Utilizing Indigenous Flora in East Africa for Breast Cancer Treatment: An Overview
- Авторы: Alum E.1, Tufail T.2, Uti D.1, Aja P.3, Offor C.4, Ibiam U.4, Ukaidi C.5, Alum B.1
-
Учреждения:
- Department of Research and Publications, Kampala International University
- School of Food and Biological, Engineering Jiangsu,, University Zhenjiang
- Department of Biochemistry, Faculty of Science,, Ebonyi State University
- Department of Biochemistry, Faculty of Science, Ebonyi State University
- College of Economics and Management, Kampala International University
- Выпуск: Том 25, № 2 (2025)
- Страницы: 99-113
- Раздел: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694476
- DOI: https://doi.org/10.2174/0118715206338557240909081833
- ID: 694476
Цитировать
Полный текст
Аннотация
Background:Breast cancer is a significant global health challenge, contributing substantially to cancer- related deaths. Conventional treatment methods, including hormone therapy, chemotherapy, surgical interventions, and radiation, have long been utilized. However, these traditional treatments are often associated with serious side effects and drug resistance, limiting their efficacy.
Aim:This review aims to explore the potential of medicinal plants used in breast cancer management in East Africa, focusing on their bioactive compounds and anticancer properties.
Methods:A comprehensive literature search was conducted to examine the effectiveness of medicinal plants in treating breast cancer across Kenya, Ethiopia, Uganda, Tanzania, and Rwanda. Relevant studies published between 2003 and 2023 were identified using keywords related to breast cancer and medicinal plants. The search was performed across multiple databases, including Google Scholar, PubMed, Scopus, Web of Science Core Collection, and Science Direct.
Results:Numerous natural compounds found in East African medicinal plants including Cymbopogon citratus (Lemongrass,) Tabebuia avellanedae, Prunus africana (African Cherry), Euclea divinorum, Berberis holstii, Withania somnifera (Ashwagandha, Curcuma longa (Turmeric), Garcinia mangostana (Mangosteen, Vitis vinifera (Grapevine), Eugenia jambolana (Java Plum), Moringa oleifera (Drumstick Tree), Camellia sinensis (Tea), Glycine max (Soybean), Catharanthus roseus, Madagascar Periwinkle), Rhus vulgaris (Wild Currant) exhibit significant anticancer properties. These compounds have demonstrated the ability to reduce breast cancer aggressiveness, inhibit cancer cell proliferation, and modulate cancer-related pathways. Current research focuses on these natural and dietary compounds to develop more effective strategies for treating breast cancer.
Conclusion:The findings suggested that East African medicinal plants hold promise as complementary treatments for breast cancer, offering potential benefits such as affordability, cultural appropriateness, and sustainability. Further research into these plants and their bioactive compounds could revolutionize breast cancer treatment, improving survival rates and addressing the rising incidence of breast cancer-related fatalities.
Other:The review underscores the importance of continued research, conservation, and the integration of ancient healing methods to fully harness the potential of East African flora in breast cancer management.
Об авторах
Esther Alum
Department of Research and Publications, Kampala International University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Tabussam Tufail
School of Food and Biological, Engineering Jiangsu,, University Zhenjiang
Email: info@benthamscience.net
Daniel Uti
Department of Research and Publications, Kampala International University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Patrick Aja
Department of Biochemistry, Faculty of Science,, Ebonyi State University
Email: info@benthamscience.net
Christian Offor
Department of Biochemistry, Faculty of Science, Ebonyi State University
Email: info@benthamscience.net
Udu Ibiam
Department of Biochemistry, Faculty of Science, Ebonyi State University
Email: info@benthamscience.net
Chris Ukaidi
College of Economics and Management, Kampala International University
Email: info@benthamscience.net
Benedict Alum
Department of Research and Publications, Kampala International University
Email: info@benthamscience.net
Список литературы
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Lopez-Gonzalez, L.; Sanchez Cendra, A.; Sanchez Cendra, C.; Roberts Cervantes, E.D.; Espinosa, J.C.; Pekarek, T.; Fraile-Martinez, O.; García-Montero, C.; Rodriguez-Slocker, A.M.; Jiménez-Álvarez, L.; Guijarro, L.G.; Aguado-Henche, S.; Monserrat, J.; Alvarez-Mon, M.; Pekarek, L.; Ortega, M.A.; Diaz-Pedrero, R. Exploring biomarkers in breast cancer: Hallmarks of diagnosis, treatment, and follow-up in clinical practice. Medicina (Kaunas), 2024, 60(1), 168. doi: 10.3390/medicina60010168 PMID: 38256428
- Watkins, E.J. Overview of breast cancer. JAAPA, 2019, 32(10), 13-17. doi: 10.1097/01.JAA.0000580524.95733.3d PMID: 31513033
- Burguin, A.; Diorio, C.; Durocher, F. Breast cancer treatments: Updates and new challenges. J. Pers. Med., 2021, 11(8), 808. doi: 10.3390/jpm11080808 PMID: 34442452
- Maksymowicz, M.; Machowiec, P.; Korzeniowska, A.; Baran, N.; Bielak, A.; Nowak, A.; Cywka, Ł.; Szwed, W.; Nowak, A.; Bogusz, K. Adverse effects in the management of breast cancer – Recent studies. J. Educ. Health Sport, 2023, 37(1), 11-24. doi: 10.12775/JEHS.2023.37.01.001
- Obeagu, E.I.; Babar, Q.; Vincent, C.C.N.; Udenze, C.L.; Eze, R.; Okafor, C.J.; Ifionu, B.I.; Amaeze, A.A.; Amaeze, F.N. Therapeutic targets in breast cancer signaling: A review. J. Pharm. Res. Int., 2021, 33(56A), 82-99. doi: 10.9734/jpri/2021/v33i56A33889
- Zhu, J.; Jiao, D.; Wang, C.; Lu, Z.; Chen, X.; Li, L.; Sun, X.; Qin, L.; Guo, X.; Zhang, C.; Qiao, J.; Yan, M.; Cui, S.; Liu, Z. Neoadjuvant efficacy of three targeted therapy strategies for HER2-positive breast cancer based on the same chemotherapy regimen. Cancers (Basel), 2022, 14(18), 4508. doi: 10.3390/cancers14184508 PMID: 36139667
- Fadhal, E. Unraveling the significance of signal transduction pathways: Key players in cancer development and progression. J. Cancer Ther. Res., 2023, 3(1), 1-9. doi: 10.52793/JCTR.2023.3(1)-28
- Lin, W.H.; Cooper, L.M.; Anastasiadis, P.Z. Cadherins and catenins in cancer: Connecting cancer pathways and tumor microenvironment. Front. Cell Dev. Biol., 2023, 11, 1137013. doi: 10.3389/fcell.2023.1137013 PMID: 37255594
- Attiq, A.; Afzal, S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front. Pharmacol., 2023, 14, 1255727. doi: 10.3389/fphar.2023.1255727 PMID: 37680708
- He, K.; Gan, W.J. Wnt/β-Catenin signaling pathway in the development and progression of colorectal cancer. Cancer Manag. Res., 2023, 15, 435-448. doi: 10.2147/CMAR.S411168 PMID: 37250384
- Shoeb, M. Anticancer agents from medicinal plants. Bangladesh J. Pharmacol., 2008, 1(2), 35-41. doi: 10.3329/bjp.v1i2.486
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. doi: 10.1021/acs.jnatprod.5b01055 PMID: 26852623
- Ekpono, E.U.; Aja, P.M.; Ibiam, U.A.; Alum, E.U.; Ekpono, U.E. Ethanol root-extract of Sphenocentrum jollyanum restored altered haematological markers in plasmodium berghei-infected mice. Earthline J. Chem. Sci., 2019, 2(2), 189-203. doi: 10.34198/ejcs.2219.189203
- Erisa, K.; Raphael, I.; Ugwu, O.P.C.; Alum, E.U. Exploration of medicinal plants used in the management of Malaria in Uganda. NIJRMS, 2023, 4(1), 101-108.
- Offor, C.; Ugwu Okechukwu, P.C.; Alum Esther, U. The anti-diabetic effect of ethanol leaf-extract of Allium sativum on albino rats. 2014, 4(1), 1-3. doi: 10.5829/idosi.ijpms.2014.4.1.1103.
