Acyl Urea Compounds Therapeutics and its Inhibition for Cancers in Women: A Review


如何引用文章

全文:

详细

Acyl urea compounds have garnered significant attention in cancer therapeutics, particularly for their potential effectiveness against cancers that predominantly affect women, such as breast and ovarian cancers. The paper presents a report on the investigation of acyl urea compounds that are reported to involve a multi-faceted approach, including synthetic chemistry, biological assays, and computational modeling. A wealth of information on acyl urea and its purported effects on cancer affecting women has been gathered from different sources and condensed to provide readers with a broad understanding of the role of acyl urea in combating cancer. Acylureas demonstrate promising results by selectively inhibiting key molecular targets associated with cancer progressions, such as EGFR, ALK, HER2, and the Wnt/β-catenin signaling pathway. Specifically, targeting acyl ureas impedes tumor proliferation and metastasis while minimizing harm to healthy tissues, offering a targeted therapeutic approach with reduced side effects compared to conventional chemotherapy. Continued research and clinical trials are imperative to optimize the efficacy and safety profiles of acylurea-based therapies and broaden their applicability across various cancer types. Acyl urea compounds represent a promising class of therapeutics for the treatment of cancers in women, particularly due to their ability to selectively inhibit key molecular targets involved in tumor growth and progression. The combination of synthetic optimization, biological evaluation, and computational modeling has facilitated the identification of several lead compounds with significant anticancer potential. This abstract explores the therapeutic mechanisms and targeted pathways of acyl ureas in combating these malignancies, which will be useful for future studies.

作者简介

Preeti Kumari

, Noida Institute of Engineering and Technology (Pharmacy Institute)

Email: info@benthamscience.net

Rakhi Mishra

, Noida Institute of Engineering and Technology (Pharmacy Institute)

编辑信件的主要联系方式.
Email: info@benthamscience.net

Rupa Mazumder

, Noida Institute of Engineering and Technology (Pharmacy Institute)

Email: info@benthamscience.net

Avijit Mazumder

, Noida Institute of Engineering and Technology (Pharmacy Institute)

