Utilizing Indigenous Flora in East Africa for Breast Cancer Treatment: An Overview


Цитировать

Полный текст

Аннотация

Background:Breast cancer is a significant global health challenge, contributing substantially to cancer- related deaths. Conventional treatment methods, including hormone therapy, chemotherapy, surgical interventions, and radiation, have long been utilized. However, these traditional treatments are often associated with serious side effects and drug resistance, limiting their efficacy.

Aim:This review aims to explore the potential of medicinal plants used in breast cancer management in East Africa, focusing on their bioactive compounds and anticancer properties.

Methods:A comprehensive literature search was conducted to examine the effectiveness of medicinal plants in treating breast cancer across Kenya, Ethiopia, Uganda, Tanzania, and Rwanda. Relevant studies published between 2003 and 2023 were identified using keywords related to breast cancer and medicinal plants. The search was performed across multiple databases, including Google Scholar, PubMed, Scopus, Web of Science Core Collection, and Science Direct.

Results:Numerous natural compounds found in East African medicinal plants including Cymbopogon citratus (Lemongrass,) Tabebuia avellanedae, Prunus africana (African Cherry), Euclea divinorum, Berberis holstii, Withania somnifera (Ashwagandha, Curcuma longa (Turmeric), Garcinia mangostana (Mangosteen, Vitis vinifera (Grapevine), Eugenia jambolana (Java Plum), Moringa oleifera (Drumstick Tree), Camellia sinensis (Tea), Glycine max (Soybean), Catharanthus roseus, Madagascar Periwinkle), Rhus vulgaris (Wild Currant) exhibit significant anticancer properties. These compounds have demonstrated the ability to reduce breast cancer aggressiveness, inhibit cancer cell proliferation, and modulate cancer-related pathways. Current research focuses on these natural and dietary compounds to develop more effective strategies for treating breast cancer.

Conclusion:The findings suggested that East African medicinal plants hold promise as complementary treatments for breast cancer, offering potential benefits such as affordability, cultural appropriateness, and sustainability. Further research into these plants and their bioactive compounds could revolutionize breast cancer treatment, improving survival rates and addressing the rising incidence of breast cancer-related fatalities.

Other:The review underscores the importance of continued research, conservation, and the integration of ancient healing methods to fully harness the potential of East African flora in breast cancer management.

Об авторах

Esther Alum

Department of Research and Publications, Kampala International University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Tabussam Tufail

School of Food and Biological, Engineering Jiangsu,, University Zhenjiang

Email: info@benthamscience.net

Daniel Uti

Department of Research and Publications, Kampala International University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Patrick Aja

