Lapatinib: A Potential Therapeutic Agent for Colon Cancer Targeting Ferroptosis


Цитировать

Полный текст

Аннотация

Background:Colon cancer poses a significant threat to the lives of several patients, impacting their quality of life, thus necessitating its urgent treatment. Lapatinib, a new generation of targeted anti-tumor drugs for clinical application, has yet to be studied for its molecular mechanisms in treating colon cancer.

Objectives:This study aimed to uncover the underlying molecular mechanisms through which lapatinib exerts its therapeutic effects in colon cancer treatment.

Methods:We accessed pertinent data on patients with colon cancer from the Cancer Genome Atlas (TCGA) database and performed bioinformatics analysis to derive valuable insights. The cell counting kit-8 (CCK8) assay was employed to assess whether lapatinib has a potential inhibitory effect on the growth and proliferation of HT- 29 cells. Additionally, we employed western blot and real-time quantitative polymerase chain reaction methods to investigate whether lapatinib regulates the expression of the ferroptosis-associated protein GPX4 in HT-29 cells. Furthermore, we utilized specific assay kits to measure the levels of reactive oxygen species (ROS) and malondialdehyde in HT-29 cells treated with lapatinib, aiming to elucidate the precise pattern of cell damage induced by this compound.

Results:GPX4 exhibited high expression levels in tissues from patients with colon cancer and was significantly associated with patient prognosis and diagnosis. Lapatinib inhibited the growth and proliferation of the colon cancer cell line HT-29. Additionally, lapatinib suppressed the expression of GPX4 in HT-29 cells, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially restored its expression. Lapatinib induced an increase in intracellular ROS levels and malondialdehyde content in HT-29 cells, with Fer-1 partially restoring these levels.

Conclusion:Our findings demonstrated that lapatinib could effectively suppress the mRNA and protein expression of GPX4 in colon cancer cells, which elevates intracellular levels of ROS and malondialdehyde, ultimately inducing ferroptosis in these cells. This mechanism underscores the potential of lapatinib as a therapeutic strategy for targeting tumors.