Email: info@benthamscience.net

参考

  1. Kumari, P.; Mishra, R.; Mazumder, R.; Mazumder, A.; Singh, A.; Singh, G.; Tyagi, P.K. An insight into common and advanced synthesis methodologies of acyl urea analogs targeting the CNS. Lett. Org. Chem., 2024, 21(12), 1006-1022. doi: 10.2174/0115701786303718240409044341
  2. Chaudhary, R.; Shuaib, M.; Hashim, S.R.; Mishra, P.S. Synthesis, characterization and antitumor potential of cinnamoyl urea derivatives. Asian J. Chem., 2016, 28(2), 410-414. doi: 10.14233/ajchem.2016.19403
  3. Mishra, R.; Mazumder, A.; Mazumder, R.; Mishra, P.S.; Chaudhary, P. Docking study and result conclusion of heterocyclic derivatives having urea and acyl moiety. Asian J. Biomed. Pharm. Sci., 2019, 9(67), 13. doi: 10.35841/2249-622X.67.19-082
  4. Martinez, M.E.; Schmeler, K.M.; Lajous, M.; Newman, L.A. Cancer screening in low- and middle-income countries. Am. Soc. Clin. Oncol. Educ. Book, 2024, 44(3), e431272. doi: 10.1200/EDBK_431272 PMID: 38843475
  5. Saggu, S.; Rehman, H.; Abbas, Z.K.; Ansari, A.A. Recent incidence and descriptive epidemiological survey of breast cancer in Saudi Arabia. Saudi Med. J., 2015, 36(10), 1176-1180. doi: 10.15537/smj.2015.10.12268 PMID: 26446327
  6. Basudan, A. Breast cancer incidence patterns in the Saudi female population: A 17-year retrospective analysis. Medicina, 2022, 58(11), 1617. doi: 10.3390/medicina58111617 PMID: 36363574
  7. Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.S.; Kumar, A. Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer, 2023, 22(1), 105. doi: 10.1186/s12943-023-01805-y PMID: 37415164
  8. Gide, T.N.; Wilmott, J.S.; Scolyer, R.A.; Long, G.V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin. Cancer Res., 2018, 24(6), 1260-1270. doi: 10.1158/1078-0432.CCR-17-2267 PMID: 29127120
  9. Thanopoulou, E.; Khader, L.; Caira, M.; Wardley, A.; Ettl, J.; Miglietta, F.; Neven, P.; Guarneri, V. Therapeutic strategies for the management of hormone receptor-positive, human epidermal growth factor receptor 2-positive (HR+/HER2+) breast cancer: a review of the current literature. Cancers (Basel), 2020, 12(11), 3317. doi: 10.3390/cancers12113317 PMID: 33182657
  10. Fontana, F.; Anselmi, M.; Limonta, P. Molecular mechanisms of cancer drug resistance: emerging biomarkers and promising targets to overcome tumor progression. Cancers (Basel), 2022, 14(7), 1614. doi: 10.3390/cancers14071614 PMID: 35406386
  11. Pal, S.K.; Hurria, A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J. Clin. Oncol., 2010, 28(26), 4086-4093. doi: 10.1200/JCO.2009.27.0579 PMID: 20644100
  12. Oglat, A.A.; Hasan, H. khalil, T.A.; Yahia, A.M.H.; Fawaz, A.H. Study of North Jordanian women’s knowledge of breast cancer causes and medical imaging screening advantages. Inform. Med. Unlocked, 2024, 47, 101490. doi: 10.1016/j.imu.2024.101490
  13. Gubbels, J.A.A.; Claussen, N.; Kapur, A.K.; Connor, J.P.; Patankar, M.S. The detection, treatment, and biology of epithelial ovarian cancer. J. Ovarian Res., 2010, 3(1), 8. doi: 10.1186/1757-2215-3-8 PMID: 20350313
  14. Faridi, R.; Zahra, A.; Khan, K.; Idrees, M. Oncogenic potential of Human Papillomavirus (HPV) and its relation with cervical cancer. Virol. J., 2011, 8(1), 269. doi: 10.1186/1743-422X-8-269 PMID: 21635792
  15. Esmaeilzadeh, A.A.; Nasirzadeh, F. Uterus Cancer. Eurasian J. Chem. Med. Petroleum Res., 2023, 2(5), 63-83.
