Jiang, H.; Gui, R.; Huang, R.; Nie, X.; Li, J. Combination therapy based on dual-target biomimetic nano-delivery system for overcoming cisplatin resistance in hepatocellular carcinoma. J. Nanobiotechnol., 2023, 21(1), 89. doi: 10.1186/s12951-023-01840-3 PMID: 36918874
- Date, T.; Kuche, K.; Chaudhari, D.; Ghadi, R.; Sahel, D.K.; Chitkara, D.; Jain, S. Hitting multiple cellular targets in triple-negative breast cancer using dual-action Cisplatin(IV) prodrugs for safer synergistic chemotherapy. ACS Biomater. Sci. Eng., 2022, 8(6), 2349-2362. doi: 10.1021/acsbiomaterials.1c01582 PMID: 35522530
- Wei, D.; Yu, Y.; Zhang, X.; Wang, Y.; Chen, H.; Zhao, Y.; Wang, F.; Rong, G.; Wang, W.; Kang, X.; Cai, J.; Wang, Z.; Yin, J.Y.; Hanif, M.; Sun, Y.; Zha, G.; Li, L.; Nie, G.; Xiao, H. Breaking the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano, 2020, 14(12), 16984-16996. doi: 10.1021/acsnano.0c06190 PMID: 33283501
- Huang, X.; Li, G.; Li, H.; Zhong, W.; Jiang, G.; Cai, J.; Xiong, Q.; Wu, C.; Su, K.; Huang, R.; Xu, S.; Liu, Z.; Wang, M.; Wang, H. Glycyrrhetinic acid as a hepatocyte targeting ligand-functionalized platinum(IV) complexes for hepatocellular carcinoma therapy and overcoming multidrug resistance. J. Med. Chem., 2024, 67(10), 8020-8042. doi: 10.1021/acs.jmedchem.4c00144 PMID: 38727048
- Xiao, H.; Qi, R.; Li, T.; Awuah, S.G.; Zheng, Y.; Wei, W.; Kang, X.; Song, H.; Wang, Y.; Yu, Y.; Bird, M.A.; Jing, X.; Yaffe, M.B.; Birrer, M.J.; Ghoroghchian, P.P. Maximizing synergistic activity when combining RNAi and platinum-based anticancer agents. J. Am. Chem. Soc., 2017, 139(8), 3033-3044. doi: 10.1021/jacs.6b12108 PMID: 28166401
- Yang, L.; Xu, J.; Xie, Z.; Song, F.; Wang, X.; Tang, R. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J. Pharm. Sci., 2021, 16(6), 762-771. doi: 10.1016/j.ajps.2021.08.001
- An, J.H.; Li, C.Y.; Chen, C.Y.; Wu, J.B.; Shen, H. Raloxifene protects cisplatin-induced renal injury in mice via inhibiting oxidative stress. OncoTargets Ther., 2021, 14, 4879-4890. doi: 10.2147/OTT.S314810 PMID: 34588782
- Park, H.R.; Jo, S.K.; Cho, H.H.; Jung, U. Synergistic anti-cancer activity of MH-30 in a murine melanoma model treated with cisplatin and its alleviated effects against cisplatin-induced toxicity in mice. In Vivo, 2020, 34(4), 1845-1856. doi: 10.21873/invivo.11979 PMID: 32606154
- Shen, C.; Li, J.; Zhang, Q.; Tao, Y.; Li, R.; Ma, Z.; Wang, Z. LncRNA GASAL1 promotes hepatocellular carcinoma progression by up-regulating USP10-stabilized PCNA. Exp. Cell Res., 2022, 415(1), 112973. doi: 10.1016/j.yexcr.2021.112973 PMID: 34914965
- Xi, J.; Sun, Y.; Zhang, M.; Fa, Z.; Wan, Y.; Min, Z.; Xu, H.; Xu, C.; Tang, J. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp. Cell Res., 2019, 381(1), 1-9. doi: 10.1016/j.yexcr.2019.04.005 PMID: 31054856
- Han, H.; Lin, T.; Wang, Z.; Song, J.; Fang, Z.; Zhang, J.; You, X.; Du, Y.; Ye, J.; Zhou, G. RNA-binding motif 4 promotes angiogenesis in HCC by selectively activating VEGF-A expression. Pharmacol. Res., 2023, 187, 106593. doi: 10.1016/j.phrs.2022.106593 PMID: 36496136
- Liu, G.; Yin, L.; Ouyang, X.; Zeng, K.; Xiao, Y.; Li, Y. M2 macrophages promote HCC cells invasion and migration via miR-149-5p/MMP9 signaling. J. Cancer, 2020, 11(5), 1277-1287. doi: 10.7150/jca.35444 PMID: 31956374
- Chen, P.C.; Chen, C.C.; Ker, Y.B.; Chang, C.H.; Chyau, C.C.; Hu, M.L. Anti-metastatic effects of antrodan with and without cisplatin on lewis lung carcinomas in a mouse xenograft model. Int. J. Mol. Sci., 2018, 19(6), 1565. doi: 10.3390/ijms19061565 PMID: 29794990
- Li, L.; Chen, Y.; Wang, Q.; Li, Z.; Liu, Z.; Hua, X.; Han, J.; Chang, C.; Wang, Z.; Li, D. Albumin-encapsulated nanoparticles of Naproxen Platinum(IV) complexes with inflammation inhibitory competence displaying effective antitumor activities in vitro and in vivo. Int. J. Nanomed., 2021, 16, 5513-5529. doi: 10.2147/IJN.S322688 PMID: 34429597
- Yang, X.; Yeung, W.H.O.; Tan, K.V.; Ng, T.P.K.; Pang, L.; Zhou, J.; Li, J.; Li, C.; Li, X.; Lo, C.M.; Kao, W.J.; Man, K. Development of cisplatin-loaded hydrogels for trans-portal vein chemoembolization in an orthotopic liver cancer mouse model. Drug Deliv., 2021, 28(1), 520-529. doi: 10.1080/10717544.2021.1895908 PMID: 33685316
- Deng, Q.P.; Wang, M.J.; Zeng, X.; Chen, G.G.; Huang, R.Y. Effects of glycyrrhizin in a mouse model of lung adenocarcinoma. Cell. Physiol. Biochem., 2017, 41(4), 1383-1392. doi: 10.1159/000467897
Supplementary files