Department of Biochemistry, Faculty of Science,, Ebonyi State University

Email: info@benthamscience.net

Christian Offor

Department of Biochemistry, Faculty of Science, Ebonyi State University

Email: info@benthamscience.net

Udu Ibiam

Department of Biochemistry, Faculty of Science, Ebonyi State University

Email: info@benthamscience.net

Chris Ukaidi

College of Economics and Management, Kampala International University

Email: info@benthamscience.net

Benedict Alum

Department of Research and Publications, Kampala International University

Email: info@benthamscience.net

Список литературы

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Lopez-Gonzalez, L.; Sanchez Cendra, A.; Sanchez Cendra, C.; Roberts Cervantes, E.D.; Espinosa, J.C.; Pekarek, T.; Fraile-Martinez, O.; García-Montero, C.; Rodriguez-Slocker, A.M.; Jiménez-Álvarez, L.; Guijarro, L.G.; Aguado-Henche, S.; Monserrat, J.; Alvarez-Mon, M.; Pekarek, L.; Ortega, M.A.; Diaz-Pedrero, R. Exploring biomarkers in breast cancer: Hallmarks of diagnosis, treatment, and follow-up in clinical practice. Medicina (Kaunas), 2024, 60(1), 168. doi: 10.3390/medicina60010168 PMID: 38256428
  3. Watkins, E.J. Overview of breast cancer. JAAPA, 2019, 32(10), 13-17. doi: 10.1097/01.JAA.0000580524.95733.3d PMID: 31513033
  4. Burguin, A.; Diorio, C.; Durocher, F. Breast cancer treatments: Updates and new challenges. J. Pers. Med., 2021, 11(8), 808. doi: 10.3390/jpm11080808 PMID: 34442452
  5. Maksymowicz, M.; Machowiec, P.; Korzeniowska, A.; Baran, N.; Bielak, A.; Nowak, A.; Cywka, Ł.; Szwed, W.; Nowak, A.; Bogusz, K. Adverse effects in the management of breast cancer – Recent studies. J. Educ. Health Sport, 2023, 37(1), 11-24. doi: 10.12775/JEHS.2023.37.01.001
  6. Obeagu, E.I.; Babar, Q.; Vincent, C.C.N.; Udenze, C.L.; Eze, R.; Okafor, C.J.; Ifionu, B.I.; Amaeze, A.A.; Amaeze, F.N. Therapeutic targets in breast cancer signaling: A review. J. Pharm. Res. Int., 2021, 33(56A), 82-99. doi: 10.9734/jpri/2021/v33i56A33889
  7. Zhu, J.; Jiao, D.; Wang, C.; Lu, Z.; Chen, X.; Li, L.; Sun, X.; Qin, L.; Guo, X.; Zhang, C.; Qiao, J.; Yan, M.; Cui, S.; Liu, Z. Neoadjuvant efficacy of three targeted therapy strategies for HER2-positive breast cancer based on the same chemotherapy regimen. Cancers (Basel), 2022, 14(18), 4508. doi: 10.3390/cancers14184508 PMID: 36139667
  8. Fadhal, E. Unraveling the significance of signal transduction pathways: Key players in cancer development and progression. J. Cancer Ther. Res., 2023, 3(1), 1-9. doi: 10.52793/JCTR.2023.3(1)-28
  9. Lin, W.H.; Cooper, L.M.; Anastasiadis, P.Z. Cadherins and catenins in cancer: Connecting cancer pathways and tumor microenvironment. Front. Cell Dev. Biol., 2023, 11, 1137013. doi: 10.3389/fcell.2023.1137013 PMID: 37255594
  10. Attiq, A.; Afzal, S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front. Pharmacol., 2023, 14, 1255727. doi: 10.3389/fphar.2023.1255727 PMID: 37680708
  11. He, K.; Gan, W.J. Wnt/β-Catenin signaling pathway in the development and progression of colorectal cancer. Cancer Manag. Res., 2023, 15, 435-448. doi: 10.2147/CMAR.S411168 PMID: 37250384
  12. Shoeb, M. Anticancer agents from medicinal plants. Bangladesh J. Pharmacol., 2008, 1(2), 35-41. doi: 10.3329/bjp.v1i2.486
  13. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. doi: 10.1021/acs.jnatprod.5b01055 PMID: 26852623
  14. Ekpono, E.U.; Aja, P.M.; Ibiam, U.A.; Alum, E.U.; Ekpono, U.E. Ethanol root-extract of Sphenocentrum jollyanum restored altered haematological markers in plasmodium berghei-infected mice. Earthline J. Chem. Sci., 2019, 2(2), 189-203. doi: 10.34198/ejcs.2219.189203
  15. Erisa, K.; Raphael, I.; Ugwu, O.P.C.; Alum, E.U. Exploration of medicinal plants used in the management of Malaria in Uganda. NIJRMS, 2023, 4(1), 101-108.
  16. Offor, C.; Ugwu Okechukwu, P.C.; Alum Esther, U. The anti-diabetic effect of ethanol leaf-extract of Allium sativum on albino rats. 2014, 4(1), 1-3. doi: 10.5829/idosi.ijpms.2014.4.1.1103.
  17. Aja, P.; Ani, O.; Offor, C.; Orji, O.; Alum, E. Evaluation of anti-diabetic effect and liver enzymes activity of ethanol extract of Pterocarpus santalinoides in alloxan induced diabetic albino rats. Glab. J. Biotech. Biochem., 2015, 10(2), 77-83. doi: 10.5829/idosi.gjbb.2015.10.02.93128
  18. Paul-Chima, U.O.; Erisa, K.; Raphael, I.; Emmanuel I, O.; Ugo, A.E.; Michael B, O.; Subbarayan, S.; Sankarapandiyan, V. Exploring indigenous medicinal plants for managing Diabetes mellitus in Uganda: Ethnobotanical insights, pharmacotherapeutic strategies, and national development alignment. INOSR Exp. Sci., 2023, 12(2), 214-224. doi: 10.59298/INOSRES/2023/2.17.1000
  19. Ugwu, O.P.C.; Alum, E.U.; Okon, M.B.; Aja, P.M.; Obeagu, E.I.; Onyeneke, E.C. Ethanol root extract and fractions of Sphenocentrum jollyanum abrogate hyperglycaemia and low body weight in streptozotocin-induced diabetic Wistar albino rats. RPS Phar. Pharm. Rep., 2023, 2(2), rqad010. doi: 10.1093/rpsppr/rqad010
  20. Agbafor, K.N.; Onuoha, S.C.; Ominyi, M.; Orinya, O.F.; Ezeani, N.; Alum, E. Antidiabetic, hypolipidemic and antiathrogenic properties of leaf extracts of Ageratum conyzoides in streptozotocin-induced diabetic rats. Middle East J. Sci. Res., 2015, 23(10), 2418-2423.
  21. Asogwa, F.C.; Okoye, C.O.B.; Ugwu Okechukwu, P.C.; Alum Esther, U.; Nzubechukwu, E.; Alum Esther, U.; Egwu Chinedu, O. Phytochemistry and antimicrobial assay of Jatropha curcas extracts on some clinically isolated bacteria: A comparative analysis. Europ. J. Appl. Sci., 2015, 7(1), 12-16. doi: 10.5829/idosi.ejas.2015.7.1.1125
  22. Aja, P.M.; Chiadikaobi, C.D.; Agu, P.C.; Ale, B.A.; Ani, O.G.; Ekpono, E.U.; Ogwoni, H.A.; Awoke, J.N.; Ogbu, P.N.; Aja, L.; Nwite, F.E.; Ukachi, O.U.; Orji, O.U.; Nweke, P.C.; Egwu, C.O.; Ekpono, E.U.; Ewa, G.O.; Igwenyi, I.O.; Tusubira, D.; Offor, C.E.; Maduagwuna, E.K.; Alum, E.U.; Uti, D.E.; Njoku, A.; Atoki, V.A.; Awuchi, C.G. Cucumeropsis mannii seed oil ameliorates bisphenol‐A‐induced adipokines dysfunctions and dyslipidemia. Food Sci. Nutr., 2023, 11(6), 2642-2653. doi: 10.1002/fsn3.3271 PMID: 37324904
  23. Uti, D.E.; Ibiam, U.A.; Omang, W.A.; Udeozor, P.A.; Umoru, G.U.; Nwadum, S.K.; Bawa, I.; Alum, E.U.; Mordi, J.C.; Okoro, E.O.; Obeten, U.N.; Onwe, E.N.; Zakari, S.; Opotu, O.R.; Aja, P.M. Buchholzia coriacea leaves attenuated dyslipidemia and oxidative stress in hyperlipidemic rats and its potential targets in silico. Pharm. Fronts, 2023, 5(3), e141-e152. doi: 10.1055/s-0043-1772607
  24. Ibiam, U.A.; Alum, E.U.; Orji, O.U.; Aja, P.M.; Nwamaka, E.N.; Ugwu, O.P.C.; Ekpono, E.U. Anti-inflammatory effects of Buchholzia coriacea ethanol leaf-extract and fractions in freund’s adjuvant-induced rheumatoid arthritic albino rats. Indo Glob. J. Pharm. Sci., 2018, 5, 6341-6357. doi: 10.5281/zenodo.1311167
  25. Ezeani, N.N.; Ibiam, U.A.; Orji, O.U.; Igwenyi, I.O.; Aloke, C.; Alum, E.; Mmaduabuchi Aja, P.; Chima Ugwu, O.P. Effects of aqueous and ethanol root extracts of Olax subscopioidea on inflammatory parameters in complete Freund’s adjuvant-collagen type II induced arthritic albino rats. Pharmacogn. J., 2019, 11(1), 16-25. doi: 10.5530/pj.2019.1.4
  26. Aloke, C.; Ibiam, U.A.; Obasi, N.A.; Orji, O.U.; Ezeani, N.N.; Aja, P.M.; Alum, E.U.; Mordi, J.C. Effect of ethanol and aqueous extracts of seed pod of Copaifera salikounda (Heckel) on complete Freund’s adjuvant‐induced rheumatoid arthritis in rats. J. Food Biochem., 2019, 43(7), e12912. doi: 10.1111/jfbc.12912 PMID: 31353723