  16. McCaughan, E.; Prue, G.; Parahoo, K.; McIlfatrick, S.; McKenna, H. Exploring and comparing the experience and coping behaviour of men and women with colorectal cancer after chemotherapy treatment: a qualitative longitudinal study. Psychooncology, 2012, 21(1), 64-71. doi: 10.1002/pon.1871 PMID: 21132680
  17. Corrales, L.; Rosell, R.; Cardona, A.F.; Martín, C.; Zatarain-Barrón, Z.L.; Arrieta, O. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit. Rev. Oncol. Hematol., 2020, 148, 102895. doi: 10.1016/j.critrevonc.2020.102895 PMID: 32062313
  18. Kumar, P.; Mangla, B.; Javed, S.; Ahsan, W.; Musyuni, P.; Sivadasan, D.; Alqahtani, S.S.; Aggarwal, G. A review of nanomaterials from synthetic and natural molecules for prospective breast cancer nanotherapy. Front. Pharmacol., 2023, 14, 1149554. doi: 10.3389/fphar.2023.1149554 PMID: 37274111
  19. Li, W.; Sun, Q.; Song, L.; Gao, C.; Liu, F.; Chen, Y.; Jiang, Y. Discovery of 1-(3-aryl-4-chlorophenyl)-3-(p -aryl)urea derivatives against breast cancer by inhibiting PI3K/Akt/mTOR and Hedgehog signalings. Eur. J. Med. Chem., 2017, 141, 721-733. doi: 10.1016/j.ejmech.2017.09.002 PMID: 29107429
  20. Tossetta, G.; Marzioni, D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol. Res., 2022, 183, 106365. doi: 10.1016/j.phrs.2022.106365 PMID: 35901941
  21. Baird, L.; Kensler, T.W.; Yamamoto, M. Novel NRF2 ‐activated cancer treatments utilizing synthetic lethality. IUBMB Life, 2022, 74(12), 1209-1231. doi: 10.1002/iub.2680 PMID: 36200139
  22. Listro, R.; Rossino, G.; Piaggi, F.; Sonekan, F.F.; Rossi, D.; Linciano, P.; Collina, S. Urea-based anticancer agents. Exploring 100-years of research with an eye to the future. Front Chem., 2022, 10, 995351. doi: 10.3389/fchem.2022.995351 PMID: 36186578
  23. Alharbi, W. Advancement and recent trends in seeking less toxic and more active anti-cancer drugs: Insights into thiourea based molecules. Main Group Chem., 2022, 21(3), 885-901. doi: 10.3233/MGC-210183
  24. El-Atawy, M.A.; Alsubaie, M.S.; Alazmi, M.L.; Hamed, E.A.; Hanna, D.H.; Ahmed, H.A.; Omar, A.Z. Synthesis, characterization, and anticancer activity of new N, N′-Diarylthiourea derivative against breast cancer cells. Molecules, 2023, 28(17), 6420. doi: 10.3390/molecules28176420 PMID: 37687250
  25. Tabatabai, S.A.; Nazari, M.; Rezaee, E. A Comprehensive review of soluble epoxide hyådrolase inhibitors evaluating their structure-activity relationship. Mini Rev. Med. Chem., 2023, 23(1), 99-117. doi: 10.2174/1389557522666220531152812 PMID: 35642113
  26. Subbaiah, M.A.M.; Meanwell, N.A. Bio isosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem., 2021, 64(19), 14046-14128. doi: 10.1021/acs.jmedchem.1c01215 PMID: 34591488
  27. Acosta-Guzmán, P.; Ojeda-Porras, A.; Gamba-Sánchez, D. Contemporary approaches for amide bond formation. Adv. Synth. Catal., 2023, 365(24), 4359-4391. doi: 10.1002/adsc.202301018
  28. Qian, L.; Lin, X.; Gao, X.; Khan, R.U.; Liao, J.Y.; Du, S.; Ge, J.; Zeng, S.; Yao, S.Q. The dawn of a new era: targeting the “undruggables” with antibody-based therapeutics. Chem. Rev., 2023, 123(12), 7782-7853. doi: 10.1021/acs.chemrev.2c00915 PMID: 37186942
  29. Lee, P.Y.; Md Azhan, F.S.; Low, T.Y. Biomarkers for colorectal cancer chemotherapy: Recent updates and future perspective. Malays. J. Pathol., 2023, 45(3), 317-331. PMID: 38155375