- Aja, P.; Ani, O.; Offor, C.; Orji, O.; Alum, E. Evaluation of anti-diabetic effect and liver enzymes activity of ethanol extract of Pterocarpus santalinoides in alloxan induced diabetic albino rats. Glab. J. Biotech. Biochem., 2015, 10(2), 77-83. doi: 10.5829/idosi.gjbb.2015.10.02.93128
- Paul-Chima, U.O.; Erisa, K.; Raphael, I.; Emmanuel I, O.; Ugo, A.E.; Michael B, O.; Subbarayan, S.; Sankarapandiyan, V. Exploring indigenous medicinal plants for managing Diabetes mellitus in Uganda: Ethnobotanical insights, pharmacotherapeutic strategies, and national development alignment. INOSR Exp. Sci., 2023, 12(2), 214-224. doi: 10.59298/INOSRES/2023/2.17.1000
- Ugwu, O.P.C.; Alum, E.U.; Okon, M.B.; Aja, P.M.; Obeagu, E.I.; Onyeneke, E.C. Ethanol root extract and fractions of Sphenocentrum jollyanum abrogate hyperglycaemia and low body weight in streptozotocin-induced diabetic Wistar albino rats. RPS Phar. Pharm. Rep., 2023, 2(2), rqad010. doi: 10.1093/rpsppr/rqad010
- Agbafor, K.N.; Onuoha, S.C.; Ominyi, M.; Orinya, O.F.; Ezeani, N.; Alum, E. Antidiabetic, hypolipidemic and antiathrogenic properties of leaf extracts of Ageratum conyzoides in streptozotocin-induced diabetic rats. Middle East J. Sci. Res., 2015, 23(10), 2418-2423.
- Asogwa, F.C.; Okoye, C.O.B.; Ugwu Okechukwu, P.C.; Alum Esther, U.; Nzubechukwu, E.; Alum Esther, U.; Egwu Chinedu, O. Phytochemistry and antimicrobial assay of Jatropha curcas extracts on some clinically isolated bacteria: A comparative analysis. Europ. J. Appl. Sci., 2015, 7(1), 12-16. doi: 10.5829/idosi.ejas.2015.7.1.1125
- Aja, P.M.; Chiadikaobi, C.D.; Agu, P.C.; Ale, B.A.; Ani, O.G.; Ekpono, E.U.; Ogwoni, H.A.; Awoke, J.N.; Ogbu, P.N.; Aja, L.; Nwite, F.E.; Ukachi, O.U.; Orji, O.U.; Nweke, P.C.; Egwu, C.O.; Ekpono, E.U.; Ewa, G.O.; Igwenyi, I.O.; Tusubira, D.; Offor, C.E.; Maduagwuna, E.K.; Alum, E.U.; Uti, D.E.; Njoku, A.; Atoki, V.A.; Awuchi, C.G. Cucumeropsis mannii seed oil ameliorates bisphenol‐A‐induced adipokines dysfunctions and dyslipidemia. Food Sci. Nutr., 2023, 11(6), 2642-2653. doi: 10.1002/fsn3.3271 PMID: 37324904
- Uti, D.E.; Ibiam, U.A.; Omang, W.A.; Udeozor, P.A.; Umoru, G.U.; Nwadum, S.K.; Bawa, I.; Alum, E.U.; Mordi, J.C.; Okoro, E.O.; Obeten, U.N.; Onwe, E.N.; Zakari, S.; Opotu, O.R.; Aja, P.M. Buchholzia coriacea leaves attenuated dyslipidemia and oxidative stress in hyperlipidemic rats and its potential targets in silico. Pharm. Fronts, 2023, 5(3), e141-e152. doi: 10.1055/s-0043-1772607
- Ibiam, U.A.; Alum, E.U.; Orji, O.U.; Aja, P.M.; Nwamaka, E.N.; Ugwu, O.P.C.; Ekpono, E.U. Anti-inflammatory effects of Buchholzia coriacea ethanol leaf-extract and fractions in freund’s adjuvant-induced rheumatoid arthritic albino rats. Indo Glob. J. Pharm. Sci., 2018, 5, 6341-6357. doi: 10.5281/zenodo.1311167
- Ezeani, N.N.; Ibiam, U.A.; Orji, O.U.; Igwenyi, I.O.; Aloke, C.; Alum, E.; Mmaduabuchi Aja, P.; Chima Ugwu, O.P. Effects of aqueous and ethanol root extracts of Olax subscopioidea on inflammatory parameters in complete Freund’s adjuvant-collagen type II induced arthritic albino rats. Pharmacogn. J., 2019, 11(1), 16-25. doi: 10.5530/pj.2019.1.4
- Aloke, C.; Ibiam, U.A.; Obasi, N.A.; Orji, O.U.; Ezeani, N.N.; Aja, P.M.; Alum, E.U.; Mordi, J.C. Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund’s adjuvant‐induced rheumatoid arthritis in rats. J. Food Biochem., 2019, 43(7), e12912. doi: 10.1111/jfbc.12912 PMID: 31353723
- Aja, P.M.; Agu, P.C.; Ezeh, E.M.; Awoke, J.N.; Ogwoni, H.A.; Deusdedit, T.; Ekpono, E.U.; Igwenyi, I.O.; Alum, E.U.; Ugwuja, E.I.; Ibiam, A.U.; Afiukwa, C.A.; Adegboyega, A.E. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: De novo synthesis of test compounds, molecular docking, and ADMET studies. Bull. Natl. Res. Cent., 2021, 45(1), 99. doi: 10.1186/s42269-021-00554-6
- Ibiam, U.A.; Uti, D.E.; Ejeogo, C.C.; Orji, O.U.; Aja, P.M.; Nwamaka, E.N.; Alum, E.U.; Chukwu, C.; Aloke, C.; Chinedum, K.E.; Agu, P.; Nwobodo, V. In vivo and in silico assessment of ameliorative effects of Xylopia aethiopica on testosterone propionate-induced benign prostatic hyperplasia. Pharm. Fronts, 2023, 5(2), e64-e76. doi: 10.1055/s-0043-1768477
- Alum Esther, U.; Oyika, M.; Ugwu Okechukwu, P.C.; Aja, P.M.; Obeagu, E.I.; Egwu, C.; Okon, M. Comparative analysis of mineral constituents of ethanol leaf and seed extracts of Datura stramonium. 2023, 8(1), 143-151.
- Ibiam, U.A.; Alum, E.U.; Aja, P.M.; Orji, O.U.; Nwamaka, E.N.; Ugwu, O.P.C. Comparative analysis of chemical composition of Buchholzia coriacea ethanol leaf-extract, aqueous and ethylacetate fractions. Indo J. Pharm. Sci., 2018, 5(7), 6358-6369.