  27. Aja, P.M.; Agu, P.C.; Ezeh, E.M.; Awoke, J.N.; Ogwoni, H.A.; Deusdedit, T.; Ekpono, E.U.; Igwenyi, I.O.; Alum, E.U.; Ugwuja, E.I.; Ibiam, A.U.; Afiukwa, C.A.; Adegboyega, A.E. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: De novo synthesis of test compounds, molecular docking, and ADMET studies. Bull. Natl. Res. Cent., 2021, 45(1), 99. doi: 10.1186/s42269-021-00554-6
  28. Ibiam, U.A.; Uti, D.E.; Ejeogo, C.C.; Orji, O.U.; Aja, P.M.; Nwamaka, E.N.; Alum, E.U.; Chukwu, C.; Aloke, C.; Chinedum, K.E.; Agu, P.; Nwobodo, V. In vivo and in silico assessment of ameliorative effects of Xylopia aethiopica on testosterone propionate-induced benign prostatic hyperplasia. Pharm. Fronts, 2023, 5(2), e64-e76. doi: 10.1055/s-0043-1768477
  29. Alum Esther, U.; Oyika, M.; Ugwu Okechukwu, P.C.; Aja, P.M.; Obeagu, E.I.; Egwu, C.; Okon, M. Comparative analysis of mineral constituents of ethanol leaf and seed extracts of Datura stramonium. 2023, 8(1), 143-151.
  30. Ibiam, U.A.; Alum, E.U.; Aja, P.M.; Orji, O.U.; Nwamaka, E.N.; Ugwu, O.P.C. Comparative analysis of chemical composition of Buchholzia coriacea ethanol leaf-extract, aqueous and ethylacetate fractions. Indo J. Pharm. Sci., 2018, 5(7), 6358-6369.
  31. Alum, E.U.; Aja, W.; Ugwu, O.P.C.; Obeagu, E.I.; Okon, M.B. Assessment of vitamin composition of ethanol leaf and seed extracts of Datura stramonium. Avicenna J. Med. Biochem., 2023, 11(1), 92-97. doi: 10.34172/ajmb.2023.2421
  32. Ugwu Okechukwu, P.C.; Ugo, E.U.; Obeagu, E.I.; Alum Esther, U.; Aja, P.M.; Ifeanyi, E.; Ben, O.M. Anti-nutritional and gas chromatography-mass spectrometry (GC-MS) analysis of ethanol root extract and fractions of Sphenocentrum jollyanum. RPS Pharm. Pharmacol., 2023, 2(2), rqad007.. doi: 10.1093/rpsppr/rqad007
  33. Huang, X.; Liang, C.; Yang, H.; Li, X.; Deng, X.; Liang, X.; Li, L.; Huang, Z.; Lu, D.; Ma, Y.; Luo, Z. Curcumin induces apoptosis and inhibits the growth of adrenocortical carcinoma: Identification of potential candidate genes and pathways by transcriptome analysis. Oncol. Lett., 2021, 21(6), 476. doi: 10.3892/ol.2021.12737 PMID: 33907586
  34. Sak, K. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract., 2012, 2012, 1-11. doi: 10.1155/2012/282570 PMID: 23320169
  35. Alum, E.U.; Ugwu, O.P.C.; Aja, P.M.; Obeagu, E.I.; Inya, J.E.; Onyeije, A.P.; Agu, E.; Awuchi, C.G. Restorative effects of ethanolic leaf extract of Datura stramonium against methotrexate-induced hematological impairments. Cogent Food Agric., 2023, 9(1), 2258774. doi: 10.1080/23311932.2023.2258774
  36. Alum, E.; Inya, J.; P.C, U.; Obeagu, E.; Chinyere, A.; Orji, O.; Onyema, O. Ethanolic leaf extract of Datura stramonium attenuates methotrexate-induced biochemicalalterations in wistar albino rats. RPS Pharm. Pharmacol. Rep., 2023, 2, rqac011. doi: 10.1093/rpsppr/rqac011
  37. Alum, E.U.; Famurewa, A.C.; Orji, O.U.; Aja, P.M.; Nwite, F.; Ohuche, S.E.; Ukasoanya, S.C.; Nnaji, L.O.; Joshua, D.; Igwe, K.U.; Chima, S.F. Nephroprotective effects of Datura stramonium leaves against methotrexate nephrotoxicity via attenuation of oxidative stress-mediated inflammation and apoptosis in rats. Avicenna J. Phytomed., 2023, 13(4), 377-387. doi: 10.22038/AJP.2023.21903 PMID: 37663387
  38. Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(6), 524-541. doi: 10.3322/caac.21754 PMID: 36190501
  39. Alum, E.U.; Umoru, G.U.; Uti, D.E.; Aja, P.M.; Ugwu, O.P.; Orji, O.U.; Nwali, B.U.; Ezeani, N.N.; Edwin, N.; Orinya, F.O. Hepato-protective effect of ethanol leaf extract of Datura stramonium in alloxan-induced diabetic albino rats. J. Chem. Soc. Niger., 2022, 47(5), 819. doi: 10.46602/jcsn.v47i5.819
  40. Nwadum, S.K.; Ibiam, U.A.; Uti, D.E.; Umoru, G.U.; Udoudoh, M.P.; Aja, P.M.; Alum, E.U.; Mordi, C.J.; Ekpono, E.U.; Obeten, U.N.; Omang, W.A.; Agada, S.A. Cocos nucifera water ameliorated hepatic complications and attenuated oxidative stress in cadmium-induced hepatotoxicity. Asian J. Biol. Sci., 2023, 16(4), 522-536. doi: 10.3923/ajbs.2023.522.536
  41. Iacopetta, D.; Ceramella, J.; Baldino, N.; Sinicropi, M.; Catalano, A. Targeting breast cancer: An overlook on current strategies. Int. J. Mol. Sci., 2023, 24(4), 3643. doi: 10.3390/ijms24043643 PMID: 36835056
  42. Satherley, L.; Lloyd, D.E. Breast cancer. Medicine (Abingdon), 2023, 51(1), 42-47. doi: 10.1016/j.mpmed.2022.10.008
  43. Begum, S.A.; Rani, S.J.; Yeruva, V. Modern methods for breast cancer diagnosis and classification: A current update. Uttar Pradesh J. Zool., 2023, 44(19), 189-204. doi: 10.56557/upjoz/2023/v44i193635
  44. O’Sullivan, C.C.; Loprinzi, C.L.; Haddad, T.C. Updates in the evaluation and management of breast cancer. Mayo Clin. Proc., 2018, 93(6), 794-807. doi: 10.1016/j.mayocp.2018.03.025 PMID: 29866283
  45. Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updat., 2011, 14(3), 150-163. doi: 10.1016/j.drup.2011.01.003 PMID: 21330184
  46. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
  47. Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2024.
  48. Cheong, A.; McGrath, S.; Cutts, S. Anthracyclines. WikiJ. Med., 2018, 5(1), 1. doi: 10.15347/wjm/2018.001
  49. Hussen, N.H.; Hasan, A.H.; Muhammed, G.O.; Yassin, A.Y.; Salih, R.R.; Esmail, P.A.; Alanazi, M.M.; Jamalis, J. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies. Curr. Org. Chem., 2023, 27(4), 363-377. doi: 10.2174/1385272827666230423144150
  50. Arrillaga-Romany, I.; Monje, M.; Wen, P.Y. Neurologic complications of oncologic therapy. In: Handbook of Neuro-Oncology Neuroimaging; Academic Press, 2016. doi: 10.1016/B978-0-12-800945-1.00015-X.
  51. Tkaczuk, K.; Yared, J. Update on taxane development: New analogs and new formulations. Drug Des. Devel. Ther., 2012, 371, 371. doi: 10.2147/DDDT.S28997
  52. Chen, H.; Zhang, M.; Deng, Y. Long noncoding RNAs in taxane resistance of breast cancer. Int. J. Mol. Sci., 2023, 24(15), 12253. doi: 10.3390/ijms241512253 PMID: 37569629
  53. Sousa-Pimenta, M.; Estevinho, L.M.; Szopa, A.; Basit, M.; Khan, K.; Armaghan, M.; Ibrayeva, M.; Sönmez Gürer, E.; Calina, D.; Hano, C.; Sharifi-Rad, J. Chemotherapeutic properties and side-effects associated with the clinical practice of terpene alkaloids: Paclitaxel, docetaxel, and cabazitaxel. Front. Pharmacol., 2023, 14, 1157306. doi: 10.3389/fphar.2023.1157306 PMID: 37229270
  54. Škubník, J.; Pavlíčková, V.; Ruml, T.; Rimpelová, S. Current perspectives on taxanes: Focus on their bioactivity, delivery and combination therapy. Plants, 2021, 10(3), 569. doi: 10.3390/plants10030569 PMID: 33802861
  55. Marupudi, N.I.; Han, J.E.; Li, K.W.; Renard, V.M.; Tyler, B.M.; Brem, H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf., 2007, 6(5), 609-621. doi: 10.1517/14740338.6.5.609 PMID: 17877447
  56. Montagna, G.; Ferraro, E.; Pilewskie, M.L. Neoadjuvant chemotherapy for nonmetastatic breast cancer. Adv. Oncol., 2022, 2(1), 47-61. doi: 10.1016/j.yao.2022.01.004
  57. Chan, Y.H.Y.; Kwok, C.C.H.; Tse, D.M.S.; Lee, H.M.; Tam, P.Y.; Cheung, P.S.Y. Preoperative considerations and benefits of neoadjuvant chemotherapy: Insights from a 12-year review of the Hong Kong breast cancer registry. Hong Kong Med. J., 2023, 29(3), 198-207. doi: 10.12809/hkmj219333 PMID: 37019476