  30. Ohhara, Y.; Fukuda, N.; Takeuchi, S.; Honma, R.; Shimizu, Y.; Kinoshita, I.; Dosaka-Akita, H. Role of targeted therapy in metastatic colorectal cancer. World J. Gastrointest. Oncol., 2016, 8(9), 642-655. doi: 10.4251/wjgo.v8.i9.642 PMID: 27672422
  31. Nikolaou, S.; Qiu, S.; Fiorentino, F.; Rasheed, S.; Tekkis, P.; Kontovounisios, C. The prognostic and therapeutic role of hormones in colorectal cancer: a review. Mol. Biol. Rep., 2019, 46(1), 1477-1486. doi: 10.1007/s11033-018-4528-6 PMID: 30535551
  32. Surdu, S. Non-melanoma skin cancer: occupational risk from UV light and arsenic exposure. Rev. Environ. Health, 2014, 29(3), 255-264. doi: 10.1515/reveh-2014-0040 PMID: 25222586
  33. Tobias, J.S.; Hochhauser, D. Cancer and its management; John Wiley & Sons, 2014. doi: 10.1002/9781118468753
  34. Baudino, T. Targeted cancer therapy: the next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20. doi: 10.2174/1570163812666150602144310 PMID: 26033233
  35. Ilić, I.; Cvetković, J.; Ilić, R.; Cvetković, L.; Milićević, A.; Todorović, S.; Ranđelović, P. Differences in histological subtypes of invasive lobular breast carcinoma according to immunohistochemical molecular classification. Diagnostics (Basel), 2024, 14(6), 660. doi: 10.3390/diagnostics14060660 PMID: 38535080
  36. Venetis, K. Breast cancer during pregnancy as a special type of early-onset breast cancer: analysis of the tumor immune microenvironment and risk profiles. Cells, 2022, 11(15), 2286. doi: 10.3390/cells11152286
  37. Alsner, J.; Yilmaz, M.; Guldberg, P.; Hansen, L.L.; Overgaard, J. Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients. Clin. Cancer Res., 2000, 6(10), 3923-3931. PMID: 11051239
  38. Anderson, W.F.; Jatoi, I.; Tse, J.; Rosenberg, P.S. Male breast cancer: a population-based comparison with female breast cancer. J. Clin. Oncol., 2010, 28(2), 232-239. doi: 10.1200/JCO.2009.23.8162 PMID: 19996029
  39. Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106. doi: 10.1016/j.gendis.2018.05.001 PMID: 30258937
  40. Parker, M.G. Structure and function of estrogen receptors. Vitam. Horm., 1995, 51, 267-287. doi: 10.1016/S0083-6729(08)61041-9 PMID: 7483324
  41. Platet, N.; Cathiard, A.M.; Gleizes, M.; Garcia, M. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Crit. Rev. Oncol. Hematol., 2004, 51(1), 55-67. doi: 10.1016/j.critrevonc.2004.02.001 PMID: 15207254
  42. Miricescu, D.; Totan, A.; Stanescu-Spinu, I.I.; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int. J. Mol. Sci., 2020, 22(1), 173. doi: 10.3390/ijms22010173 PMID: 33375317
  43. Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434. doi: 10.1007/s10555-010-9235-2 PMID: 20737283
  44. Moyer, C.L.; Brown, P.H. Targeting nuclear hormone receptors for the prevention of breast cancer. Front. Med. (Lausanne), 2023, 10, 1200947. doi: 10.3389/fmed.2023.1200947 PMID: 37583424
  45. Zhou, B.; Zhang, B.; Li, X.; Liu, X.; Li, H.; Li, D.; Cui, Z.; Geng, H.; Zhou, L. New 2-aryl-9-methyl-β-carbolinium salts as potential acetylcholinesterase inhibitor agents: synthesis, bioactivity and structure–activity relationship. Sci. Rep., 2018, 8(1), 1559. doi: 10.1038/s41598-018-19999-3 PMID: 29367595