Ключевые слова

Об авторах

Yue Sun

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province

Email: info@benthamscience.net

Dan Wang

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province

Email: info@benthamscience.net

Chen Yuan

Basic Medical College, Harbin Medical University

Email: info@benthamscience.net

Xiujuan Lang

Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Songbo Fu

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
  2. Cappell, M.S. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol. Clin. North Am., 2008, 37(1), 1-24. v. doi: 10.1016/j.gtc.2007.12.002 PMID: 18313537
  3. Kalantzis, I.; Nonni, A.; Pavlakis, K.; Delicha, E.M.; Miltiadou, K.; Kosmas, C.; Ziras, N.; Gkoumas, K.; Gakiopoulou, H. Clinicopathological differences and correlations between right and left colon cancer. World J. Clin. Cases, 2020, 8(8), 1424-1443. doi: 10.12998/wjcc.v8.i8.1424 PMID: 32368535
  4. Mirón, F.I.; Mera, V.S.; Turiño, L.J.D.; González, P.I.; Ruiz, L.M.; Santoyo, S.J. Right and left colorectal cancer: differences in post-surgical-care outcomes and survival in elderly patients. Cancers, 2021, 13(11), 2647. doi: 10.3390/cancers13112647 PMID: 34071191
  5. Dong, J.; Chen, H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med., 2018, 5, 9. doi: 10.3389/fcvm.2018.00009 PMID: 29473044
  6. Huang, Y.; Qin, Y.; He, Y.; Qiu, D.; Zheng, Y.; Wei, J.; Zhang, L.; Yang, D.H.; Li, Y. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies. Drug Resist. Updat., 2024, 74, 101082. doi: 10.1016/j.drup.2024.101082 PMID: 38569225
  7. Sun, H.; Li, X.; Liu, Q.; Sheng, H.; Zhu, L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J. Drug Target., 2024, 32(6), 672-706. doi: 10.1080/1061186X.2024.2349124 PMID: 38682299
  8. Zhao, M.; Jing, Z.; Zhou, L.; Zhao, H.; Du, Q.; Sun, Z. Pharmacokinetic research progress of anti-tumor drugs targeting for pulmonary administration. Curr. Drug Metab., 2020, 21(14), 1117-1126. doi: 10.2174/1389200221999201111193910 PMID: 33183196
  9. Wang, S.; Zhou, D.; Xu, Z.; Song, J.; Qian, X.; Lv, X.; Luan, J. Anti-tumor drug targets analysis: current insight and future prospect. Curr. Drug Targets, 2019, 20(11), 1180-1202. doi: 10.2174/1389450120666190402145325 PMID: 30947670
  10. Crisci, S.; Amitrano, F.; Saggese, M.; Muto, T.; Sarno, S.; Mele, S.; Vitale, P.; Ronga, G.; Berretta, M.; Di Francia, R. Overview of current targeted anti-cancer drugs for therapy in onco-hematology. Medicina, 2019, 55(8), 414. doi: 10.3390/medicina55080414 PMID: 31357735
  11. D’Antonio, J. Chronic myelogenous leukemia. Clin. J. Oncol. Nurs., 2005, 9(5), 535-538. doi: 10.1188/05.CJON.535-538 PMID: 16235580
  12. Heo, Y.A. Mirvetuximab soravtansine: first approval. Drugs, 2023, 83(3), 265-273. doi: 10.1007/s40265-023-01834-3 PMID: 36656533
  13. Abaza, Y.; McMahon, C.; Garcia, J.S. Advancements and challenges in the treatment of AML. Am. Soc. Clin. Oncol. Educ. Book, 2024, 44(3), e438662. doi: 10.1200/EDBK_438662 PMID: 38662975