  58. Antonini, M.; Mattar, A.; Pannain, G.D.; Gebrim, L.H.; Ferraro, O.; Lopes, R.C.G.; Real, J.M. Integrative review of clinical trials and meta-analysis of the main studies of neoadjuvant chemotherapy in the treatment of breast cancer in the past 30 years. Mastology, 2023, 33, e20230027. doi: 10.29289/2594539420230027
  59. Kelly, C.M.; Hortobagyi, G.N. Adjuvant chemotherapy in early-stage breast cancer: What, when, and for whom? Surg. Oncol. Clin. N. Am., 2010, 19(3), 649-668. doi: 10.1016/j.soc.2010.03.007 PMID: 20620933
  60. McCarthy, N.J.; Swain, S.M. Update on adjuvant chemotherapy for early breast cancer. Oncology (Williston Park), 2000, 14(9), 1267-1280. PMID: 11033824
  61. Orrantia-Borunda, E.; Anchondo-Nuñez, P.; Acuña-Aguilar, L.E.; Gómez-Valles, F.O.; Ramírez-Valdespino, C.A. Subtypes of breast cancer. In: Breast Cancer; Mayrovitz, H.N., Ed.; Exon Publications, 2022. PMID: 36122153
  62. Eng, A.; McCormack, V.; dos-Santos-Silva, I. Receptor-defined subtypes of breast cancer in indigenous populations in Africa: A systematic review and meta-analysis. PLoS Med., 2014, 11(9), e1001720. doi: 10.1371/journal.pmed.1001720 PMID: 25202974
  63. Hackbart, H.; Cui, X.; Lee, J.S. Androgen receptor in breast cancer and its clinical implication. Transl. Breast Cancer Res., 2023, 4, 30. doi: 10.21037/tbcr-23-44 PMID: 37946721
  64. Mercogliano, M.F.; Bruni, S.; Mauro, F.L.; Schillaci, R. Emerging targeted therapies for HER2-positive breast cancer. Cancers (Basel), 2023, 15(7), 1987. doi: 10.3390/cancers15071987 PMID: 37046648
  65. Obidiro, O.; Battogtokh, G.; Akala, E.O. Triple negative breast cancer treatment options and limitations: Future outlook. Pharmaceutics, 2023, 15(7), 1796. doi: 10.3390/pharmaceutics15071796 PMID: 37513983
  66. Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61. doi: 10.1186/s13058-020-01296-5 PMID: 32517735
  67. Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov., 2023, 22(2), 101-126. doi: 10.1038/s41573-022-00579-0 PMID: 36344672
  68. Mondal, J.; Panigrahi, A.K.; Khuda-Bukhsh, A.R. Conventional chemotherapy: Problems and scope for combined therapies with certain herbal products and dietary supplements. Austin. J. Mol. Cell Biol., 2014, 1(1), 10.
  69. Saldanha, S.N.; Tollefsbol, T.O. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. J. Oncol., 2012, 2012, 192464. doi: 10.1155/2012/192464
  70. Liao, G.S.; Apaya, M.K.; Shyur, L.F. Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy. Evid. Based Complement. Alternat. Med., 2013, 2013, 437948. doi: 10.1155/2013/437948
  71. Asiimwe, J.B.; Nagendrappa, P.B.; Atukunda, E.C.; Kamatenesi, M.M.; Nambozi, G.; Tolo, C.U.; Ogwang, P.E.; Sarki, A.M. Prevalence of the use of herbal medicines among patients with cancer: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2021, 2021, 9963038. doi: 10.1155/2021/9963038
  72. Omara, T.; Odero, M.P.; Obakiro, S.B. Medicinal plants used for treating cancer in Kenya: An ethnopharmacological overview. Bull. Natl. Res. Cent., 2022, 46(1), 148. doi: 10.1186/s42269-022-00840-x
  73. Isbilen, O.; Volkan, E. Anticancer activities of Allium sativum L. against MCF-7 and MDA-MB-231 breast cancer cell lines mediated by caspase-3 and caspase-9. Cyprus J. Med. Sci., 2021, 5(4), 305-312. doi: 10.5152/cjms.2020.1848
  74. Maitisha, G.; Aimaiti, M.; An, Z.; Li, X. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol. Biol. Rep., 2021, 48(11), 7261-7272. doi: 10.1007/s11033-021-06722-1 PMID: 34626309
  75. Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One, 2015, 10(8), e0135814. doi: 10.1371/journal.pone.0135814 PMID: 26288313
  76. Talib, W.H.; Awajan, D.; Alqudah, A.; Alsawwaf, R.; Althunibat, R.; Abu AlRoos, M.; Al Safadi, A.; Abu Asab, S.; Hadi, R.W.; Al Kury, L.T. Targeting cancer hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic basis and therapeutic targets. Molecules, 2024, 29(6), 1373. doi: 10.3390/molecules29061373 PMID: 38543009
  77. Moremane, M.M.; Abrahams, B.; Tiloke, C. Moringa oleifera: A review on the antiproliferative potential in breast cancer cells. Curr. Issues Mol. Biol., 2023, 45(8), 6880-6902. doi: 10.3390/cimb45080434 PMID: 37623253
  78. Ajibare, A.C.; Ebuehi, O.A.T.; Adisa, R.A.; Sofidiya, M.O.; Olugbuyiro, J.A.O.; Akinyede, K.A.; Iyiola, H.A.; Adegoke, Y.A.; Omoruyi, S.I.; Ekpo, O.E. Fractions of Hoslundia opposita Vahl and hoslundin induced apoptosis in human cancer cells via mitochondrial-dependent reactive oxygen species (ROS) generation. Biomed. Pharmacother., 2022, 153, 113475. doi: 10.1016/j.biopha.2022.113475 PMID: 36076500
  79. Singh, M.K.; Dhongade, H.; Tripathi, D.K. Orthosiphon pallidus, a potential treatment for patients with breast cancer. J. Pharmacopuncture, 2017, 20(4), 265-273. doi: 10.3831/KPI.2017.20.032 PMID: 30151296
  80. Omara, T.; Kiprop, A.K.; Ramkat, R.C.; Cherutoi, J.; Kagoya, S.; Moraa Nyangena, D.; Azeze Tebo, T.; Nteziyaremye, P.; Nyambura Karanja, L.; Jepchirchir, A.; Maiyo, A.; Jematia Kiptui, B.; Mbabazi, I.; Kiwanuka Nakiguli, C.; Nakabuye, B.V.; Chepkemoi Koske, M. Medicinal plants used in traditional management of cancer in Uganda: A review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evid. Based Complement. Alternat. Med., 2020, 2020(1), 3529081. doi: 10.1155/2020/3529081 PMID: 32256639
  81. Ibrahim, M.; Kaushik, N.; Sowemimo, A.; Odukoya, O. Review of the phytochemical and pharmacological studies of the Genus Markhamia. Pharmacogn. Rev., 2016, 10(19), 50-59. doi: 10.4103/0973-7847.176547 PMID: 27041874
  82. Matata, D.; Ngassapa, O.; Moshi, M.; Machumi, F.; Oosthuizen, K.; Swanepoel, B.; Venables, L.; Koekemoer, T.; Heydenreich, M.; Kazyoba, P.; Van de Venter, M. In vitro antioxidant and cytotoxic activity of the root extract of Aspilia mossambicensis (Oliv) wild (Asteraceae). J. Med. Plants Res., 2020, 14, 613-624. doi: 10.5897/JMPR2020.6993
  83. Obakiro, S.B.; Kiprop, A.; K’owino, I.; Andima, M.; Owor, R.O.; Chacha, R.; Kigondu, E. Phytochemical, cytotoxicity, and antimycobacterial activity evaluation of extracts and compounds from the stem bark of Albizia coriaria Welw ex. Oliver. Evid. Based Complement. Alternat. Med., 2022, 2022, 7148511. doi: 10.1155/2022/7148511
  84. Liu, R.; Choi, H.S.; Kim, S.L.; Kim, J.H.; Yun, B.S.; Lee, D.S. 6-methoxymellein isolated from carrot (Daucus carota L.) targets breast cancer stem cells by regulating NF-κB signaling. Molecules, 2020, 25(19), 4374. doi: 10.3390/molecules25194374 PMID: 32977636
  85. Wagh, A.S.; Butle, S.R. Preliminary phytochemical analysis and in vitro anticancer activity of Spathodea campanulata P. Beauv. Asian J. Pharm. Pharmacol., 2019, 5(S1), 37-41. doi: 10.31024/ajpp.2019.5.s1.3
  86. Ilango, S.; Sahoo, D.K.; Paital, B.; Kathirvel, K.; Gabriel, J.I.; Subramaniam, K.; Jayachandran, P.; Dash, R.K.; Hati, A.K.; Behera, T.R.; Mishra, P.; Nirmaladevi, R. A review on Annona muricata and its anticancer activity. Cancers (Basel), 2022, 14(18), 4539. doi: 10.3390/cancers14184539 PMID: 36139697
  87. Nabende, P.N.; Namukhosi, P. Safety and anti-proliferative activity of Prunus africana, Warburgia stuhlmannii and Maytenus senegalensis extracts in breast and colon cancer cell lines. Masters Thesis, Jomo Kenyatta University of Agriculture and Technology, 2015.
  88. Sakthive, K.M.; Kannan, N.; Angeline, A.; Guruvayoorappan, C. Anticancer activity of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica against Dalton’s ascitic lymphoma induced solid and ascitic tumor model. Asian Pac. J. Cancer Prev., 2012, 13(8), 3989-3995. doi: 10.7314/APJCP.2012.13.8.3989 PMID: 23098505