  46. Swarbrick, M.E.; Beswick, P.J.; Gleave, R.J.; Green, R.H.; Bingham, S.; Bountra, C.; Carter, M.C.; Chambers, L.J.; Chessell, I.P.; Clayton, N.M.; Collins, S.D.; Corfield, J.A.; Hartley, C.D.; Kleanthous, S.; Lambeth, P.F.; Lucas, F.S.; Mathews, N.; Naylor, A.; Page, L.W.; Payne, J.J.; Pegg, N.A.; Price, H.S.; Skidmore, J.; Stevens, A.J.; Stocker, R.; Stratton, S.C.; Stuart, A.J.; Wiseman, J.O. Identification of 4-4-(methylsulfonyl)phenyl-6-(trifluoromethyl)-2-pyrimidinyl amines and ethers as potent and selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4504-4508. doi: 10.1016/j.bmcl.2009.02.085 PMID: 19520573
  47. Huynh, H.; Ngo, V.C.; Fargnoli, J.; Ayers, M.; Soo, K.C.; Koong, H.N.; Thng, C.H.; Ong, H.S.; Chung, A.; Chow, P.; Pollock, P.; Byron, S.; Tran, E. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res., 2008, 14(19), 6146-6153. doi: 10.1158/1078-0432.CCR-08-0509 PMID: 18829493
  48. Arora, S.; Agarwal, S.; Singhal, S. Anticancer activities of thiosemicarbazides/thiosemicarbazones: a review. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 34-41.
  49. Pietrobono, S.; Stecca, B. Targeting the oncoprotein smoothened by small molecules: focus on novel acylguanidine derivatives as potent smoothened inhibitors. Cells, 2018, 7(12), 272. doi: 10.3390/cells7120272 PMID: 30558232
  50. Moreira, E.; Paulino, E.; Ingles, G.Á.H.; Fontes, M.S.; Saramago, M.; de Moraes, F.; Thuler, L.C.S.; de Melo, A.C. Efficacy of doxorubicin after progression on carboplatin and paclitaxel in advanced or recurrent endometrial cancer: a retrospective analysis of patients treated at the Brazilian National Cancer Institute (INCA). Med. Oncol., 2018, 35(3), 20. doi: 10.1007/s12032-018-1086-7 PMID: 29387971
  51. Carlson, M.J.; Thiel, K.W.; Leslie, K.K. Past, present, and future of hormonal therapy in recurrent endometrial cancer. Int. J. Womens Health, 2014, 6, 429-435. PMID: 24833920
  52. Green, A.K.; Feinberg, J.; Makker, V. A review of immune checkpoint blockade therapy in endometrial cancer. Am. Soc. Clin. Oncol. Educ. Book, 2020, 40(40), 238-244. doi: 10.1200/EDBK_280503 PMID: 32213091
  53. De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661. doi: 10.1093/jnci/djr093 PMID: 21464397
  54. Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855. doi: 10.1016/j.bmc.2013.04.013 PMID: 23628470
  55. Zhang, C.; Sheng, M.; lv, J.; Cao, Y.; Chen, D.; Jia, L.; Sun, Y.; Ren, Y.; Li, L.; Weng, Y.; Yu, W. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia–reperfusion. Int. Immunopharmacol., 2023, 124(Pt B), 111043. doi: 10.1016/j.intimp.2023.111043 PMID: 37844464
  56. Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers, 2021, 7(1), 3. doi: 10.1038/s41572-020-00235-0 PMID: 33446664
  57. Erhunmwunsee, L.; Wing, S.E.; Zou, X.; Coogan, P.; Palmer, J.R.; Lennie Wong, F. Neighborhood disadvantage and lung cancer risk in a national cohort of never smoking Black women. Lung Cancer, 2022, 173, 21-27. doi: 10.1016/j.lungcan.2022.08.022 PMID: 36108579
  58. Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data. Braz. J. Med. Biol. Res., 2014, 47(11), 929-939. doi: 10.1590/1414-431X20144099 PMID: 25296354
  59. Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.R.; Anadón, A.; Wang, X.; Martínez, M.A. Cancer metabolism: the role of ROS in DNA damage and induction of apoptosis in cancer cells. Metabolites, 2023, 13(7), 796. doi: 10.3390/metabo13070796 PMID: 37512503
  60. Palmirotta, R.; Quaresmini, D.; Lovero, D.; Mannavola, F.; Dammacco, F.; Silvestris, F. Gene fusion in NSCLC: ALK, ROS1, RET, and related treatments. In: Oncogenomics; Academic Press, 2019; pp. 443-464. doi: 10.1016/B978-0-12-811785-9.00031-4