- Alum, E.U.; Aja, W.; Ugwu, O.P.C.; Obeagu, E.I.; Okon, M.B. Assessment of vitamin composition of ethanol leaf and seed extracts of Datura stramonium. Avicenna J. Med. Biochem., 2023, 11(1), 92-97. doi: 10.34172/ajmb.2023.2421
- Ugwu Okechukwu, P.C.; Ugo, E.U.; Obeagu, E.I.; Alum Esther, U.; Aja, P.M.; Ifeanyi, E.; Ben, O.M. Anti-nutritional and gas chromatography-mass spectrometry (GC-MS) analysis of ethanol root extract and fractions of Sphenocentrum jollyanum. RPS Pharm. Pharmacol., 2023, 2(2), rqad007.. doi: 10.1093/rpsppr/rqad007
- Huang, X.; Liang, C.; Yang, H.; Li, X.; Deng, X.; Liang, X.; Li, L.; Huang, Z.; Lu, D.; Ma, Y.; Luo, Z. Curcumin induces apoptosis and inhibits the growth of adrenocortical carcinoma: Identification of potential candidate genes and pathways by transcriptome analysis. Oncol. Lett., 2021, 21(6), 476. doi: 10.3892/ol.2021.12737 PMID: 33907586
- Sak, K. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract., 2012, 2012, 1-11. doi: 10.1155/2012/282570 PMID: 23320169
- Alum, E.U.; Ugwu, O.P.C.; Aja, P.M.; Obeagu, E.I.; Inya, J.E.; Onyeije, A.P.; Agu, E.; Awuchi, C.G. Restorative effects of ethanolic leaf extract of Datura stramonium against methotrexate-induced hematological impairments. Cogent Food Agric., 2023, 9(1), 2258774. doi: 10.1080/23311932.2023.2258774
- Alum, E.; Inya, J.; P.C, U.; Obeagu, E.; Chinyere, A.; Orji, O.; Onyema, O. Ethanolic leaf extract of Datura stramonium attenuates methotrexate-induced biochemicalalterations in wistar albino rats. RPS Pharm. Pharmacol. Rep., 2023, 2, rqac011. doi: 10.1093/rpsppr/rqac011
- Alum, E.U.; Famurewa, A.C.; Orji, O.U.; Aja, P.M.; Nwite, F.; Ohuche, S.E.; Ukasoanya, S.C.; Nnaji, L.O.; Joshua, D.; Igwe, K.U.; Chima, S.F. Nephroprotective effects of Datura stramonium leaves against methotrexate nephrotoxicity via attenuation of oxidative stress-mediated inflammation and apoptosis in rats. Avicenna J. Phytomed., 2023, 13(4), 377-387. doi: 10.22038/AJP.2023.21903 PMID: 37663387
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(6), 524-541. doi: 10.3322/caac.21754 PMID: 36190501
- Alum, E.U.; Umoru, G.U.; Uti, D.E.; Aja, P.M.; Ugwu, O.P.; Orji, O.U.; Nwali, B.U.; Ezeani, N.N.; Edwin, N.; Orinya, F.O. Hepato-protective effect of ethanol leaf extract of Datura stramonium in alloxan-induced diabetic albino rats. J. Chem. Soc. Niger., 2022, 47(5), 819. doi: 10.46602/jcsn.v47i5.819
- Nwadum, S.K.; Ibiam, U.A.; Uti, D.E.; Umoru, G.U.; Udoudoh, M.P.; Aja, P.M.; Alum, E.U.; Mordi, C.J.; Ekpono, E.U.; Obeten, U.N.; Omang, W.A.; Agada, S.A. Cocos nucifera water ameliorated hepatic complications and attenuated oxidative stress in cadmium-induced hepatotoxicity. Asian J. Biol. Sci., 2023, 16(4), 522-536. doi: 10.3923/ajbs.2023.522.536
- Iacopetta, D.; Ceramella, J.; Baldino, N.; Sinicropi, M.; Catalano, A. Targeting breast cancer: An overlook on current strategies. Int. J. Mol. Sci., 2023, 24(4), 3643. doi: 10.3390/ijms24043643 PMID: 36835056
- Satherley, L.; Lloyd, D.E. Breast cancer. Medicine (Abingdon), 2023, 51(1), 42-47. doi: 10.1016/j.mpmed.2022.10.008
- Begum, S.A.; Rani, S.J.; Yeruva, V. Modern methods for breast cancer diagnosis and classification: A current update. Uttar Pradesh J. Zool., 2023, 44(19), 189-204. doi: 10.56557/upjoz/2023/v44i193635
- O’Sullivan, C.C.; Loprinzi, C.L.; Haddad, T.C. Updates in the evaluation and management of breast cancer. Mayo Clin. Proc., 2018, 93(6), 794-807. doi: 10.1016/j.mayocp.2018.03.025 PMID: 29866283
- Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updat., 2011, 14(3), 150-163. doi: 10.1016/j.drup.2011.01.003 PMID: 21330184
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
- Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2024.
- Cheong, A.; McGrath, S.; Cutts, S. Anthracyclines. WikiJ. Med., 2018, 5(1), 1. doi: 10.15347/wjm/2018.001
- Hussen, N.H.; Hasan, A.H.; Muhammed, G.O.; Yassin, A.Y.; Salih, R.R.; Esmail, P.A.; Alanazi, M.M.; Jamalis, J. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies. Curr. Org. Chem., 2023, 27(4), 363-377. doi: 10.2174/1385272827666230423144150
- Arrillaga-Romany, I.; Monje, M.; Wen, P.Y. Neurologic complications of oncologic therapy. In: Handbook of Neuro-Oncology Neuroimaging; Academic Press, 2016. doi: 10.1016/B978-0-12-800945-1.00015-X.
- Tkaczuk, K.; Yared, J. Update on taxane development: New analogs and new formulations. Drug Des. Devel. Ther., 2012, 371, 371. doi: 10.2147/DDDT.S28997
- Chen, H.; Zhang, M.; Deng, Y. Long noncoding RNAs in taxane resistance of breast cancer. Int. J. Mol. Sci., 2023, 24(15), 12253. doi: 10.3390/ijms241512253 PMID: 37569629
- Sousa-Pimenta, M.; Estevinho, L.M.; Szopa, A.; Basit, M.; Khan, K.; Armaghan, M.; Ibrayeva, M.; Sönmez Gürer, E.; Calina, D.; Hano, C.; Sharifi-Rad, J. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel. Front. Pharmacol., 2023, 14, 1157306. doi: 10.3389/fphar.2023.1157306 PMID: 37229270
- Škubník, J.; Pavlíčková, V.; Ruml, T.; Rimpelová, S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants, 2021, 10(3), 569. doi: 10.3390/plants10030569 PMID: 33802861
- Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf., 2007, 6(5), 609-621. doi: 10.1517/14740338.6.5.609 PMID: 17877447
- Montagna, G.; Ferraro, E.; Pilewskie, M.L. Neoadjuvant chemotherapy for nonmetastatic breast cancer. Adv. Oncol., 2022, 2(1), 47-61. doi: 10.1016/j.yao.2022.01.004
- Chan, Y.H.Y.; Kwok, C.C.H.; Tse, D.M.S.; Lee, H.M.; Tam, P.Y.; Cheung, P.S.Y. Preoperative considerations and benefits of neoadjuvant chemotherapy: Insights from a 12-year review of the Hong Kong breast cancer registry. Hong Kong Med. J., 2023, 29(3), 198-207. doi: 10.12809/hkmj219333 PMID: 37019476
- Antonini, M.; Mattar, A.; Pannain, G.D.; Gebrim, L.H.; Ferraro, O.; Lopes, R.C.G.; Real, J.M. Integrative review of clinical trials and meta-analysis of the main studies of neoadjuvant chemotherapy in the treatment of breast cancer in the past 30 years. Mastology, 2023, 33, e20230027. doi: 10.29289/2594539420230027
- Kelly, C.M.; Hortobagyi, G.N. Adjuvant chemotherapy in early-stage breast cancer: What, when, and for whom? Surg. Oncol. Clin. N. Am., 2010, 19(3), 649-668. doi: 10.1016/j.soc.2010.03.007 PMID: 20620933
- McCarthy, N.J.; Swain, S.M. Update on adjuvant chemotherapy for early breast cancer. Oncology (Williston Park), 2000, 14(9), 1267-1280. PMID: 11033824
- Orrantia-Borunda, E.; Anchondo-Nuñez, P.; Acuña-Aguilar, L.E.; Gómez-Valles, F.O.; Ramírez-Valdespino, C.A. Subtypes of breast cancer. In: Breast Cancer; Mayrovitz, H.N., Ed.; Exon Publications, 2022. PMID: 36122153
- Eng, A.; McCormack, V.; dos-Santos-Silva, I. Receptor-defined subtypes of breast cancer in indigenous populations in Africa: A systematic review and meta-analysis. PLoS Med., 2014, 11(9), e1001720. doi: 10.1371/journal.pmed.1001720 PMID: 25202974
- Hackbart, H.; Cui, X.; Lee, J.S. Androgen receptor in breast cancer and its clinical implication. Transl. Breast Cancer Res., 2023, 4, 30. doi: 10.21037/tbcr-23-44 PMID: 37946721
- Mercogliano, M.F.; Bruni, S.; Mauro, F.L.; Schillaci, R. Emerging targeted therapies for HER2-positive breast cancer. Cancers (Basel), 2023, 15(7), 1987. doi: 10.3390/cancers15071987 PMID: 37046648
- Obidiro, O.; Battogtokh, G.; Akala, E.O. Triple negative breast cancer treatment options and limitations: Future outlook. Pharmaceutics, 2023, 15(7), 1796. doi: 10.3390/pharmaceutics15071796 PMID: 37513983
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61. doi: 10.1186/s13058-020-01296-5 PMID: 32517735
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov., 2023, 22(2), 101-126. doi: 10.1038/s41573-022-00579-0 PMID: 36344672
- Mondal, J.; Panigrahi, A.K.; Khuda-Bukhsh, A.R. Conventional chemotherapy: Problems and scope for combined therapies with certain herbal products and dietary supplements. Austin. J. Mol. Cell Biol., 2014, 1(1), 10.