  89. Patel, F.; Upadhyay, K.; Mammen, D.; Robin, E.; Ramachandran, A.V.; Baxi, D. Phytochemical composition and antiproliferative activity of Opuntia elatior Mill.: In vitro and in silico studies on breast cancer cell line MCF-7. J. Appl. Biol. Biotechnol., 2023, 12, 117-127. doi: 10.7324/JABB.2024.144233
  90. Anago, A.D.; Gaetan Segbo, J.A.; Gnangnon, F.; Akpovi, C.D.; Agbangla, C. Some medicinal plants with anti-breast cancer activity and the input of phytotherapy in the treatment of breast cancer. Eur. Sci. J., 2023, 19(18), 66-66. doi: 10.19044/esj.2023.v19n18p66
  91. Sundararajan, P.; Dey, A.; Smith, A.; Doss, A.G.; Rajappan, M.; Natarajan, S. Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. Afr. Health Sci., 2006, 6(1), 27-30. PMID: 16615823
  92. Singh, G.; Passsari, A.K.; Singh, P.; Leo, V.V.; Subbarayan, S.; Kumar, B.; Singh, B.P. lalhlenmawia, H.; Kumar, N.S. Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS. BMC Complement. Altern. Med., 2017, 17(1), 492. doi: 10.1186/s12906-017-2000-0 PMID: 29145848
  93. Bartolome, A.P.; Villaseñor, I.M.; Yang, W.C. Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-51. doi: 10.1155/2013/340215 PMID: 23935661
  94. Basim, S.; Kasim, A. Cytotoxic activity of the ethyl acetate extract of Iraqi carica papaya leaves in breast and lung cancer cell lines. Asian Pac. J. Cancer Prev., 2023, 24(2), 581-586. doi: 10.31557/APJCP.2023.24.2.581 PMID: 36853308
  95. Ugwu Okechukwu, P.C.; Alum, E.U.; Ibiam, U.A.; Ugwuja, E.; Aja, P.M.; Igwenyi, I.; Orji, O.; Chinyere, A.; Nwam, E.N.; Egwu, C. Antioxidant effect of Buchholzia coriacea ethanol leaf-extract and fractions on freund’s adjuvant-induced arthritis in albino rats: A comparative study. Slov. Vet. Res., 2022, 59(1), 31-45. doi: 10.26873/SVR-1150-2022
  96. Obeagu, E.I.; Obeagu, G.U.; Ezeonwumelu, J.O.C.; Alum, E.U.; Ugwu, O.P.C.; Paul-Chima, O. Antioxidants and pregnancy: Impact on maternal and fetal health. NIJBAS, 2023, 4(1), 17-25. doi: 10.59298/NIJBAS/2023/1.3.11111
  97. Offor, C.; Alum, E.; P.C, U. Determination of ascorbic acid contents of fruits and vegetables. 2015, 5, 1-03. doi: 10.5829/idosi.ijpms.2015.5.1.1105
  98. Alum Esther, U.; Diana, M.C.; Okon, M.; Uti, D.; Obeagu, E.I.; Aja, P.M.; Okechukwu, E.I. Phytochemical composition of Datura stramonium ethanol leaf and seed extracts: A comparative study. 2023, 10(1), 118-125.
  99. Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: Role in cancer chemoprevention. AAPS J., 2014, 16(1), 151-163. doi: 10.1208/s12248-013-9548-5 PMID: 24307610
  100. Aggarwal, R.; Jha, M.; Shrivastava, A.; Jha, A.K. Natural compounds: Role in reversal of epigenetic changes. Biochemistry (Mosc.), 2015, 80(8), 972-989. doi: 10.1134/S0006297915080027 PMID: 26547065
  101. Chlebowski, R.T. Current concepts in breast cancer chemoprevention. Polish Archiv. Intern. Med., 2014, 124(4), 191-199. doi: 10.20452/pamw.2190 PMID: 24618912
  102. Lephart, E.D. Modulation of aromatase by phytoestrogens. Enzyme Res., 2015, 2015, 594656. doi: 10.1155/2015/594656
  103. Küpeli Akkol, E.; Bardakci, H.; Barak, T.H.; Aschner, M.; Şeker Karatoprak, G.; Khan, H.; Hussain, Y. Herbal ingredients in the prevention of breast cancer: Comprehensive review of potential molecular targets and role of natural products. Oxid. Med. Cell. Longev., 2022, 2022(5), 1-23. doi: 10.1155/2022/6044640
  104. Borin, T.; Angara, K.; Rashid, M.; Achyut, B.; Arbab, A. Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int. J. Mol. Sci., 2017, 18(12), 2661. doi: 10.3390/ijms18122661 PMID: 29292756
  105. Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med., 2018, 2018, 8324696. doi: 10.1155/2018/8324696
  106. Kuno, T.; Tsukamoto, T.; Hara, A.; Tanaka, T. Cancer chemoprevention through the induction of apoptosis by natural compounds. J. Biophys. Chem., 2012, 3(2), 156-173. doi: 10.4236/jbpc.2012.32018
  107. Dall’Acqua, S. Natural products as antimitotic agents. Curr. Top. Med. Chem., 2014, 14(20), 2272-2285. doi: 10.2174/1568026614666141130095311 PMID: 25434355
  108. Akbar, A.; Azmat, R.; Batool, M.; Almutairi, B.O.; Nadeem Riaz, M. Rhoifolin protects cisplatin mediated pulmonary toxicity via attenuation of oxidative stress, inflammatory response, apoptosis and histopathological damages. J. King Saud Univ. Sci., 2024, 36(5), 103149. doi: 10.1016/j.jksus.2024.103149
  109. Borges, V.F.; Chan, A.; Lin, N.U.; Tonda, M.E.; Shilkrut, M.; Alemany, C.A. A phase 1b/2 dose escalation and expansion study of OP-1250 in combination with ribociclib or alpelisib in patients with advanced and/or metastatic estrogen receptor–positive (ER+)/HER2-negative (HER2-) breast cancer. J. Clin. Oncol., 2023, 41(16_suppl), TPS1127-TPS1127. doi: 10.1200/JCO.2023.41.16_suppl.TPS1127
  110. Schlam, I.; Chavez-MacGregor, M. Best of the year: Advanced breast cancer in 2023. Breast, 2024, 74, 103677. doi: 10.1016/j.breast.2024.103677 PMID: 38401422
  111. Miranda, S.E.M.; de Alcantara Lemos, J.; Ottoni, F.M.; Cassali, G.D.; Townsend, D.M.; de Aguiar Ferreira, C.; Alves, R.J.; Ferreira, L.A.M.; de Barros, A.L.B. Preclinical evaluation of L-fucoside from lapachol-loaded nanoemulsion as a strategy to breast cancer treatment. Biomed. Pharmacother., 2024, 170, 116054. doi: 10.1016/j.biopha.2023.116054 PMID: 38150876
  112. Zhang, Z.; Bai, L.; Lu, C.; Li, X.; Wu, Y.; Zhang, X.; Shen, Y. Lapachol inhibits the growth of lung cancer by reversing M2-like macrophage polarization via activating NF-κB signaling pathway. Cell. Signal., 2023, 112, 110902. doi: 10.1016/j.cellsig.2023.110902 PMID: 37751828
  113. Wang, H.; Wang, Z.; Zhang, Z.; Liu, J.; Hong, L. β-sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: Mechanisms of action and future prospects. Adv. Nutr., 2023, 14(5), 1085-1110. doi: 10.1016/j.advnut.2023.05.013 PMID: 37247842
  114. Bao, X.; Zhang, Y.; Zhang, H.; Xia, L. Molecular mechanism of β-sitosterol and its derivatives in tumor progression. Front. Oncol., 2022, 12, 926975. doi: 10.3389/fonc.2022.926975 PMID: 35756648
  115. Wang, H.; Liu, J.; Zhang, Z.; Peng, J.; Wang, Z.; Yang, L.; Wang, X.; Hu, S.; Hong, L. β-sitosterol targets ASS1 for Nrf2 ubiquitin-dependent degradation, inducing ROS-mediated apoptosis via the PTEN/PI3K/AKT signaling pathway in ovarian cancer. Free Radic. Biol. Med., 2024, 214, 137-157. doi: 10.1016/j.freeradbiomed.2024.02.004 PMID: 38364944
  116. Wang, S.; Chang, X.; Zhang, J.; Li, J.; Wang, N.; Yang, B.; Pan, B.; Zheng, Y.; Wang, X.; Ou, H.; Wang, Z. Ursolic acid inhibits breast cancer metastasis by suppressing glycolytic metabolism via activating SP1/caveolin-1 signaling. Front. Oncol., 2021, 11, 745584. doi: 10.3389/fonc.2021.745584 PMID: 34568078
  117. Zhang, Y.; Ma, X.; Li, H.; Zhuang, J.; Feng, F.; Liu, L.; Liu, C.; Sun, C. Identifying the effect of ursolic acid against triple-negative breast cancer: Coupling network pharmacology with experiments verification. Front. Pharmacol., 2021, 12, 685773. doi: 10.3389/fphar.2021.685773 PMID: 34858165
  118. Yuan, R.; Tan, Y.; Sun, P.H.; Qin, B.; Liang, Z. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC. Front. Pharmacol., 2023, 14, 1122890. doi: 10.3389/fphar.2023.1122890 PMID: 36937842
  119. Goel, A. Current understanding and future prospects on Berberine for anticancer therapy. Chem. Biol. Drug Des., 2023, 102(1), 177-200. doi: 10.1111/cbdd.14231 PMID: 36905314