  61. Motofei, I.G. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin. Cancer Biol., 2022, 86(Pt 3), 600-615. doi: 10.1016/j.semcancer.2021.10.003 PMID: 34695580
  62. Zahra, U.; Saeed, A.; Abdul, T.; Flörke, U.; Erben, M.F. Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review. RSC Advances, 2022, 12(20), 12710-12745. doi: 10.1039/D2RA01781D PMID: 35496330
  63. Sookai, S.; Akerman, M.P.; Munro, O.Q. Chiral Au(III) chelates exhibit unique NCI-60 cytotoxicity profiles and interactions with human serum albumin. Dalton Trans., 2024, 53(11), 5089-5104. doi: 10.1039/D3DT04024K PMID: 38375922
  64. Wang, J.Q.; Wang, B.; Ma, L.Y.; Shi, Z.; Liu, H.M.; Liu, Z.; Chen, Z.S. Enhancement of anticancer drug sensitivity in multidrug resistance cells overexpressing ATP-binding cassette (ABC) transporter ABCC10 by CP55, a synthetic derivative of 5-cyano-6-phenylpyrimidin. Exp. Cell Res., 2021, 405(2), 112728. doi: 10.1016/j.yexcr.2021.112728 PMID: 34246653
  65. Samarghandian, S.; Boskabady, M.; Davoodi, S. Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line. Pharmacogn. Mag., 2010, 6(24), 309-314. doi: 10.4103/0973-1296.71799 PMID: 21120034
  66. Alven, S.; Nqoro, X.; Buyana, B.; Aderibigbe, B.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer. Pharmaceutics, 2020, 12(5), 406. doi: 10.3390/pharmaceutics12050406 PMID: 32365495
  67. Fong, K.M.; Zimmerman, P.V.; Smith, P.J. Lung pathology: the molecular genetics of non-small cell lung cancer. Pathology, 1995, 27(4), 295-301. doi: 10.1080/00313029500169173 PMID: 8771143
  68. Chu, Q.; Vincent, M.; Logan, D.; Mackay, J.A.; Evans, W.K. Taxanes as first-line therapy for advanced non-small cell lung cancer: A systematic review and practice guideline. Lung Cancer, 2005, 50(3), 355-374. doi: 10.1016/j.lungcan.2005.06.010 PMID: 16139391
  69. König, D.; Savic, S.; Rothschild, S.I. Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations. Cancers (Basel), 2021, 13(4), 804. doi: 10.3390/cancers13040804 PMID: 33671873
  70. Wen, H.; Lin, X.; Sun, D. The association between different hormone replacement therapy use and the incidence of lung cancer: a systematic review and meta-analysis. J. Thorac. Dis., 2022, 14(2), 381-395. doi: 10.21037/jtd-22-48 PMID: 35280481
  71. S Cheng, E. Weber, M.; Steinberg, J.; Qin Yu, X. Lung cancer risk in never-smokers: An overview of environmental and genetic factors. Chin. J. Cancer Res., 2021, 33(5), 548-562. doi: 10.21147/j.issn.1000-9604.2021.05.02 PMID: 34815629
  72. Mundel, R.; Dhadwal, S.; Bharti, S.; Chatterjee, M. A comprehensive overview of various cancer types and their progression. In: Handbook of Oncobiology: From Basic to Clinical Sciences; Springer, 2024.
  73. Lortet-Tieulent, J.; Renteria, E.; Sharp, L.; Weiderpass, E.; Comber, H.; Baas, P.; Bray, F.; Coebergh, J.W.; Soerjomataram, I. Convergence of decreasing male and increasing female incidence rates in major tobacco-related cancers in Europe in 1988–2010. Eur. J. Cancer, 2015, 51(9), 1144-1163. doi: 10.1016/j.ejca.2013.10.014 PMID: 24269041
  74. Streba, L.; Popovici, V.; Mihai, A.; Mititelu, M.; Lupu, C.E.; Matei, M.; Vladu, I.M.; Iovănescu, M.L.; Cioboată, R.; Călărașu, C.; Busnatu, Ș.S.; Streba, C.T. Integrative approach to risk factors in simple chronic obstructive airway diseases of the lung or associated with metabolic syndrome-analysis and prediction. Nutrients, 2024, 16(12), 1851. doi: 10.3390/nu16121851 PMID: 38931206