- Saldanha, S.N.; Tollefsbol, T.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. J. Oncol., 2012, 2012, 192464. doi: 10.1155/2012/192464
- Liao, G.S.; Apaya, M.K.; Shyur, L.F. Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy. Evid. Based Complement. Alternat. Med., 2013, 2013, 437948. doi: 10.1155/2013/437948
- Asiimwe, J.B.; Nagendrappa, P.B.; Atukunda, E.C.; Kamatenesi, M.M.; Nambozi, G.; Tolo, C.U.; Ogwang, P.E.; Sarki, A.M. Prevalence of the use of herbal medicines among patients with cancer: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2021, 2021, 9963038. doi: 10.1155/2021/9963038
- Omara, T.; Odero, M.P.; Obakiro, S.B. Medicinal plants used for treating cancer in Kenya: An ethnopharmacological overview. Bull. Natl. Res. Cent., 2022, 46(1), 148. doi: 10.1186/s42269-022-00840-x
- Isbilen, O.; Volkan, E. Anticancer activities of Allium sativum L. against MCF-7 and MDA-MB-231 breast cancer cell lines mediated by caspase-3 and caspase-9. Cyprus J. Med. Sci., 2021, 5(4), 305-312. doi: 10.5152/cjms.2020.1848
- Maitisha, G.; Aimaiti, M.; An, Z.; Li, X. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol. Biol. Rep., 2021, 48(11), 7261-7272. doi: 10.1007/s11033-021-06722-1 PMID: 34626309
- Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One, 2015, 10(8), e0135814. doi: 10.1371/journal.pone.0135814 PMID: 26288313
- Talib, W.H.; Awajan, D.; Alqudah, A.; Alsawwaf, R.; Althunibat, R.; Abu AlRoos, M.; Al Safadi, A.; Abu Asab, S.; Hadi, R.W.; Al Kury, L.T. Targeting cancer hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic basis and therapeutic targets. Molecules, 2024, 29(6), 1373. doi: 10.3390/molecules29061373 PMID: 38543009
- Moremane, M.M.; Abrahams, B.; Tiloke, C. Moringa oleifera: A review on the antiproliferative potential in breast cancer cells. Curr. Issues Mol. Biol., 2023, 45(8), 6880-6902. doi: 10.3390/cimb45080434 PMID: 37623253
- Ajibare, A.C.; Ebuehi, O.A.T.; Adisa, R.A.; Sofidiya, M.O.; Olugbuyiro, J.A.O.; Akinyede, K.A.; Iyiola, H.A.; Adegoke, Y.A.; Omoruyi, S.I.; Ekpo, O.E. Fractions of Hoslundia opposita Vahl and hoslundin induced apoptosis in human cancer cells via mitochondrial-dependent reactive oxygen species (ROS) generation. Biomed. Pharmacother., 2022, 153, 113475. doi: 10.1016/j.biopha.2022.113475 PMID: 36076500
- Singh, M.K.; Dhongade, H.; Tripathi, D.K. Orthosiphon pallidus, a potential treatment for patients with breast cancer. J. Pharmacopuncture, 2017, 20(4), 265-273. doi: 10.3831/KPI.2017.20.032 PMID: 30151296
- Omara, T.; Kiprop, A.K.; Ramkat, R.C.; Cherutoi, J.; Kagoya, S.; Moraa Nyangena, D.; Azeze Tebo, T.; Nteziyaremye, P.; Nyambura Karanja, L.; Jepchirchir, A.; Maiyo, A.; Jematia Kiptui, B.; Mbabazi, I.; Kiwanuka Nakiguli, C.; Nakabuye, B.V.; Chepkemoi Koske, M. Medicinal plants used in traditional management of cancer in Uganda: A review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evid. Based Complement. Alternat. Med., 2020, 2020(1), 3529081. doi: 10.1155/2020/3529081 PMID: 32256639
- Ibrahim, M.; Kaushik, N.; Sowemimo, A.; Odukoya, O. Review of the phytochemical and pharmacological studies of the Genus Markhamia. Pharmacogn. Rev., 2016, 10(19), 50-59. doi: 10.4103/0973-7847.176547 PMID: 27041874
- Matata, D.; Ngassapa, O.; Moshi, M.; Machumi, F.; Oosthuizen, K.; Swanepoel, B.; Venables, L.; Koekemoer, T.; Heydenreich, M.; Kazyoba, P.; Van de Venter, M. In vitro antioxidant and cytotoxic activity of the root extract of Aspilia mossambicensis (Oliv) wild (Asteraceae). J. Med. Plants Res., 2020, 14, 613-624. doi: 10.5897/JMPR2020.6993
- Obakiro, S.B.; Kiprop, A.; K’owino, I.; Andima, M.; Owor, R.O.; Chacha, R.; Kigondu, E. Phytochemical, cytotoxicity, and antimycobacterial activity evaluation of extracts and compounds from the stem bark of Albizia coriaria Welw ex. Oliver. Evid. Based Complement. Alternat. Med., 2022, 2022, 7148511. doi: 10.1155/2022/7148511
- Liu, R.; Choi, H.S.; Kim, S.L.; Kim, J.H.; Yun, B.S.; Lee, D.S. 6-methoxymellein isolated from carrot (Daucus carota L.) targets breast cancer stem cells by regulating NF-κB signaling. Molecules, 2020, 25(19), 4374. doi: 10.3390/molecules25194374 PMID: 32977636
- Wagh, A.S.; Butle, S.R. Preliminary phytochemical analysis and in vitro anticancer activity of Spathodea campanulata P. Beauv. Asian J. Pharm. Pharmacol., 2019, 5(S1), 37-41. doi: 10.31024/ajpp.2019.5.s1.3
- Ilango, S.; Sahoo, D.K.; Paital, B.; Kathirvel, K.; Gabriel, J.I.; Subramaniam, K.; Jayachandran, P.; Dash, R.K.; Hati, A.K.; Behera, T.R.; Mishra, P.; Nirmaladevi, R. A review on Annona muricata and its anticancer activity. Cancers (Basel), 2022, 14(18), 4539. doi: 10.3390/cancers14184539 PMID: 36139697
- Nabende, P.N.; Namukhosi, P. Safety and anti-proliferative activity of Prunus africana, Warburgia stuhlmannii and Maytenus senegalensis extracts in breast and colon cancer cell lines. Masters Thesis, Jomo Kenyatta University of Agriculture and Technology, 2015.
- Sakthive, K.M.; Kannan, N.; Angeline, A.; Guruvayoorappan, C. Anticancer activity of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica against Dalton’s ascitic lymphoma induced solid and ascitic tumor model. Asian Pac. J. Cancer Prev., 2012, 13(8), 3989-3995. doi: 10.7314/APJCP.2012.13.8.3989 PMID: 23098505
- Patel, F.; Upadhyay, K.; Mammen, D.; Robin, E.; Ramachandran, A.V.; Baxi, D. Phytochemical composition and antiproliferative activity of Opuntia elatior Mill.: In vitro and in silico studies on breast cancer cell line MCF-7. J. Appl. Biol. Biotechnol., 2023, 12, 117-127. doi: 10.7324/JABB.2024.144233
- Anago, A.D.; Gaetan Segbo, J.A.; Gnangnon, F.; Akpovi, C.D.; Agbangla, C. Some medicinal plants with anti-breast cancer activity and the input of phytotherapy in the treatment of breast cancer. Eur. Sci. J., 2023, 19(18), 66-66. doi: 10.19044/esj.2023.v19n18p66
- Sundararajan, P.; Dey, A.; Smith, A.; Doss, A.G.; Rajappan, M.; Natarajan, S. Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. Afr. Health Sci., 2006, 6(1), 27-30. PMID: 16615823
- Singh, G.; Passsari, A.K.; Singh, P.; Leo, V.V.; Subbarayan, S.; Kumar, B.; Singh, B.P. lalhlenmawia, H.; Kumar, N.S. Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS. BMC Complement. Altern. Med., 2017, 17(1), 492. doi: 10.1186/s12906-017-2000-0 PMID: 29145848
- Bartolome, A.P.; Villaseñor, I.M.; Yang, W.C. Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-51. doi: 10.1155/2013/340215 PMID: 23935661
- Basim, S.; Kasim, A. Cytotoxic activity of the ethyl acetate extract of Iraqi carica papaya leaves in breast and lung cancer cell lines. Asian Pac. J. Cancer Prev., 2023, 24(2), 581-586. doi: 10.31557/APJCP.2023.24.2.581 PMID: 36853308
- Ugwu Okechukwu, P.C.; Alum, E.U.; Ibiam, U.A.; Ugwuja, E.; Aja, P.M.; Igwenyi, I.; Orji, O.; Chinyere, A.; Nwam, E.N.; Egwu, C. Antioxidant effect of Buchholzia coriacea ethanol leaf-extract and fractions on freund’s adjuvant-induced arthritis in albino rats: A comparative study. Slov. Vet. Res., 2022, 59(1), 31-45. doi: 10.26873/SVR-1150-2022
- Obeagu, E.I.; Obeagu, G.U.; Ezeonwumelu, J.O.C.; Alum, E.U.; Ugwu, O.P.C.; Paul-Chima, O. Antioxidants and pregnancy: Impact on maternal and fetal health. NIJBAS, 2023, 4(1), 17-25. doi: 10.59298/NIJBAS/2023/1.3.11111
- Offor, C.; Alum, E.; P.C, U. Determination of ascorbic acid contents of fruits and vegetables. 2015, 5, 1-03. doi: 10.5829/idosi.ijpms.2015.5.1.1105
- Alum Esther, U.; Diana, M.C.; Okon, M.; Uti, D.; Obeagu, E.I.; Aja, P.M.; Okechukwu, E.I. Phytochemical composition of Datura stramonium ethanol leaf and seed extracts: A comparative study. 2023, 10(1), 118-125.
- Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention. AAPS J., 2014, 16(1), 151-163. doi: 10.1208/s12248-013-9548-5 PMID: 24307610
- Aggarwal, R.; Jha, M.; Shrivastava, A.; Jha, A.K. Natural compounds: Role in reversal of epigenetic changes. Biochemistry (Mosc.), 2015, 80(8), 972-989. doi: 10.1134/S0006297915080027 PMID: 26547065
- Chlebowski, R.T. Current concepts in breast cancer chemoprevention. Polish Archiv. Intern. Med., 2014, 124(4), 191-199. doi: 10.20452/pamw.2190 PMID: 24618912
- Lephart, E.D. Modulation of aromatase by phytoestrogens. Enzyme Res., 2015, 2015, 594656. doi: 10.1155/2015/594656
- Küpeli Akkol, E.; Bardakci, H.; Barak, T.H.; Aschner, M.; Şeker Karatoprak, G.; Khan, H.; Hussain, Y. Herbal ingredients in the prevention of breast cancer: Comprehensive review of potential molecular targets and role of natural products. Oxid. Med. Cell. Longev., 2022, 2022(5), 1-23. doi: 10.1155/2022/6044640
- Borin, T.; Angara, K.; Rashid, M.; Achyut, B.; Arbab, A. Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int. J. Mol. Sci., 2017, 18(12), 2661. doi: 10.3390/ijms18122661 PMID: 29292756
- Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 8324696. doi: 10.1155/2018/8324696
- Kuno, T.; Tsukamoto, T.; Hara, A.; Tanaka, T. Cancer chemoprevention through the induction of apoptosis by natural compounds. J. Biophys. Chem., 2012, 3(2), 156-173. doi: 10.4236/jbpc.2012.32018
- Dall’Acqua, S. Natural products as antimitotic agents. Curr. Top. Med. Chem., 2014, 14(20), 2272-2285. doi: 10.2174/1568026614666141130095311 PMID: 25434355
- Akbar, A.; Azmat, R.; Batool, M.; Almutairi, B.O.; Nadeem Riaz, M. Rhoifolin protects cisplatin mediated pulmonary toxicity via attenuation of oxidative stress, inflammatory response, apoptosis and histopathological damages. J. King Saud Univ. Sci., 2024, 36(5), 103149. doi: 10.1016/j.jksus.2024.103149
- Borges, V.F.; Chan, A.; Lin, N.U.; Tonda, M.E.; Shilkrut, M.; Alemany, C.A. A phase 1b/2 dose escalation and expansion study of OP-1250 in combination with ribociclib or alpelisib in patients with advanced and/or metastatic estrogen receptor–positive (ER+)/HER2-negative (HER2-) breast cancer. J. Clin. Oncol., 2023, 41(16_suppl), TPS1127-TPS1127. doi: 10.1200/JCO.2023.41.16_suppl.TPS1127
- Schlam, I.; Chavez-MacGregor, M. Best of the year: Advanced breast cancer in 2023. Breast, 2024, 74, 103677. doi: 10.1016/j.breast.2024.103677 PMID: 38401422
- Miranda, S.E.M.; de Alcantara Lemos, J.; Ottoni, F.M.; Cassali, G.D.; Townsend, D.M.; de Aguiar Ferreira, C.; Alves, R.J.; Ferreira, L.A.M.; de Barros, A.L.B. Preclinical evaluation of L-fucoside from lapachol-loaded nanoemulsion as a strategy to breast cancer treatment. Biomed. Pharmacother., 2024, 170, 116054. doi: 10.1016/j.biopha.2023.116054 PMID: 38150876
- Zhang, Z.; Bai, L.; Lu, C.; Li, X.; Wu, Y.; Zhang, X.; Shen, Y. Lapachol inhibits the growth of lung cancer by reversing M2-like macrophage polarization via activating NF-κB signaling pathway. Cell. Signal., 2023, 112, 110902. doi: 10.1016/j.cellsig.2023.110902 PMID: 37751828
- Wang, H.; Wang, Z.; Zhang, Z.; Liu, J.; Hong, L. β-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: Mechanisms of action and future prospects. Adv. Nutr., 2023, 14(5), 1085-1110. doi: 10.1016/j.advnut.2023.05.013 PMID: 37247842
- Bao, X.; Zhang, Y.; Zhang, H.; Xia, L. Molecular mechanism of β-sitosterol and its derivatives in tumor progression. Front. Oncol., 2022, 12, 926975. doi: 10.3389/fonc.2022.926975 PMID: 35756648
- Wang, H.; Liu, J.; Zhang, Z.; Peng, J.; Wang, Z.; Yang, L.; Wang, X.; Hu, S.; Hong, L. β-sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer. Free Radic. Biol. Med., 2024, 214, 137-157. doi: 10.1016/j.freeradbiomed.2024.02.004 PMID: 38364944
- Wang, S.; Chang, X.; Zhang, J.; Li, J.; Wang, N.; Yang, B.; Pan, B.; Zheng, Y.; Wang, X.; Ou, H.; Wang, Z. Ursolic acid inhibits breast cancer metastasis by suppressing glycolytic metabolism via activating SP1/caveolin-1 signaling. Front. Oncol., 2021, 11, 745584. doi: 10.3389/fonc.2021.745584 PMID: 34568078
- Zhang, Y.; Ma, X.; Li, H.; Zhuang, J.; Feng, F.; Liu, L.; Liu, C.; Sun, C. Identifying the effect of ursolic acid against triple-negative breast cancer: Coupling network pharmacology with experiments verification. Front. Pharmacol., 2021, 12, 685773. doi: 10.3389/fphar.2021.685773 PMID: 34858165
- Yuan, R.; Tan, Y.; Sun, P.H.; Qin, B.; Liang, Z. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC. Front. Pharmacol., 2023, 14, 1122890. doi: 10.3389/fphar.2023.1122890 PMID: 36937842
- Goel, A. Current understanding and future prospects on Berberine for anticancer therapy. Chem. Biol. Drug Des., 2023, 102(1), 177-200. doi: 10.1111/cbdd.14231 PMID: 36905314
- Devarajan, N.; Nathan, J.; Mathangi, R.; Mahendra, J.; Ganesan, S.K. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J. Biochem. Mol. Toxicol., 2023, 37(3), e23278. doi: 10.1002/jbt.23278 PMID: 36588295
- Joil, D.; Tavhare, S.D. Role of withaferin A in the management of breast cancer: A comprehensive review. Int. J. Ayurvedic Med., 2023, 14(3), 616-623. doi: 10.47552/ijam.v14i3.3687
- Kumar, S.; Mathew, S.O.; Aharwal, R.P.; Tulli, H.S.; Mohan, C.D.; Sethi, G.; Ahn, K.S.; Webber, K.; Sandhu, S.S.; Bishayee, A.; Withaferin, A.; Withaferin, A. A pleiotropic anticancer agent from the indian medicinal plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel), 2023, 16(2), 160. doi: 10.3390/ph16020160 PMID: 37259311
- Devabattula, G.; Panda, B.; Yadav, R.; Godugu, C. The potential pharmacological effects of natural product withaferin A in cancer: Opportunities and challenges for clinical translation. Planta Med., 2024, 90(6), 440-453. doi: 10.1055/a-2289-9600 PMID: 38588695
- Huang, M.; Zhai, B.T.; Fan, Y.; Sun, J.; Shi, Y.J.; Zhang, X.F.; Zou, J.B.; Wang, J.W.; Guo, D.Y. Targeted drug delivery systems for curcumin in breast cancer therapy. Int. J. Nanomedicine, 2023, 18, 4275-4311. doi: 10.2147/IJN.S410688 PMID: 37534056
- Zhao, P.; Qiu, J.; Pan, C.; Tang, Y.; Chen, M.; Song, H.; Yang, J.; Hao, X. Potential roles and molecular mechanisms of bioactive ingredients in curcumae rhizoma against breast cancer. Phytomedicine, 2023, 114, 154810. doi: 10.1016/j.phymed.2023.154810 PMID: 37075623
- Zhu, J.; Li, Q.; Wu, Z.; Xu, Y.; Jiang, R. Curcumin for treating breast cancer: A review of molecular mechanisms, combinations with anticancer drugs, and nanosystems. Pharmaceutics, 2024, 16(1), 79. doi: 10.3390/pharmaceutics16010079 PMID: 38258090