  120. Devarajan, N.; Nathan, J.; Mathangi, R.; Mahendra, J.; Ganesan, S.K. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J. Biochem. Mol. Toxicol., 2023, 37(3), e23278. doi: 10.1002/jbt.23278 PMID: 36588295
  121. Joil, D.; Tavhare, S.D. Role of withaferin A in the management of breast cancer: A comprehensive review. Int. J. Ayurvedic Med., 2023, 14(3), 616-623. doi: 10.47552/ijam.v14i3.3687
  122. Kumar, S.; Mathew, S.O.; Aharwal, R.P.; Tulli, H.S.; Mohan, C.D.; Sethi, G.; Ahn, K.S.; Webber, K.; Sandhu, S.S.; Bishayee, A.; Withaferin, A.; Withaferin, A. A pleiotropic anticancer agent from the indian medicinal plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel), 2023, 16(2), 160. doi: 10.3390/ph16020160 PMID: 37259311
  123. Devabattula, G.; Panda, B.; Yadav, R.; Godugu, C. The potential pharmacological effects of natural product withaferin A in cancer: Opportunities and challenges for clinical translation. Planta Med., 2024, 90(6), 440-453. doi: 10.1055/a-2289-9600 PMID: 38588695
  124. Huang, M.; Zhai, B.T.; Fan, Y.; Sun, J.; Shi, Y.J.; Zhang, X.F.; Zou, J.B.; Wang, J.W.; Guo, D.Y. Targeted drug delivery systems for curcumin in breast cancer therapy. Int. J. Nanomedicine, 2023, 18, 4275-4311. doi: 10.2147/IJN.S410688 PMID: 37534056
  125. Zhao, P.; Qiu, J.; Pan, C.; Tang, Y.; Chen, M.; Song, H.; Yang, J.; Hao, X. Potential roles and molecular mechanisms of bioactive ingredients in curcumae rhizoma against breast cancer. Phytomedicine, 2023, 114, 154810. doi: 10.1016/j.phymed.2023.154810 PMID: 37075623
  126. Zhu, J.; Li, Q.; Wu, Z.; Xu, Y.; Jiang, R. Curcumin for treating breast cancer: A review of molecular mechanisms, combinations with anticancer drugs, and nanosystems. Pharmaceutics, 2024, 16(1), 79. doi: 10.3390/pharmaceutics16010079 PMID: 38258090
  127. Mehra, A.; Sangwan, R.; Owusu, E. Xanthone derivatives: A pharmacological panorama of versatility. Curr. Bioact. Compd., 2024, 20(2024) doi: 10.2174/0115734072278162240406123303
  128. Farghadani, R.; Naidu, R. The anticancer mechanism of action of selected polyphenols in triple-negative breast cancer (TNBC). Biomed. Pharmacother., 2023, 165, 115170. doi: 10.1016/j.biopha.2023.115170 PMID: 37481930
  129. Ramakrishnan, S.; Mad Nasir, N.; Stanslas, J.; Imran Faisal Hamdi, A.; Alif Mohammad Latif, M.; Farhana Baharuddin, F. One-pot two-component synthesis of halogenated xanthone, 3-o substituted xanthone, and prenylated xanthone derivatives as aromatase inhibitors. Results Chem., 2023, 5, 100789. doi: 10.1016/j.rechem.2023.100789
  130. Song, B.; Wang, W.; Tang, X.; Goh, R.M.W.J.; Thuya, W.L.; Ho, P.C.L.; Chen, L.; Wang, L. Inhibitory potential of resveratrol in cancer metastasis: From biology to therapy. Cancers (Basel), 2023, 15(10), 2758. doi: 10.3390/cancers15102758 PMID: 37345095
  131. Cotino-Nájera, S.; Herrera, L.A.; Domínguez-Gómez, G.; Díaz-Chávez, J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front. Pharmacol., 2023, 14, 1287505. doi: 10.3389/fphar.2023.1287505 PMID: 38026933
  132. Golmohammadi, M.; Zamanian, M.Y.; Jalal, S.M.; Noraldeen, S.A.M.; Ramírez-Coronel, A.A.; Oudaha, K.H.; Obaid, R.F.; Almulla, A.F.; Bazmandegan, G.; Kamiab, Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci. Nutr., 2023, 11(12), 7458-7468. doi: 10.1002/fsn3.3699 PMID: 38107139
  133. Lu, G.; Wang, X.; Cheng, M.; Wang, S.; Ma, K. The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art. Biomed. Pharmacother., 2023, 165, 115132. doi: 10.1016/j.biopha.2023.115132 PMID: 37423169
  134. Maugeri, A.; Calderaro, A.; Patanè, G.T.; Navarra, M.; Barreca, D.; Cirmi, S.; Felice, M.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms. Int. J. Mol. Sci., 2023, 24(3), 2952. doi: 10.3390/ijms24032952 PMID: 36769274
  135. Sethi, G.; Rath, P.; Chauhan, A.; Ranjan, A.; Choudhary, R.; Ramniwas, S.; Sak, K.; Aggarwal, D.; Rani, I.; Tuli, H.S. Apoptotic mechanisms of quercetin in liver cancer: Recent trends and advancements. Pharmaceutics, 2023, 15(2), 712. doi: 10.3390/pharmaceutics15020712 PMID: 36840034
  136. Kciuk, M.; Alam, M.; Ali, N.; Rashid, S.; Głowacka, P.; Sundaraj, R.; Celik, I.; Yahya, E.B.; Dubey, A.; Zerroug, E.; Kontek, R. Epigallocatechin-3-gallate therapeutic potential in cancer: Mechanism of action and clinical implications. Molecules, 2023, 28(13), 5246. doi: 10.3390/molecules28135246 PMID: 37446908
  137. Sidhu, D.; Vasundhara, M.; Dey, P. The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies. Phytomedicine, 2024, 123, 155207. doi: 10.1016/j.phymed.2023.155207 PMID: 38000106
  138. Malik, P.; Singh, R.; Kumar, M.; Malik, A.; Mukherjee, T.K. Understanding the phytoestrogen genistein actions on breast cancer: Insights on estrogen receptor equivalence, pleiotropic essence and emerging paradigms in bioavailability modulation. Curr. Top. Med. Chem., 2023, 23(15), 1395-1413. doi: 10.2174/1568026623666230103163023 PMID: 36597609
  139. Konstantinou, E.K.; Gioxari, A.; Dimitriou, M.; Panoutsopoulos, G.I.; Panagiotopoulos, A.A. Molecular pathways of genistein activity in breast cancer cells. Int. J. Mol. Sci., 2024, 25(10), 5556. doi: 10.3390/ijms25105556 PMID: 38791595
  140. Chahat, J.; Jha, K.T.; Bhatia, R.; Chawla, P.A. Alkaloids as additional weapons in the fight against breast cancer: A review. Curr. Med. Chem., 2024, 31(32), 5113-5148. doi: 10.2174/0929867331666230911162527 PMID: 37702171
  141. Gjorgieva Ackova, D.; Maksimova, V.; Smilkov, K.; Buttari, B.; Arese, M.; Saso, L. Alkaloids as natural NRF2 inhibitors: Chemoprevention and cytotoxic action in cancer. Pharmaceuticals (Basel), 2023, 16(6), 850. doi: 10.3390/ph16060850 PMID: 37375797
  142. Zhang, J.; Wu, Y.; Li, Y.; Li, S.; Liu, J.; Yang, X.; Xia, G.; Wang, G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. Phytomedicine, 2024, 129, 155600. doi: 10.1016/j.phymed.2024.155600 PMID: 38614043
  143. Kumar, V.; Sharma, K.; Sachan, R.; Alhayyani, S.; Al-abbasi, F.A.; Singh, R.; Anwar, F. Co‐drug development of gallic acid and metformin targeting the pro‐inflammatory cytokines for the treatment of breast cancer. J. Biochem. Mol. Toxicol., 2023, 37(4), e23300. doi: 10.1002/jbt.23300 PMID: 36703564
  144. Keyvani-Ghamsari, S.; Rahimi, M.; Khorsandi, K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci. Nutr., 2023, 11(10), 5856-5872. doi: 10.1002/fsn3.3615 PMID: 37823155
  145. Raji, E.; Vahedian, V.; Golshanrad, P.; Nahavandi, R.; Behshood, P.; Soltani, N.; Gharibi, M.; Rashidi, M.; Maroufi, N.F. The potential therapeutic effects of Galbanic acid on cancer. Pathol. Res. Pract., 2023, 248, 154686. doi: 10.1016/j.prp.2023.154686 PMID: 37487315
  146. Mai, B.; Han, L.; Zhong, J.; Shu, J.; Cao, Z.; Fang, J.; Zhang, X.; Gao, Z.; Xiao, F. Rhoifolin alleviates alcoholic liver disease in vivo and in vitro via inhibition of the TLR4/NF-κB signaling pathway. Front. Pharmacol., 2022, 13, 878898. doi: 10.3389/fphar.2022.878898 PMID: 35685625
  147. Suknoppakit, P.; Wangteeraprasert, A.; Simanurak, O.; Somran, J.; Parhira, S.; Pekthong, D.; Srisawang, P. Calotropis gigantea stem bark extract activates HepG2 cell apoptosis through ROS and its effect on cytochrome P450. Heliyon, 2023, 9(5), e16375. doi: 10.1016/j.heliyon.2023.e16375 PMID: 37251821