  75. Tomlinson, I.; Ilyas, M.; Johnson, V.; Davies, A.; Clark, G.; Talbot, I.; Bodmer, W. A comparison of the genetic pathways involved in the pathogenesis of three types of colorectal cancer. J. Pathol., 1998, 184(2), 148-152.
  76. Testa, U.; Pelosi, E.; Castelli, G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med. Sci. (Basel), 2018, 6(2), 31. doi: 10.3390/medsci6020031 PMID: 29652830
  77. Sladoljev, K.; Perin, E.; Ferrari, A.M.; Klarić, M.; Brnčić-Fischer, A.; Eminović, S.; Vrdoljak-Mozetič, D.; Babarovic, E. Relapsed ovarian high-grade serous carcinoma with long-term survival associated with synchronous primary squamous cell carcinoma of the colon. Proceed. obstet. gynecol., 2018, 8(2), 1398. doi: 10.17077/2154-4751.1398
  78. Miettinen, M.; Lasota, J. Gastrointestinal stromal tumors (GISTs): definition, occurrence, pathology, differential diagnosis and molecular genetics. Pol. J. Pathol., 2003, 54(1), 3-24. PMID: 12817876
  79. Koniaris, L.G.; Drugas, G.; Katzman, P.J.; Salloum, R. Management of gastrointestinal lymphoma. J. Am. Coll. Surg., 2003, 197(1), 127-141. doi: 10.1016/S1072-7515(03)00002-4 PMID: 12831934
  80. Bardhan, K.; Liu, K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel), 2013, 5(2), 676-713. doi: 10.3390/cancers5020676 PMID: 24216997
  81. Helwig, E.B. Adenomas and the pathogenesis of cancer of the colon and rectum. Dis. Colon Rectum, 1959, 2(1), 5-17. doi: 10.1007/BF02616613 PMID: 13639806
  82. Abinaya, R.; Srinath, S.; Soundarya, S.; Sridhar, R.; Balasubramanian, K.K.; Baskar, B. Recent developments on synthesis strategies, SAR studies and biological activities of β-Carboline derivatives–an update. J. Mol. Struct., 2022, 1261, 132750. doi: 10.1016/j.molstruc.2022.132750
  83. Gutiérrez, T.J. Editorial: Bioengineered nanoparticles in cancer therapy, Volume III. Front. Mol. Biosci., 2024, 11, 1356081. doi: 10.3389/fmolb.2024.1356081 PMID: 38455767
  84. Al-Mahadeen, M.M.; Jaber, A.M.; Al-Najjar, B.O. Design, synthesis and biological evaluation of novel 2-hydroxy-1 H-indene-1,3(2 H)-dione derivatives as FGFR1 inhibitors. Pharmacia, 2024, 71, 1-9. doi: 10.3897/pharmacia.71.e122127
  85. Huang, H.L.; Lee, H.Y.; Tsai, A.C.; Peng, C.Y.; Lai, M.J.; Wang, J.C.; Pan, S.L.; Teng, C.M.; Liou, J.P. Anticancer activity of MPT0E028, a novel potent histone deacetylase inhibitor, in human colorectal cancer HCT116 cells in vitro and in vivo. PLoS One, 2012, 7(8), e43645. doi: 10.1371/journal.pone.0043645
  86. Banerjee, S.; Adhikari, N.; Amin, S.A.; Jha, T. Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur. J. Med. Chem., 2019, 164, 214-240. doi: 10.1016/j.ejmech.2018.12.039 PMID: 30594678
  87. Wang, Y.; Tortorella, M. Molecular design of dual inhibitors of PI3K and potential molecular target of cancer for its treatment: A review. Eur. J. Med. Chem., 2022, 228, 114039. doi: 10.1016/j.ejmech.2021.114039 PMID: 34894440
  88. Biganzoli, L.; Cufer, T.; Bruning, P.; Coleman, R.; Duchateau, L.; Calvert, A.H.; Gamucci, T.; Twelves, C.; Fargeot, P.; Epelbaum, R.; Lohrisch, C.; Piccart, M.J. Doxorubicin and paclitaxel versus doxorubicin and cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The european organization for research and treatment of cancer 10961 multicenter phase III trial. J. Clin. Oncol., 2002, 20(14), 3114-3121. doi: 10.1200/JCO.2002.11.005 PMID: 12118025