  14. Cappuyns, S.; Corbett, V.; Yarchoan, M.; Finn, R.S.; Llovet, J.M. Critical appraisal of guideline recommendations on systemic therapies for advanced hepatocellular carcinoma. JAMA Oncol., 2024, 10(3), 395-404. doi: 10.1001/jamaoncol.2023.2677 PMID: 37535375
  15. Galvano, A.; Guarini, A.; Iacono, F.; Castiglia, M.; Rizzo, S.; Tarantini, L.; Gori, S.; Novo, G.; Bazan, V.; Russo, A. An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opin. Drug Saf., 2019, 18(6), 485-496. doi: 10.1080/14740338.2019.1613371 PMID: 31062991
  16. Franco-Juárez, E.X.; González-Villasana, V.; Camacho-Moll, M.E.; Rendón-Garlant, L.; Ramírez-Flores, P.N.; Silva-Ramírez, B.; Peñuelas-Urquides, K.; Cabello-Ruiz, E.D.; Castorena-Torres, F.; Bermúdez de León, M. Mechanistic insights about sorafenib-, valproic acid- and metformin-induced cell death in hepatocellular carcinoma. Int. J. Mol. Sci., 2024, 25(3), 1760. doi: 10.3390/ijms25031760 PMID: 38339037
  17. Jabbour, E.; Kantarjian, H.M.; Aldoss, I.; Montesinos, P.; Leonard, J.T.; Gómez-Almaguer, D.; Baer, M.R.; Gambacorti-Passerini, C.; McCloskey, J.; Minami, Y.; Papayannidis, C.; Rocha, V.; Rousselot, P.; Vachhani, P.; Wang, E.S.; Wang, B.; Hennessy, M.; Vorog, A.; Patel, N.; Yeh, T.; Ribera, J.M. Ponatinib vs imatinib in frontline philadelphia chromosome–positive acute lymphoblastic leukemia. JAMA, 2024, 331(21), 1814-1823. doi: 10.1001/jama.2024.4783 PMID: 38722621
  18. Jabbour, E.; Short, N.J.; Jain, N.; Huang, X.; Montalban-Bravo, G.; Banerjee, P.; Rezvani, K.; Jiang, X.; Kim, K.H.; Kanagal-Shamanna, R.; Khoury, J.D.; Patel, K.; Kadia, T.M.; Daver, N.; Chien, K.; Alvarado, Y.; Garcia-Manero, G.; Issa, G.C.; Haddad, F.G.; Kwari, M.; Thankachan, J.; Delumpa, R.; Macaron, W.; Garris, R.; Konopleva, M.; Ravandi, F.; Kantarjian, H. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial. Lancet Haematol., 2023, 10(1), e24-e34. doi: 10.1016/S2352-3026(22)00319-2 PMID: 36402146
  19. Motzer, R.J.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Alekseev, B.; Rha, S.Y.; Merchan, J.; Goh, J.C.; Lalani, A.K.A.; De Giorgi, U.; Melichar, B.; Hong, S.H.; Gurney, H.; Méndez-Vidal, M.J.; Kopyltsov, E.; Tjulandin, S.; Gordoa, T.A.; Kozlov, V.; Alyasova, A.; Winquist, E.; Maroto, P.; Kim, M.; Peer, A.; Procopio, G.; Takagi, T.; Wong, S.; Bedke, J.; Schmidinger, M.; Rodriguez-Lopez, K.; Burgents, J.; He, C.; Okpara, C.E.; McKenzie, J.; Choueiri, T.K.; Motzer, R.J.; Choueiri, T.; Hutson, T.; Nordquist, L.; Spigel, D.; Merchan, J.; George, S.; Srinivas, S.; Curti, B.; Pippas, A.; Heath, E.; Rao, S.; Gourdin, T.; Hashmi, M.; Burhani, N.; Molina, A.; Koletsky, A.; Alter, R.; Alemany, C.; Gartrell, B.; Cusnir, M.; Vyas, H.; Graff, S.; Squillante, C.; Knapp, M.; Percent, I.; Patel, V.; Spitz, D.; Harkness, C.; Matrana, M.; Overton, L.; Richey, S.; Richards, D.; Ghaddar, H.; Galamaga, R.; Hauke, R.; Haggerty, J.; Harris, R.; Johns, M.; Kochuparambil, S.; Kollmannsberger, C.; Shayegan, B.; Canil, C.; Winquist, E.; Sperlich, C.; Bjarnason, G.; Basappa, N.; Loidl, W.; Horninger, W.; Schmidinger, M.; D’Hondt, L.; Schrijvers, D.; Rutten, A.; Schatteman, P.; Wynendaele, W.; Luyten, D.; Sideris, S.; Gennigens, C.; Melichar, B.; Katolicka, J.; Tomasek, J.; Prausova, J.; Buchler, T.; Holeckova, P.; Barthelemy, P.; Tosi, D.; Abbar, B.; Negrier, S.; Oudard, S.; Voog, E.; Zanetta, S.; Rolland, F.; Bedke, J.; Siemer, S.; Wirth, M.; Schleicher, J.; De