  148. Yan, X.X.; Zhao, Y.Q.; He, Y.; Disayathanoowat, T.; Pandith, H.; Inta, A.; Yang, L.X. Cytotoxic and pro-apoptotic effects of botanical drugs derived from the indigenous cultivated medicinal plant Paris polyphylla var. yunnanensis. Front. Pharmacol., 2023, 14, 1100825. doi: 10.3389/fphar.2023.1100825 PMID: 36778018
  149. Lima, K.M.M.; Calandrini de Azevedo, L.F.; Rissino, J.D.; Vale, V.V.; Costa, E.V.S.; Dolabela, M.F.; Nagamachi, C.Y.; Pieczarka, J.C. Anticancer potential and safety profile of β-lapachone in vitro. Molecules, 2024, 29(6), 1395. doi: 10.3390/molecules29061395 PMID: 38543031
  150. Kim, J.; Kim, M.M. Effect of lapachol on the inhibition of matrix metalloproteinase related to the invasion of human fibrosarcoma cells. Curr. Mol. Pharmacol., 2021, 14(4), 620-626. doi: 10.2174/1874467213666201005122230 PMID: 33019942
  151. Vundru, S.S.; Kale, R.K.; Singh, R.P. β-sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells. BMC Complement. Altern. Med., 2013, 13(1), 280. doi: 10.1186/1472-6882-13-280 PMID: 24160369
  152. Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int. J. Mol. Sci., 2020, 21(16), 5920. doi: 10.3390/ijms21165920 PMID: 32824664
  153. Almatroodi, S.A.; Alsahli, M.A.; Rahmani, A.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules, 2022, 27(18), 5889. doi: 10.3390/molecules27185889 PMID: 36144625
  154. Jiang, X.; Jiang, Z.; Jiang, M.; Sun, Y. Berberine as a potential agent for the treatment of colorectal cancer. Front. Med. (Lausanne), 2022, 9, 886996. doi: 10.3389/fmed.2022.886996 PMID: 35572960
  155. Mallipeddi, H.; Thyagarajan, A.; Sahu, R.P. Implications of withaferin-A for triple-negative breast cancer chemoprevention. Biomed. Pharmacother., 2021, 134, 111124. doi: 10.1016/j.biopha.2020.111124 PMID: 33434782
  156. Khan, A.; Siddiqui, S.; Massey, S.; Saluja, D.; Husain, S.A.; Iqbal, M.A. Abstract P6-11-16: Withaferin A induces metabolic crisis in breast cancer cell lines via decreasing c-myc expression: Potential therapeutic implication. Cancer Res, 2023, 83((5-Supplement), P6-), 11-16. doi: 10.1158/1538-7445.SABCS22-P6-11-16
  157. Atteeq, M. Evaluating anticancer properties of withaferin A: A potent phytochemical. Front. Pharmacol., 2022, 13, 975320. doi: 10.3389/fphar.2022.975320 PMID: 36339589
  158. Wang, Y.; Yu, J.; Cui, R.; Lin, J.; Ding, X. Curcumin in treating breast cancer: A review. SLAS Technol., 2016, 21(6), 723-731. doi: 10.1177/2211068216655524 PMID: 27325106
  159. Farghadani, R.; Naidu, R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2144. doi: 10.3390/ijms23042144 PMID: 35216255
  160. Fu, M.; Qiu, S.X.; Xu, Y.; Wu, J.; Chen, Y.; Yu, Y.; Xiao, G. A new xanthone from the pericarp of Garcinia mangostana. Nat. Prod. Commun., 2013, 8(12), 1733-1734. doi: 10.1177/1934578X1300801219 PMID: 24555285
  161. Yang, L.; Xu, Z.; Wang, W. Garcinone-E exhibits anticancer effects in HeLa human cervical carcinoma cells mediated via programmed cell death, cell cycle arrest and suppression of cell migration and invasion. AMB Express, 2020, 10(1), 126. doi: 10.1186/s13568-020-01060-0 PMID: 32676834
  162. Jang, J.Y.; Im, E.; Kim, N.D. Mechanism of resveratrol-induced programmed cell death and new drug discovery against cancer: A review. Int. J. Mol. Sci., 2022, 23(22), 13689. doi: 10.3390/ijms232213689 PMID: 36430164
  163. Kursvietiene, L.; Kopustinskiene, D.M.; Staneviciene, I.; Mongirdiene, A.; Kubová, K.; Masteikova, R.; Bernatoniene, J. Anti-cancer properties of resveratrol: A focus on its impact on mitochondrial functions. Antioxidants, 2023, 12(12), 2056. doi: 10.3390/antiox12122056 PMID: 38136176
  164. Čižmáriková, M.; Michalková, R.; Mirossay, L.; Mojžišová, G.; Zigová, M.; Bardelčíková, A.; Mojžiš, J. Ellagic acid and cancer hallmarks: Insights from experimental evidence. Biomolecules, 2023, 13(11), 1653. doi: 10.3390/biom13111653 PMID: 38002335
  165. Rather, R.A.; Bhagat, M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health. Cancer Med., 2020, 9(24), 9181-9192. doi: 10.1002/cam4.1411 PMID: 31568659
  166. Lotfi, N.; Yousefi, Z.; Golabi, M.; Khalilian, P.; Ghezelbash, B.; Montazeri, M.; Shams, M.H.; Baghbadorani, P.Z.; Eskandari, N. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update. Front. Immunol., 2023, 14, 1077531. doi: 10.3389/fimmu.2023.1077531 PMID: 36926328
  167. Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X.; Wu, Z. A review on anti-cancer effect of green tea catechins. J. Funct. Foods, 2020, 74, 104172. doi: 10.1016/j.jff.2020.104172
  168. Oh, J.W.; Muthu, M.; Pushparaj, S.S.C.; Gopal, J. Anticancer therapeutic effects of green tea catechins (GTCs) when integrated with antioxidant natural components. Molecules, 2023, 28(5), 2151. doi: 10.3390/molecules28052151 PMID: 36903395
  169. Kim, S.H.; Kim, C.W.; Jeon, S.Y.; Go, R.E.; Hwang, K.A.; Choi, K.C. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab. Anim. Res., 2014, 30(4), 143-150. doi: 10.5625/lar.2014.30.4.143 PMID: 25628724
  170. Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; Calina, D.; Cho, W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int., 2022, 22(1), 206. doi: 10.1186/s12935-022-02624-9 PMID: 35655306
  171. Gonçalves, B.M.F.; Duarte, N.; Ramalhete, C.; Barbosa, F.; Madureira, A.M.; Ferreira, M.J.U. Monoterpene indole alkaloids with anticancer activity from Tabernaemontana species. Phytochem. Rev., 2024. doi: 10.1007/s11101-024-09964-6
  172. Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.; Duan, B.; Huang, L. Gallic acid: A potential anti-cancer agent. Chin. J. Integr. Med., 2022, 28(7), 661-671. doi: 10.1007/s11655-021-3345-2 PMID: 34755289
  173. Kim, J.W.; Choi, J.; Park, M.N.; Kim, B. Apoptotic effect of gallic acid via regulation of p-p38 and ER stress in PANC-1 and MIA PaCa-2 cells pancreatic cancer cells. Int. J. Mol. Sci., 2023, 24(20), 15236. doi: 10.3390/ijms242015236 PMID: 37894916
  174. Labbozzetta, M.; Notarbartolo, M.; Poma, P.; Maurici, A.; Inguglia, L.; Marchetti, P.; Rizzi, M.; Baruchello, R.; Simoni, D.; D’Alessandro, N. Curcumin as a possible lead compound against hormone-independent, multidrug-resistant breast cancer. Ann. N. Y. Acad. Sci., 2009, 1155(1), 278-283. doi: 10.1111/j.1749-6632.2009.03699.x PMID: 19250217
  175. Farooqi, A.A.; Qureshi, M.Z.; Khalid, S.; Attar, R.; Martinelli, C.; Sabitaliyevich, U.Y.; Nurmurzayevich, S.B.; Taverna, S.; Poltronieri, P.; Xu, B. Regulation of cell signaling pathways by berberine in different cancers: Searching for missing pieces of an incomplete jig-saw puzzle for an effective cancer therapy. Cancers (Basel), 2019, 11(4), 478. doi: 10.3390/cancers11040478 PMID: 30987378
  176. Liu, Y.; Tang, Z.G.; Lin, Y.; Qu, X.G.; Lv, W.; Wang, G.B.; Li, C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38. doi: 10.1016/j.biopha.2017.05.044 PMID: 28528183
  177. Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277. doi: 10.1080/01635581.2014.868910 PMID: 24447120
  178. Kim, S.H.; Park, H.J.; Moon, D.O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway. Oncol. Lett., 2017, 13(6), 4427-4432. doi: 10.3892/ol.2017.5950 PMID: 28599444
  179. Gernapudi, R.; Gernapudi, R.; Zhou, Q. Chemopreventive activities of shikonin in breast cancer. Biochem. Pharmacol. (Los Angel.), 2014, 3(4), e163. doi: 10.4172/2167-0501.1000e163
  180. Peng, S.J.; Li, J.; Zhou, Y.; Tuo, M.; Qin, X.X.; Yu, Q.; Cheng, H.; Li, Y.M. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet. Mol. Res., 2017, 16(2), 13. doi: 10.4238/gmr16029434 PMID: 28407181