- Mehra, A.; Sangwan, R.; Owusu, E. Xanthone derivatives: A pharmacological panorama of versatility. Curr. Bioact. Compd., 2024, 20(2024) doi: 10.2174/0115734072278162240406123303
- Farghadani, R.; Naidu, R. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC). Biomed. Pharmacother., 2023, 165, 115170. doi: 10.1016/j.biopha.2023.115170 PMID: 37481930
- Ramakrishnan, S.; Mad Nasir, N.; Stanslas, J.; Imran Faisal Hamdi, A.; Alif Mohammad Latif, M.; Farhana Baharuddin, F. One-pot two-component synthesis of halogenated xanthone, 3-o substituted xanthone, and prenylated xanthone derivatives as aromatase inhibitors. Results Chem., 2023, 5, 100789. doi: 10.1016/j.rechem.2023.100789
- Song, B.; Wang, W.; Tang, X.; Goh, R.M.W.J.; Thuya, W.L.; Ho, P.C.L.; Chen, L.; Wang, L. Inhibitory potential of resveratrol in cancer metastasis: From biology to therapy. Cancers (Basel), 2023, 15(10), 2758. doi: 10.3390/cancers15102758 PMID: 37345095
- Cotino-Nájera, S.; Herrera, L.A.; Domínguez-Gómez, G.; Díaz-Chávez, J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front. Pharmacol., 2023, 14, 1287505. doi: 10.3389/fphar.2023.1287505 PMID: 38026933
- Golmohammadi, M.; Zamanian, M.Y.; Jalal, S.M.; Noraldeen, S.A.M.; Ramírez-Coronel, A.A.; Oudaha, K.H.; Obaid, R.F.; Almulla, A.F.; Bazmandegan, G.; Kamiab, Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci. Nutr., 2023, 11(12), 7458-7468. doi: 10.1002/fsn3.3699 PMID: 38107139
- Lu, G.; Wang, X.; Cheng, M.; Wang, S.; Ma, K. The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art. Biomed. Pharmacother., 2023, 165, 115132. doi: 10.1016/j.biopha.2023.115132 PMID: 37423169
- Maugeri, A.; Calderaro, A.; Patanè, G.T.; Navarra, M.; Barreca, D.; Cirmi, S.; Felice, M.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms. Int. J. Mol. Sci., 2023, 24(3), 2952. doi: 10.3390/ijms24032952 PMID: 36769274
- Sethi, G.; Rath, P.; Chauhan, A.; Ranjan, A.; Choudhary, R.; Ramniwas, S.; Sak, K.; Aggarwal, D.; Rani, I.; Tuli, H.S. Apoptotic mechanisms of quercetin in liver cancer: Recent trends and advancements. Pharmaceutics, 2023, 15(2), 712. doi: 10.3390/pharmaceutics15020712 PMID: 36840034
- Kciuk, M.; Alam, M.; Ali, N.; Rashid, S.; Głowacka, P.; Sundaraj, R.; Celik, I.; Yahya, E.B.; Dubey, A.; Zerroug, E.; Kontek, R. Epigallocatechin-3-gallate therapeutic potential in cancer: Mechanism of action and clinical implications. Molecules, 2023, 28(13), 5246. doi: 10.3390/molecules28135246 PMID: 37446908
- Sidhu, D.; Vasundhara, M.; Dey, P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. Phytomedicine, 2024, 123, 155207. doi: 10.1016/j.phymed.2023.155207 PMID: 38000106
- Malik, P.; Singh, R.; Kumar, M.; Malik, A.; Mukherjee, T.K. Understanding the phytoestrogen genistein actions on breast cancer: Insights on estrogen receptor equivalence, pleiotropic essence and emerging paradigms in bioavailability modulation. Curr. Top. Med. Chem., 2023, 23(15), 1395-1413. doi: 10.2174/1568026623666230103163023 PMID: 36597609
- Konstantinou, E.K.; Gioxari, A.; Dimitriou, M.; Panoutsopoulos, G.I.; Panagiotopoulos, A.A. Molecular pathways of genistein activity in breast cancer cells. Int. J. Mol. Sci., 2024, 25(10), 5556. doi: 10.3390/ijms25105556 PMID: 38791595
- Chahat, J.; Jha, K.T.; Bhatia, R.; Chawla, P.A. Alkaloids as additional weapons in the fight against breast cancer: A review. Curr. Med. Chem., 2024, 31(32), 5113-5148. doi: 10.2174/0929867331666230911162527 PMID: 37702171
- Gjorgieva Ackova, D.; Maksimova, V.; Smilkov, K.; Buttari, B.; Arese, M.; Saso, L. Alkaloids as natural NRF2 inhibitors: Chemoprevention and cytotoxic action in cancer. Pharmaceuticals (Basel), 2023, 16(6), 850. doi: 10.3390/ph16060850 PMID: 37375797
- Zhang, J.; Wu, Y.; Li, Y.; Li, S.; Liu, J.; Yang, X.; Xia, G.; Wang, G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. Phytomedicine, 2024, 129, 155600. doi: 10.1016/j.phymed.2024.155600 PMID: 38614043
- Kumar, V.; Sharma, K.; Sachan, R.; Alhayyani, S.; Al-abbasi, F.A.; Singh, R.; Anwar, F. Co‐drug development of gallic acid and metformin targeting the pro‐inflammatory cytokines for the treatment of breast cancer. J. Biochem. Mol. Toxicol., 2023, 37(4), e23300. doi: 10.1002/jbt.23300 PMID: 36703564
- Keyvani-Ghamsari, S.; Rahimi, M.; Khorsandi, K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci. Nutr., 2023, 11(10), 5856-5872. doi: 10.1002/fsn3.3615 PMID: 37823155
- Raji, E.; Vahedian, V.; Golshanrad, P.; Nahavandi, R.; Behshood, P.; Soltani, N.; Gharibi, M.; Rashidi, M.; Maroufi, N.F. The potential therapeutic effects of Galbanic acid on cancer. Pathol. Res. Pract., 2023, 248, 154686. doi: 10.1016/j.prp.2023.154686 PMID: 37487315
- Mai, B.; Han, L.; Zhong, J.; Shu, J.; Cao, Z.; Fang, J.; Zhang, X.; Gao, Z.; Xiao, F. Rhoifolin alleviates alcoholic liver disease in vivo and in vitro via inhibition of the TLR4/NF-κB signaling pathway. Front. Pharmacol., 2022, 13, 878898. doi: 10.3389/fphar.2022.878898 PMID: 35685625
- Suknoppakit, P.; Wangteeraprasert, A.; Simanurak, O.; Somran, J.; Parhira, S.; Pekthong, D.; Srisawang, P. Calotropis gigantea stem bark extract activates HepG2 cell apoptosis through ROS and its effect on cytochrome P450. Heliyon, 2023, 9(5), e16375. doi: 10.1016/j.heliyon.2023.e16375 PMID: 37251821
- Yan, X.X.; Zhao, Y.Q.; He, Y.; Disayathanoowat, T.; Pandith, H.; Inta, A.; Yang, L.X. Cytotoxic and pro-apoptotic effects of botanical drugs derived from the indigenous cultivated medicinal plant Paris polyphylla var. yunnanensis. Front. Pharmacol., 2023, 14, 1100825. doi: 10.3389/fphar.2023.1100825 PMID: 36778018
- Lima, K.M.M.; Calandrini de Azevedo, L.F.; Rissino, J.D.; Vale, V.V.; Costa, E.V.S.; Dolabela, M.F.; Nagamachi, C.Y.; Pieczarka, J.C. Anticancer potential and safety profile of β-lapachone in vitro. Molecules, 2024, 29(6), 1395. doi: 10.3390/molecules29061395 PMID: 38543031
- Kim, J.; Kim, M.M. Effect of lapachol on the inhibition of matrix metalloproteinase related to the invasion of human fibrosarcoma cells. Curr. Mol. Pharmacol., 2021, 14(4), 620-626. doi: 10.2174/1874467213666201005122230 PMID: 33019942
- Vundru, S.S.; Kale, R.K.; Singh, R.P. β-sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells. BMC Complement. Altern. Med., 2013, 13(1), 280. doi: 10.1186/1472-6882-13-280 PMID: 24160369
- Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int. J. Mol. Sci., 2020, 21(16), 5920. doi: 10.3390/ijms21165920 PMID: 32824664
- Almatroodi, S.A.; Alsahli, M.A.; Rahmani, A.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules, 2022, 27(18), 5889. doi: 10.3390/molecules27185889 PMID: 36144625