Santis, M.; Bergmann, L.; Staehler, M.; Ivanyi, P.; Lutz, C.; Von Amsberg, G.; Boegemann, M.; Zimmermann, U.; McDermott, R.; Bambury, R.; Donnellan, P.; Breathnach, O.; Leibowitz-Amit, R.; Goldman, O.; Peer, A.; Sarid, D.; Nechushtan, H.; Berger, R.; Neiman, V.; Calabro, F.; Pedrazzoli, P.; Boccardo, F.; Hamzaj, A.; Riccardi, F.; De Giorgi, U.; Pignata, S.; Santarossa, S.; Massari, F.; Tonini, G.; Accettura, C.; Carrozza, F.; Sabbatini, R.; Verzoni, E.; Biscaldi, E.; Suelmann, B.; van den Eertwegh, A.; van Thienen, H.; Kalinka, E.; Jassem, J.; Sulzyc-Bielicka, V.; Mandziuk, S.; Tjulandin, S.; Karyakin, O.; Alyasova, A.; Alekseev, B.; Zyrianov, A.; Matveev, V.; Kopyltsov, E.; Kozlov, V.; Arranz Arija, J.A.; Garcia, P.B.; Climent Duran, M.A.; Valderrama, B.P.; Gonzalez, E.E.; Garcia del Muro Solans, F.J.; Garcia-Donas Jimenez, J.; Gordoa, T.A.; Maroto Rey, J.P.; Gonzalez, B.M.; Mendez Vidal, M.J.; Vazquez, J.P.; Rodriguez, C.S.; Pulido, E.G.; Crespo, G.; Nuñez, N.F.; Martinez, I.D.; Beyer, J.; Fischer, N.; Glen, H.; Frazer, R.; Allison, J.; Powles, T.; Malik, J.; Ralph, C.; Rudman, S.; Geldart, T.; Bamias, A.; Baka, S.; Georgoulias, V.; Papazisis, K.; Kalofonos, H.; Timotheadou, E.; Byun, S-S.; Lim, B.; Rha, S.Y.; Seo, S.I.; Chung, J.; Kim, M.; Hong, S-H.; Lee, J.L.; Park, S.H.; Kwon, T.G.; Davis, I.; Wong, S.; Byard, I.; Weickhardt, A.; Gurney, H.; Goh, J.; Osawa, T.; Masumori, N.; Hatakeyama, S.; Saito, M.; Tomita, Y.; Miura, Y.; Nagata, M.; Kimura, G.; Oya, M.; Takagi, T.; Nakamura, Y.; Hasumi, H.; Iwamura, M.; Komiya, A.; Komaru, A.; Oyama, M.; Matsukawa, Y.; Soga, N.; Kato, M.; Nozawa, M.; Miyake, M.; Nakano, Y.; Edamura, K.; Hinata, N.; Okazoe, H.; Takahashi, M.; Eto, M.; Oba, K.; Kishida, T.; Ukimura, O. Lenvatinib plus pembrolizumab versus sunitinib in first-line treatment of advanced renal cell carcinoma: Final prespecified overall survival analysis of clear, a phase III study. J. Clin. Oncol., 2024, 42(11), 1222-1228. doi: 10.1200/JCO.23.01569 PMID: 38227898
  20. Wang, X.; Wang, L.; Yu, Q.; Liu, Z.; Li, C.; Wang, F.; Yu, Z. The effectiveness of lapatinib in HER2-positive metastatic breast cancer patients pretreated with multiline anti-HER2 treatment: A retrospective study in China. Technol. Cancer Res. Treat., 2021, 20. doi: 10.1177/15330338211037812 PMID: 34342244
  21. Press, M.F.; Ellis, C.E.; Gagnon, R.C.; Grob, T.J.; Buyse, M.; Villalobos, I.; Liang, Z.; Wu, S.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.; Park, J.O.; Jeziorski, K.; Afenjar, K.; Ma, Y.; Estrada, M.C.; Robinson, D.M.; Scherer, S.J.; Sauter, G.; Hecht, J.R.; Slamon, D.J. HER2 Status in advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma for entry to the TRIO-013/LOGiC trial of lapatinib. Mol. Cancer Ther., 2017, 16(1), 228-238. doi: 10.1158/1535-7163.MCT-15-0887 PMID: 27811012