  181. Kucuk, O. Soy foods, isoflavones, and breast cancer. Cancer, 2017, 123(11), 1901-1903. doi: 10.1002/cncr.30614 PMID: 28263364
  182. Deb, G.; Thakur, V.S.; Limaye, A.M.; Gupta, S. Epigenetic induction of tissue inhibitor of matrix metalloproteinase-3 by green tea polyphenols in breast cancer cells. Mol. Carcinog., 2015, 54(6), 485-499. doi: 10.1002/mc.22121 PMID: 24481780
  183. Atwell, L.L.; Zhang, Z.; Mori, M.; Farris, P.E.; Vetto, J.T.; Naik, A.M.; Oh, K.Y.; Thuillier, P.; Ho, E.; Shannon, J. Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev. Res. (Phila.), 2015, 8(12), 1184-1191. doi: 10.1158/1940-6207.CAPR-15-0119 PMID: 26511489
  184. Wang, W.; Lv, M.; Wang, Y.; Zhang, J. Development of novel application of 3,3′-diindolylmethane: Sensitizing multidrug resistance human breast cancer cells to γ-irradiation. Pharm. Biol., 2016, 54(12), 3164-3168. doi: 10.1080/13880209.2016.1192198 PMID: 27307186
  185. News & Blog Available from: https://www.ncikenya.go.ke/
  186. Macharia, L.W.; Mureithi, M.W.; Anzala, O. Cancer in Kenya: Types and infection-attributable. Data from the adult population of two National referral hospitals (2008-2012). AAS Open Res., 2018, 1, 25. doi: 10.12688/aasopenres.12910.5 PMID: 32382698
  187. Omara, T.; Kiprop, A.K.; Wangila, P.; Wacoo, A.P.; Kagoya, S.; Nteziyaremye, P.; Peter Odero, M.; Kiwanuka Nakiguli, C.; Baker Obakiro, S. The scourge of aflatoxins in Kenya: A 60-year review (1960 to 2020). J. Food Qual., 2021, 2021, 1-31. doi: 10.1155/2021/8899839
  188. Bourhia, M.; Abdelaziz Shahat, A.; Mohammed Almarfadi, O.; Ali Naser, F.; Mostafa Abdelmageed, W.; Ait Haj Said, A.; El Gueddari, F.; Naamane, A.; Benbacer, L.; Khlil, N. Ethnopharmacological survey of herbal remedies used for the treatment of cancer in the greater Casablanca-Morocco. Evid. Based Complement. Alternat. Med., 2019, 2019, 1613457. doi: 10.1155/2019/1613457
  189. Kuruppu, A.I.; Paranagama, P.; Goonasekara, C.L. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm. J., 2019, 27(4), 565-573. doi: 10.1016/j.jsps.2019.02.004 PMID: 31061626
  190. Ayele, T.T. A review on traditionally used medicinal plants/herbs for cancer therapy in Ethiopia: Current status, challenge and future perspectives. Org. Chem. Curr. Res., 2018, 7(2), 1000192. doi: 10.4172/2161-0401.1000192
  191. Abu-Darwish, M.S.; Efferth, T. Medicinal plants from near east for cancer therapy. Front. Pharmacol., 2018, 9, 56. doi: 10.3389/fphar.2018.00056 PMID: 29445343
  192. Nigatu, T.; Daniel, S.; Endalamaw, G.; Beyene, P.; Stina, O. Cytotoxicity of selected Ethiopian medicinal plants used in traditional breast cancer treatment against breast-derived cell lines. J. Med. Plants Res., 2019, 13(9), 188-198. doi: 10.5897/JMPR2019.6772
  193. Kefalew, A.; Asfaw, Z.; Kelbessa, E. Ethnobotany of medicinal plants in Ada’a District, East Shewa Zone of Oromia Regional State, Ethiopia. J. Ethnobiol. Ethnomed., 2015, 11(1), 25. doi: 10.1186/s13002-015-0014-6 PMID: 25889311
  194. Belayneh, A.; Bussa, N.F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. J. Ethnobiol. Ethnomed., 2014, 10(1), 18. doi: 10.1186/1746-4269-10-18 PMID: 24499509
  195. Araya, S.; Abera, B.; Giday, M. Study of plants traditionally used in public and animal health management in Seharti Samre District, Southern Tigray, Ethiopia. J. Ethnobiol. Ethnomed., 2015, 11(1), 22. doi: 10.1186/s13002-015-0015-5 PMID: 25889411
  196. Chekole, G.; Asfaw, Z.; Kelbessa, E. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. J. Ethnobiol. Ethnomed., 2015, 11(1), 4. doi: 10.1186/1746-4269-11-4 PMID: 25572933
  197. Tugume, P.; Kakudidi, E.K.; Buyinza, M.; Namaalwa, J.; Kamatenesi, M.; Mucunguzi, P.; Kalema, J. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed., 2016, 12(1), 5. doi: 10.1186/s13002-015-0077-4 PMID: 26762159
  198. Lutoti, S.; Kaggwa, B.; Kamba, P.F.; Mukonzo, J.; Sesaazi, C.D.; Katuura, E. Ethnobotanical survey of medicinal plants used in breast cancer treatment by traditional health practitioners in Central Uganda. J. Multidiscip. Healthc., 2023, 16, 635-651. doi: 10.2147/JMDH.S387256 PMID: 36919184
  199. Gaobotse, G.; Venkataraman, S.; Brown, P.D.; Masisi, K.; Kwape, T.E.; Nkwe, D.O.; Rantong, G.; Makhzoum, A. The use of African medicinal plants in cancer management. Front. Pharmacol., 2023, 14, 1122388. doi: 10.3389/fphar.2023.1122388 PMID: 36865913
  200. Esubalew, S.T.; Belete, A.; Lulekal, E.; Gabriel, T.; Engidawork, E.; Asres, K. Review of ethnobotanical and ethnopharmacological evidences of some Ethiopian medicinal plants traditionally used for the treatment of cancer. Ethiop. J. Health Dev., 2017, 31, 161-187.
  201. Hassan, E.M.; Matloub, A.A.; Aboutabl, M.E.; Ibrahim, N.A.; Mohamed, S.M. Assessment of anti-inflammatory, antinociceptive, immunomodulatory, and antioxidant activities of Cajanus cajan L. seeds cultivated in Egypt and its phytochemical composition. Pharm. Biol., 2016, 54(8), 1380-1391. doi: 10.3109/13880209.2015.1078383 PMID: 26452527
  202. Cancer is a leading cause of death in Tanzania. Available from: https://www.tanzaniacancercare.org/
  203. Mtowa, A.C. Delay in seeking referral treatment among breast cancer patients at ocean road cancer institute and Muhimbili national hospitals Dar Es Salaam, Tanzania. J. Public Health Inform., 2014, 6(1), e29. doi: 10.5210/ojphi.v6i1.5067
  204. Matata, D.Z.; Ngassapa, O.D.; Machumi, F.; Moshi, M.J. Screening of plants used as traditional anticancer remedies in mkuranga and same districts, tanzania, using brine shrimp toxicity bioassay. Evid. Based Complement. Alternat. Med., 2018, 2018, 3034612. doi: 10.1155/2018/3034612
  205. Kuete, V.; Krusche, B.; Youns, M.; Voukeng, I.; Fankam, A.G.; Tankeo, S.; Lacmata, S.; Efferth, T. Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J. Ethnopharmacol., 2011, 134(3), 803-812. doi: 10.1016/j.jep.2011.01.035 PMID: 21291988
  206. Nabatanzi, A.M.; Nkadimeng, S.; Lall, N.; Kabasa, J.D.J.; McGaw, L. Ethnobotany, phytochemistry and pharmacological activity of Kigelia africana (Lam.) Benth. (Bignoniaceae). Plants, 2020, 9(6), 753. doi: 10.3390/plants9060753 PMID: 32549404
  207. WHO report on cancer: Setting priorities, investing wisely and providing care for all. 2020. Available from: https://www.who.int/publications/i/item/9789240001299
  208. Pace, L.E.; Dusengimana, J.M.V.; Hategekimana, V.; Habineza, H.; Bigirimana, J.B.; Tapela, N.; Mutumbira, C.; Mpanumusingo, E.; Brock, J.E.; Meserve, E.; Uwumugambi, A.; Dillon, D.; Keating, N.L.; Shulman, L.N.; Mpunga, T. Benign and malignant breast disease at Rwanda’s first public cancer referral center. Oncologist, 2016, 21(5), 571-575. doi: 10.1634/theoncologist.2015-0388 PMID: 27009935
  209. Cumber, S.N.; Nchanji, K.N.; Tsoka-Gwegweni, J.M. Breast cancer among women in sub-Saharan Africa: Prevalence and a situational analysis. South. Afr. J. Gynaecol. Oncol, 2017, 9(2), 35-37. doi: 10.1080/20742835.2017.1391467
  210. Fakudze, N.; Sarbadhikary, P.; George, B.; Abrahamse, H. Ethnomedicinal uses, phytochemistry, and anticancer potentials of African medicinal fruits: A comprehensive review. Pharmaceuticals (Basel), 2023, 16(8), 1117. doi: 10.3390/ph16081117 PMID: 37631032
  211. Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578. doi: 10.3390/ijms19061578 PMID: 29799486

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025