- Jiang, X.; Jiang, Z.; Jiang, M.; Sun, Y. Berberine as a potential agent for the treatment of colorectal cancer. Front. Med. (Lausanne), 2022, 9, 886996. doi: 10.3389/fmed.2022.886996 PMID: 35572960
- Mallipeddi, H.; Thyagarajan, A.; Sahu, R.P. Implications of withaferin-A for triple-negative breast cancer chemoprevention. Biomed. Pharmacother., 2021, 134, 111124. doi: 10.1016/j.biopha.2020.111124 PMID: 33434782
- Khan, A.; Siddiqui, S.; Massey, S.; Saluja, D.; Husain, S.A.; Iqbal, M.A. Abstract P6-11-16: Withaferin A induces metabolic crisis in breast cancer cell lines via decreasing c-myc expression: Potential therapeutic implication. Cancer Res, 2023, 83((5-Supplement), P6-), 11-16. doi: 10.1158/1538-7445.SABCS22-P6-11-16
- Atteeq, M. Evaluating anticancer properties of withaferin A: A potent phytochemical. Front. Pharmacol., 2022, 13, 975320. doi: 10.3389/fphar.2022.975320 PMID: 36339589
- Wang, Y.; Yu, J.; Cui, R.; Lin, J.; Ding, X. Curcumin in treating breast cancer: A review. SLAS Technol., 2016, 21(6), 723-731. doi: 10.1177/2211068216655524 PMID: 27325106
- Farghadani, R.; Naidu, R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2144. doi: 10.3390/ijms23042144 PMID: 35216255
- Fu, M.; Qiu, S.X.; Xu, Y.; Wu, J.; Chen, Y.; Yu, Y.; Xiao, G. A new xanthone from the pericarp of Garcinia mangostana. Nat. Prod. Commun., 2013, 8(12), 1733-1734. doi: 10.1177/1934578X1300801219 PMID: 24555285
- Yang, L.; Xu, Z.; Wang, W. Garcinone-E exhibits anticancer effects in HeLa human cervical carcinoma cells mediated via programmed cell death, cell cycle arrest and suppression of cell migration and invasion. AMB Express, 2020, 10(1), 126. doi: 10.1186/s13568-020-01060-0 PMID: 32676834
- Jang, J.Y.; Im, E.; Kim, N.D. Mechanism of resveratrol-induced programmed cell death and new drug discovery against cancer: A review. Int. J. Mol. Sci., 2022, 23(22), 13689. doi: 10.3390/ijms232213689 PMID: 36430164
- Kursvietiene, L.; Kopustinskiene, D.M.; Staneviciene, I.; Mongirdiene, A.; Kubová, K.; Masteikova, R.; Bernatoniene, J. Anti-cancer properties of resveratrol: A focus on its impact on mitochondrial functions. Antioxidants, 2023, 12(12), 2056. doi: 10.3390/antiox12122056 PMID: 38136176
- Čižmáriková, M.; Michalková, R.; Mirossay, L.; Mojžišová, G.; Zigová, M.; Bardelčíková, A.; Mojžiš, J. Ellagic acid and cancer hallmarks: Insights from experimental evidence. Biomolecules, 2023, 13(11), 1653. doi: 10.3390/biom13111653 PMID: 38002335
- Rather, R.A.; Bhagat, M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Med., 2020, 9(24), 9181-9192. doi: 10.1002/cam4.1411 PMID: 31568659
- Lotfi, N.; Yousefi, Z.; Golabi, M.; Khalilian, P.; Ghezelbash, B.; Montazeri, M.; Shams, M.H.; Baghbadorani, P.Z.; Eskandari, N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front. Immunol., 2023, 14, 1077531. doi: 10.3389/fimmu.2023.1077531 PMID: 36926328
- Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X.; Wu, Z. A review on anti-cancer effect of green tea catechins. J. Funct. Foods, 2020, 74, 104172. doi: 10.1016/j.jff.2020.104172
- Oh, J.W.; Muthu, M.; Pushparaj, S.S.C.; Gopal, J. Anticancer therapeutic effects of green tea catechins (GTCs) when integrated with antioxidant natural components. Molecules, 2023, 28(5), 2151. doi: 10.3390/molecules28052151 PMID: 36903395
- Kim, S.H.; Kim, C.W.; Jeon, S.Y.; Go, R.E.; Hwang, K.A.; Choi, K.C. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab. Anim. Res., 2014, 30(4), 143-150. doi: 10.5625/lar.2014.30.4.143 PMID: 25628724
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; Calina, D.; Cho, W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int., 2022, 22(1), 206. doi: 10.1186/s12935-022-02624-9 PMID: 35655306
- Gonçalves, B.M.F.; Duarte, N.; Ramalhete, C.; Barbosa, F.; Madureira, A.M.; Ferreira, M.J.U. Monoterpene indole alkaloids with anticancer activity from Tabernaemontana species. Phytochem. Rev., 2024. doi: 10.1007/s11101-024-09964-6
- Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.; Duan, B.; Huang, L. Gallic acid: A potential anti-cancer agent. Chin. J. Integr. Med., 2022, 28(7), 661-671. doi: 10.1007/s11655-021-3345-2 PMID: 34755289
- Kim, J.W.; Choi, J.; Park, M.N.; Kim, B. Apoptotic effect of gallic acid via regulation of p-p38 and ER stress in PANC-1 and MIA PaCa-2 cells pancreatic cancer cells. Int. J. Mol. Sci., 2023, 24(20), 15236. doi: 10.3390/ijms242015236 PMID: 37894916
- Labbozzetta, M.; Notarbartolo, M.; Poma, P.; Maurici, A.; Inguglia, L.; Marchetti, P.; Rizzi, M.; Baruchello, R.; Simoni, D.; D’Alessandro, N. Curcumin as a possible lead compound against hormone-independent, multidrug-resistant breast cancer. Ann. N. Y. Acad. Sci., 2009, 1155(1), 278-283. doi: 10.1111/j.1749-6632.2009.03699.x PMID: 19250217
- Farooqi, A.A.; Qureshi, M.Z.; Khalid, S.; Attar, R.; Martinelli, C.; Sabitaliyevich, U.Y.; Nurmurzayevich, S.B.; Taverna, S.; Poltronieri, P.; Xu, B. Regulation of cell signaling pathways by berberine in different cancers: Searching for missing pieces of an incomplete jig-saw puzzle for an effective cancer therapy. Cancers (Basel), 2019, 11(4), 478. doi: 10.3390/cancers11040478 PMID: 30987378
- Liu, Y.; Tang, Z.G.; Lin, Y.; Qu, X.G.; Lv, W.; Wang, G.B.; Li, C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38. doi: 10.1016/j.biopha.2017.05.044 PMID: 28528183
- Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277. doi: 10.1080/01635581.2014.868910 PMID: 24447120
- Kim, S.H.; Park, H.J.; Moon, D.O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway. Oncol. Lett., 2017, 13(6), 4427-4432. doi: 10.3892/ol.2017.5950 PMID: 28599444
- Gernapudi, R.; Gernapudi, R.; Zhou, Q. Chemopreventive activities of shikonin in breast cancer. Biochem. Pharmacol. (Los Angel.), 2014, 3(4), e163. doi: 10.4172/2167-0501.1000e163
- Peng, S.J.; Li, J.; Zhou, Y.; Tuo, M.; Qin, X.X.; Yu, Q.; Cheng, H.; Li, Y.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res., 2017, 16(2), 13. doi: 10.4238/gmr16029434 PMID: 28407181
- Kucuk, O. Soy foods, isoflavones, and breast cancer. Cancer, 2017, 123(11), 1901-1903. doi: 10.1002/cncr.30614 PMID: 28263364
- Deb, G.; Thakur, V.S.; Limaye, A.M.; Gupta, S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog., 2015, 54(6), 485-499. doi: 10.1002/mc.22121 PMID: 24481780
- Atwell, L.L.; Zhang, Z.; Mori, M.; Farris, P.E.; Vetto, J.T.; Naik, A.M.; Oh, K.Y.; Thuillier, P.; Ho, E.; Shannon, J. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev. Res. (Phila.), 2015, 8(12), 1184-1191. doi: 10.1158/1940-6207.CAPR-15-0119 PMID: 26511489