  89. Lumachi, F.; Brunello, A.; Maruzzo, M.; Basso, U.; Basso, S. Treatment of estrogen receptor-positive breast cancer. Curr. Med. Chem., 2013, 20(5), 596-604. doi: 10.2174/092986713804999303 PMID: 23278394
  90. Zhang, T.; Xu, J.; Deng, S.; Zhou, F.; Li, J.; Zhang, L.; Li, L.; Wang, Q.E.; Li, F. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data. PLoS One, 2018, 13(5), e0196351. doi: 10.1371/journal.pone.0196351 PMID: 29723215
  91. Smolle, E.; Taucher, V.; Pichler, M.; Petru, E.; Lax, S.; Haybaeck, J. Targeting signaling pathways in epithelial ovarian cancer. Int. J. Mol. Sci., 2013, 14(5), 9536-9555. doi: 10.3390/ijms14059536 PMID: 23644885
  92. Lambert, J.M.; Chari, R.V. Ado-trastuzumab emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964. doi: 10.1021/jm500766w
  93. Parmar, M.K.; Ledermann, J.A.; Colombo, N.; Du Bois, A.; Delaloye, J.F.; Kristensen, G.B.; Wheeler, S.; Swart, A.M.; Qian, W.; Torri, V.; Floriani, I.; Jayson, G.; Lamont, A.; Tropé, C. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet, 2003, 361(9375), 2099-2106. doi: 10.1016/S0140-6736(03)13718-X PMID: 12826431
  94. Rodrigues, C.; Joy, L.R.; Sachithanandan, S.P.; Krishna, S. Notch signalling in cervical cancer. Exp. Cell Res., 2019, 385(2), 111682. doi: 10.1016/j.yexcr.2019.111682 PMID: 31634483
  95. Caruso, G.; Tomao, F.; Parma, G.; Lapresa, M.; Multinu, F.; Palaia, I.; Aletti, G.; Colombo, N. Poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer: lessons learned and future directions. Int. J. Gynecol. Cancer, 2023, 33(4), 431-443. doi: 10.1136/ijgc-2022-004149 PMID: 36928097
  96. Yakkala, P.A.; Penumallu, N.R.; Shafi, S.; Kamal, A. Prospects of topoisomerase inhibitors as promising anti-cancer agents. Pharmaceuticals (Basel), 2023, 16(10), 1456. doi: 10.3390/ph16101456 PMID: 37895927
  97. Duranti, S.; Pietragalla, A.; Daniele, G.; Nero, C.; Ciccarone, F.; Scambia, G.; Lorusso, D. Role of immune checkpoint inhibitors in cervical cancer: from preclinical to clinical data. Cancers (Basel), 2021, 13(9), 2089. doi: 10.3390/cancers13092089 PMID: 33925884
  98. Cetraro, P.; Plaza-Diaz, J.; MacKenzie, A.; Abadía-Molina, F. A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer. Cancers (Basel), 2022, 14(7), 1671. doi: 10.3390/cancers14071671 PMID: 35406442
  99. Song, M.; Chan, A.T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol., 2019, 17(2), 275-289. doi: 10.1016/j.cgh.2018.07.012 PMID: 30031175
  100. Yermekova, S.; Orazgaliyeva, M.; Goncharova, T.; Rakhimbekova, F.; Dushimova, Z.; Vasilieva, T. Mutational damages in malignant lung tumors. Asian Pac. J. Cancer Prev., 2023, 24(2), 709-716. doi: 10.31557/APJCP.2023.24.2.709 PMID: 36853323
  101. Li, B.; Jin, J.; Guo, D.; Tao, Z.; Hu, X. Immune checkpoint inhibitors combined with targeted therapy: the recent advances and future potentials. Cancers (Basel), 2023, 15(10), 2858. doi: 10.3390/cancers15102858 PMID: 37345194
  102. Grassilli, E.; Cerrito, M.G. Emerging actionable targets to treat therapy-resistant colorectal cancers. Cancer Drug Resist., 2022, 5(1), 36-63. doi: 10.20517/cdr.2021.96 PMID: 35582524
  103. ClinicalTrials. 2022. Available from: https://clinicaltrials.gov/ (accessed on 9-9-2024)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2025