  22. Mimura, K.; Kono, K.; Maruyama, T.; Watanabe, M.; Izawa, S.; Shiba, S.; Mizukami, Y.; Kawaguchi, Y.; Inoue, M.; Kono, T.; Choudhury, A.; Kiessling, R.; Fujii, H. Lapatinib inhibits receptor phosphorylation and cell growth and enhances antibody‐dependent cellular cytotoxicity of EGFR‐ and HER2‐overexpressing esophageal cancer cell lines. Int. J. Cancer, 2011, 129(10), 2408-2416. doi: 10.1002/ijc.25896 PMID: 21207425
  23. Voigtlaender, M.; Schneider-Merck, T.; Trepel, M. Lapatinib. Recent Results Cancer Res., 2018, 211, 19-44. doi: 10.1007/978-3-319-91442-8_2 PMID: 30069757
  24. Guan, M.; Tong, Y.; Guan, M.; Liu, X.; Wang, M.; Niu, R.; Zhang, F.; Dong, D.; Shao, J.; Zhou, Y. Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression. Technol. Cancer Res. Treat., 2018, 17. doi: 10.1177/1533034617749418 PMID: 29343208
  25. Zhang, W.J.; Li, Y.; Wei, M.N.; Chen, Y.; Qiu, J.G.; Jiang, Q.W.; Yang, Y.; Zheng, D.W.; Qin, W.M.; Huang, J.R.; Wang, K.; Zhang, W.J.; Wang, Y.J.; Yang, D.H.; Chen, Z.S.; Shi, Z. Synergistic antitumor activity of regorafenib and lapatinib in preclinical models of human colorectal cancer. Cancer Lett., 2017, 386, 100-109. doi: 10.1016/j.canlet.2016.11.011 PMID: 27864115
  26. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
  27. Yan, H.; Zou, T.; Tuo, Q.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target. Ther., 2021, 6(1), 49. doi: 10.1038/s41392-020-00428-9 PMID: 33536413
  28. Zhang, W.; Liu, Y.; Liao, Y.; Zhu, C.; Zou, Z. GPX4, ferroptosis, and diseases. Biomed. Pharmacother., 2024, 174, 116512. doi: 10.1016/j.biopha.2024.116512 PMID: 38574617
  29. Liu, P.; Zhang, Z.; Cai, Y.; Li, Z.; Zhou, Q.; Chen, Q. Ferroptosis: Mechanisms and role in diabetes mellitus and its complications. Ageing Res. Rev., 2024, 94, 102201. doi: 10.1016/j.arr.2024.102201 PMID: 38242213
  30. Ahola, S.; Langer, T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol., 2024, 34(2), 150-160. doi: 10.1016/j.tcb.2023.06.002 PMID: 37419738
  31. Shah, R.; Ibis, B.; Kashyap, M.; Boussiotis, V.A. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism, 2024, 151, 155747. doi: 10.1016/j.metabol.2023.155747 PMID: 38042522
  32. Huang, H.; Tsui, Y.M.; Ho, D.W.H.; Chung, C.Y.S.; Sze, K.M.F.; Lee, E.; Cheung, G.C.H.; Zhang, V.X.; Wang, X.; Lyu, X.; Ng, I.O.L. LANCL1, a cell surface protein, promotes liver tumor initiation through FAM49B-Rac1 axis to suppress oxidative stress. Hepatology, 2024, 79(2), 323-340. doi: 10.1097/HEP.0000000000000523 PMID: 37540188
  33. Ucche, S.; Hayakawa, Y. Immunological aspects of cancer cell metabolism. Int. J. Mol. Sci., 2024, 25(10), 5288. doi: 10.3390/ijms25105288 PMID: 38791327
  34. Gao, Y.; Liu, S.; Huang, Y.; Li, F.; Zhang, Y. Regulation of anti-tumor immunity by metal ion in the tumor microenvironment. Front. Immunol., 2024, 15, 1379365. doi: 10.3389/fimmu.2024.1379365 PMID: 38915413