- Wang, W.; Lv, M.; Wang, Y.; Zhang, J. Development of novel application of 3,3′-diindolylmethane: Sensitizing multidrug resistance human breast cancer cells to γ-irradiation. Pharm. Biol., 2016, 54(12), 3164-3168. doi: 10.1080/13880209.2016.1192198 PMID: 27307186
- News & Blog Available from: https://www.ncikenya.go.ke/
- Macharia, L.W.; Mureithi, M.W.; Anzala, O. Cancer in Kenya: Types and infection-attributable. Data from the adult population of two National referral hospitals (2008-2012). AAS Open Res., 2018, 1, 25. doi: 10.12688/aasopenres.12910.5 PMID: 32382698
- Omara, T.; Kiprop, A.K.; Wangila, P.; Wacoo, A.P.; Kagoya, S.; Nteziyaremye, P.; Peter Odero, M.; Kiwanuka Nakiguli, C.; Baker Obakiro, S. The scourge of aflatoxins in Kenya: A 60-year review (1960 to 2020). J. Food Qual., 2021, 2021, 1-31. doi: 10.1155/2021/8899839
- Bourhia, M.; Abdelaziz Shahat, A.; Mohammed Almarfadi, O.; Ali Naser, F.; Mostafa Abdelmageed, W.; Ait Haj Said, A.; El Gueddari, F.; Naamane, A.; Benbacer, L.; Khlil, N. Ethnopharmacological survey of herbal remedies used for the treatment of cancer in the greater Casablanca-Morocco. Evid. Based Complement. Alternat. Med., 2019, 2019, 1613457. doi: 10.1155/2019/1613457
- Kuruppu, A.I.; Paranagama, P.; Goonasekara, C.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J., 2019, 27(4), 565-573. doi: 10.1016/j.jsps.2019.02.004 PMID: 31061626
- Ayele, T.T. A review on traditionally used medicinal plants/herbs for cancer therapy in Ethiopia: Current status, challenge and future perspectives. Org. Chem. Curr. Res., 2018, 7(2), 1000192. doi: 10.4172/2161-0401.1000192
- Abu-Darwish, M.S.; Efferth, T. Medicinal plants from near east for cancer therapy. Front. Pharmacol., 2018, 9, 56. doi: 10.3389/fphar.2018.00056 PMID: 29445343
- Nigatu, T.; Daniel, S.; Endalamaw, G.; Beyene, P.; Stina, O. Cytotoxicity of selected Ethiopian medicinal plants used in traditional breast cancer treatment against breast-derived cell lines. J. Med. Plants Res., 2019, 13(9), 188-198. doi: 10.5897/JMPR2019.6772
- Kefalew, A.; Asfaw, Z.; Kelbessa, E. Ethnobotany of medicinal plants in Ada’a District, East Shewa Zone of Oromia Regional State, Ethiopia. J. Ethnobiol. Ethnomed., 2015, 11(1), 25. doi: 10.1186/s13002-015-0014-6 PMID: 25889311
- Belayneh, A.; Bussa, N.F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. J. Ethnobiol. Ethnomed., 2014, 10(1), 18. doi: 10.1186/1746-4269-10-18 PMID: 24499509
- Araya, S.; Abera, B.; Giday, M. Study of plants traditionally used in public and animal health management in Seharti Samre District, Southern Tigray, Ethiopia. J. Ethnobiol. Ethnomed., 2015, 11(1), 22. doi: 10.1186/s13002-015-0015-5 PMID: 25889411
- Chekole, G.; Asfaw, Z.; Kelbessa, E. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. J. Ethnobiol. Ethnomed., 2015, 11(1), 4. doi: 10.1186/1746-4269-11-4 PMID: 25572933
- Tugume, P.; Kakudidi, E.K.; Buyinza, M.; Namaalwa, J.; Kamatenesi, M.; Mucunguzi, P.; Kalema, J. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed., 2016, 12(1), 5. doi: 10.1186/s13002-015-0077-4 PMID: 26762159
- Lutoti, S.; Kaggwa, B.; Kamba, P.F.; Mukonzo, J.; Sesaazi, C.D.; Katuura, E. Ethnobotanical survey of medicinal plants used in breast cancer treatment by traditional health practitioners in Central Uganda. J. Multidiscip. Healthc., 2023, 16, 635-651. doi: 10.2147/JMDH.S387256 PMID: 36919184
- Gaobotse, G.; Venkataraman, S.; Brown, P.D.; Masisi, K.; Kwape, T.E.; Nkwe, D.O.; Rantong, G.; Makhzoum, A. The use of African medicinal plants in cancer management. Front. Pharmacol., 2023, 14, 1122388. doi: 10.3389/fphar.2023.1122388 PMID: 36865913
- Esubalew, S.T.; Belete, A.; Lulekal, E.; Gabriel, T.; Engidawork, E.; Asres, K. Review of ethnobotanical and ethnopharmacological evidences of some Ethiopian medicinal plants traditionally used for the treatment of cancer. Ethiop. J. Health Dev., 2017, 31, 161-187.
- Hassan, E.M.; Matloub, A.A.; Aboutabl, M.E.; Ibrahim, N.A.; Mohamed, S.M. Assessment of anti-inflammatory, antinociceptive, immunomodulatory, and antioxidant activities of Cajanus cajan L. seeds cultivated in Egypt and its phytochemical composition. Pharm. Biol., 2016, 54(8), 1380-1391. doi: 10.3109/13880209.2015.1078383 PMID: 26452527
- Cancer is a leading cause of death in Tanzania. Available from: https://www.tanzaniacancercare.org/
- Mtowa, A.C. Delay in seeking referral treatment among breast cancer patients at ocean road cancer institute and Muhimbili national hospitals Dar Es Salaam, Tanzania. J. Public Health Inform., 2014, 6(1), e29. doi: 10.5210/ojphi.v6i1.5067
- Matata, D.Z.; Ngassapa, O.D.; Machumi, F.; Moshi, M.J. Screening of plants used as traditional anticancer remedies in mkuranga and same districts, tanzania, using brine shrimp toxicity bioassay. Evid. Based Complement. Alternat. Med., 2018, 2018, 3034612. doi: 10.1155/2018/3034612
- Kuete, V.; Krusche, B.; Youns, M.; Voukeng, I.; Fankam, A.G.; Tankeo, S.; Lacmata, S.; Efferth, T. Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J. Ethnopharmacol., 2011, 134(3), 803-812. doi: 10.1016/j.jep.2011.01.035 PMID: 21291988
- Nabatanzi, A.M.; Nkadimeng, S.; Lall, N.; Kabasa, J.D.J.; McGaw, L. Ethnobotany, phytochemistry and pharmacological activity of Kigelia africana (Lam.) Benth. (Bignoniaceae). Plants, 2020, 9(6), 753. doi: 10.3390/plants9060753 PMID: 32549404
- WHO report on cancer: Setting priorities, investing wisely and providing care for all. 2020. Available from: https://www.who.int/publications/i/item/9789240001299
- Pace, L.E.; Dusengimana, J.M.V.; Hategekimana, V.; Habineza, H.; Bigirimana, J.B.; Tapela, N.; Mutumbira, C.; Mpanumusingo, E.; Brock, J.E.; Meserve, E.; Uwumugambi, A.; Dillon, D.; Keating, N.L.; Shulman, L.N.; Mpunga, T. Benign and malignant breast disease at Rwanda’s first public cancer referral center. Oncologist, 2016, 21(5), 571-575. doi: 10.1634/theoncologist.2015-0388 PMID: 27009935
- Cumber, S.N.; Nchanji, K.N.; Tsoka-Gwegweni, J.M. Breast cancer among women in sub-Saharan Africa: Prevalence and a situational analysis. South. Afr. J. Gynaecol. Oncol, 2017, 9(2), 35-37. doi: 10.1080/20742835.2017.1391467
- Fakudze, N.; Sarbadhikary, P.; George, B.; Abrahamse, H. Ethnomedicinal uses, phytochemistry, and anticancer potentials of African medicinal fruits: A comprehensive review. Pharmaceuticals (Basel), 2023, 16(8), 1117. doi: 10.3390/ph16081117 PMID: 37631032
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578. doi: 10.3390/ijms19061578 PMID: 29799486
Дополнительные файлы