  35. Bahcheli, A.T.; Min, H.K.; Bayati, M.; Zhao, H.; Fortuna, A.; Dong, W.; Dzneladze, I.; Chan, J.; Chen, X.; Guevara-Hoyer, K.; Dirks, P.B.; Huang, X.; Reimand, J. Pan-cancer ion transport signature reveals functional regulators of glioblastoma aggression. EMBO J., 2024, 43(2), 196-224. doi: 10.1038/s44318-023-00016-x PMID: 38177502
  36. Li, D.; Li, Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther., 2020, 5(1), 108. doi: 10.1038/s41392-020-00216-5 PMID: 32606298
  37. Su, Y.; Zhao, B.; Zhou, L.; Zhang, Z.; Shen, Y.; Lv, H.; AlQudsy, L.H.H.; Shang, P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett., 2020, 483, 127-136. doi: 10.1016/j.canlet.2020.02.015 PMID: 32067993
  38. Jin, J.; Fan, Z.; Long, Y.; Li, Y.; He, Q.; Yang, Y.; Zhong, W.; Lin, D.; Lian, D.; Wang, X.; Xiao, J.; Chen, Y. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel. Phytomedicine, 2024, 122, 155165. doi: 10.1016/j.phymed.2023.155165 PMID: 37922791
  39. Wu, Y.; Jia, C.; Liu, W.; Zhan, W.; Chen, Y.; Lu, J.; Bao, Y.; Wang, S.; Yu, C.; Zheng, L.; Sun, L.; Song, Z. Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer. J. Adv. Res., 2024, S2090-1232(24), 00175-9. doi: 10.1016/j.jare.2024.04.033 PMID: 38724006
  40. Zeng, F.; Ye, L.; Zhou, Q.; He, Y.; Zhang, Y.; Deng, G.; Chen, X.; Liu, H. Inhibiting SCD expression by IGF1R during lorlatinib therapy sensitizes melanoma to ferroptosis. Redox Biol., 2023, 61, 102653. doi: 10.1016/j.redox.2023.102653 PMID: 36889082
  41. Yun, Z.Y.; Wu, D.; Wang, X.; Huang, P.; Li, N. MIR ‐214‐3p overexpression‐triggered chondroitin polymerizing factor (CHPF) inhibition modulates the ferroptosis and metabolism in colon cancer. Kaohsiung J. Med. Sci., 2024, 40(3), 244-254. doi: 10.1002/kjm2.12802 PMID: 38190270
  42. Ji, X.; Chen, Z.; Lin, W.; Wu, Q.; Wu, Y.; Hong, Y.; Tong, H.; Wang, C.; Zhang, Y. Esculin induces endoplasmic reticulum stress and drives apoptosis and ferroptosis in colorectal cancer via PERK regulating eIF2α/CHOP and Nrf2/HO-1 cascades. J. Ethnopharmacol., 2024, 328, 118139. doi: 10.1016/j.jep.2024.118139 PMID: 38561058
  43. Uram, Ł.; Wróbel, K.; Walczak, M.; Szymaszek, Ż.; Twardowska, M.; Wołowiec, S. Exploring the potential of lapatinib, fulvestrant, and paclitaxel conjugated with glycidylated pamam g4 dendrimers for cancer and parasite treatment. Molecules, 2023, 28(17), 6334. doi: 10.3390/molecules28176334 PMID: 37687164
  44. Fehm, T.; Mueller, V.; Banys-Paluchowski, M.; Fasching, P.A.; Friedl, T.W.P.; Hartkopf, A.; Huober, J.; Loehberg, C.; Rack, B.; Riethdorf, S.; Schneeweiss, A.; Wallwiener, D.; Meier-Stiegen, F.; Krawczyk, N.; Jaeger, B.; Reinhardt, F.; Hoffmann, O.; Mueller, L.; Wimberger, P.; Ruckhaeberle, E.; Blohmer, J.U.; Cieslik, J.P.; Franken, A.; Niederacher, D.; Neubauer, H.; Pantel, K.; Janni, W. Efficacy of lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells—the DETECT III clinical trial. Clin. Chem., 2024, 70(1), 307-318. doi: 10.1093/clinchem/hvad144 PMID: 38175595
  45. Ni, J.; Chen, K.; Zhang, J.; Zhang, X. Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells. Biochem. Biophys. Res. Commun., 2021, 567, 154-160. doi: 10.1016/j.bbrc.2021.06.051 PMID: 34157442
  46. Mansour, H.M.F.; Mohamed, A.; Khattab, M.M.; El-Khatib, A.S. Lapatinib ditosylate rescues motor deficits in rotenone-intoxicated rats: Potential repurposing of anti-cancer drug as a disease-modifying agent in Parkinson’s disease. Eur. J. Pharmacol., 2023, 954, 175875. doi: 10.1016/j.ejphar.2023.175875 PMID: 37385578
  47. Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307. doi: 10.1038/cddis.2016.208 PMID: 27441659
  48. Fu, D.; Wang, C.; Yu, L.; Yu, R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell. Mol. Biol. Lett., 2021, 26(1), 26. doi: 10.1186/s11658-021-00271-y PMID: 34098867
  49. Gong, D.; Chen, M.; Wang, Y.; Shi, J.; Hou, Y. Role of ferroptosis on tumor progression and immunotherapy. Cell Death Discov., 2022, 8(1), 427. doi: 10.1038/s41420-022-01218-8 PMID: 36289191
  50. Xu, T.; Liu, Y.; Zhao, Z.; Liu, J.; Chai, J.; Yang, Y.; Zuo, S.; Li, M.; Jia, Q. Ferroptosis in cancer stem cells. Pathol. Res. Pract., 2023, 245, 154492. doi: 10.1016/j.prp.2023.154492 PMID: 37119732
  51. Wang, X.; Tan, X.; Zhang, J.; Wu, J.; Shi, H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun. Signal., 2023, 21(1), 200. doi: 10.1186/s12964-023-01170-9 PMID: 37580745
  52. Saint-Germain, E.; Mignacca, L.; Vernier, M.; Bobbala, D.; Ilangumaran, S.; Ferbeyre, G. SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. Aging, 2017, 9(10), 2137-2162. doi: 10.18632/aging.101306 PMID: 29081404
  53. Ge, F.; Wang, Y.; Sharma, A.; Jaehde, U.; Essler, M.; Schmid, M.; Schmidt-Wolf, I.G.H. Computational analysis of heat shock proteins and ferroptosis-associated lncRNAs to predict prognosis in acute myeloid leukemia patients. Front. Genet., 2023, 14, 1218276. doi: 10.3389/fgene.2023.1218276 PMID: 37600655
  54. Qu, Z.; Pang, X.; Mei, Z.; Li, Y.; Zhang, Y.; Huang, C.; Liu, K.; Yu, S.; Wang, C.; Sun, Z.; Liu, Y.; Li, X.; Jia, Y.; Dong, Y.; Lu, M.; Ju, T.; Wu, F.; Huang, M.; Li, N.; Dou, S.; Jiang, J.; Dong, X.; Zhang, Y.; Li, W.; Yang, B.; Du, W. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury. Redox Biol., 2024, 72, 103145. doi: 10.1016/j.redox.2024.103145 PMID: 38583415
  55. Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532. doi: 10.18632/oncoscience.160 PMID: 26097885
  56. Li, Y.; Xia, J.; Shao, F.; Zhou, Y.; Yu, J.; Wu, H.; Du, J.; Ren, X. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis. Biochem. Biophys. Res. Commun., 2021, 534, 877-884. doi: 10.1016/j.bbrc.2020.10.083 PMID: 33162029
  57. Liu, M.; Shi, C.; Song, Q.; Kang, M.; Jiang, X.; Liu, H.; Pei, D. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma. Hepatol. Commun., 2023, 7(10), e0246. doi: 10.1097/HC9.0000000000000246 PMID: 37695069
  58. Cui, W.; Guo, M.; Liu, D.; Xiao, P.; Yang, C.; Huang, H.; Liang, C.; Yang, Y.; Fu, X.; Zhang, Y.; Liu, J.; Shi, S.; Cong, J.; Han, Z.; Xu, Y.; Du, L.; Yin, C.; Zhang, Y.; Sun, J.; Gu, W.; Chai, R.; Zhu, S.; Chu, B. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nat. Cell Biol., 2024, 26(1), 124-137. doi: 10.1038/s41556-023-01314-6 PMID: 38168770
  59. Wang, Z.; Erb, B. Receptors and cancer. Methods Mol. Biol., 2017, 1652, 3-35. doi: 10.1007/978-1-4939-7219-7_1 PMID: 28791631
  60. Pellat, A.; Vaquero, J.; Fouassier, L. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology, 2018, 67(2), 762-773. doi: 10.1002/hep.29350 PMID: 28671339
  61. Kumar, R.; George, B.; Campbell, M.R.; Verma, N.; Paul, A.M.; Melo-Alvim, C.; Ribeiro, L.; Pillai, M.R.; da Costa, L.M.; Moasser, M.M. HER family in cancer progression: From discovery to 2020 and beyond. Adv. Cancer Res., 2020, 147, 109-160. doi: 10.1016/bs.acr.2020.04.001 PMID: 32593399
  62. Krishnamurti, U.; Silverman, J.F. HER2 in breast cancer: a review and update. Adv. Anat. Pathol., 2014, 21(2), 100-107. doi: 10.1097/PAP.0000000000000015 PMID: 24508693
  63. Park, J.W.; Neve, R.M.; Szollosi, J.; Benz, C.C. Unraveling the biologic and clinical complexities of HER2. Clin. Breast Cancer, 2008, 8(5), 392-401. doi: 10.3816/CBC.2008.n.047 PMID: 18952552
  64. Li, X.; Xu, Y.; Ding, Y.; Li, C.; Zhao, H.; Wang, J.; Meng, S. Posttranscriptional upregulation of HER3 by HER2 mRNA induces trastuzumab resistance in breast cancer. Mol. Cancer, 2018, 17(1), 113. doi: 10.1186/s12943-018-0862-5 PMID: 30068375
  65. López-Guerrero, J.A.; Llombart-Cussac, A.; Noguera, R.; Navarro, S.; Pellin, A.; Almenar, S.; Vazquez-Alvadalejo, C.; Llombart-Bosch, A. HER2 amplification in recurrent breast cancer following breast‐conserving therapy correlates with distant metastasis and poor survival. Int. J. Cancer, 2006, 118(7), 1743-1749. doi: 10.1002/ijc.21497 PMID: 16217770
  66. Cheang, M.C.U.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; Perou, C.M.; Ellis, M.J.; Nielsen, T.O. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst., 2009, 101(10), 736-750. doi: 10.1093/jnci/djp082 PMID: 19436038
  67. Daniele, L.; Sapino, A. Anti-HER2 treatment and breast cancer: state of the art, recent patents, and new strategies. Recent Patents Anticancer Drug Discov., 2009, 4(1), 9-18. doi: 10.2174/157489209787002489 PMID: 19149684
  68. Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K.J.; Rusnak, D.W.; Gilmer, T.M.; Shewchuk, L. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res., 2004, 64(18), 6652-6659. doi: 10.1158/0008-5472.CAN-04-1168 PMID: 15374980
  69. Scaltriti, M.; Rojo, F.; Ocaña, A.; Anido, J.; Guzman, M.; Cortes, J.; Di Cosimo, S.; Matias-Guiu, X.; Ramon y Cajal, S.; Arribas, J.; Baselga, J. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl. Cancer Inst., 2007, 99(8), 628-638. doi: 10.1093/jnci/djk134 PMID: 17440164
  70. Wang, S.; Li, Y.; Lin, Y.; Li, J.; Guo, L.; Wang, H.; Lin, X.; Liu, Z.; Zhang, B.; Liao, Z.; Zhang, Z. Bioinformatics analysis and experimental verification of the cancer-promoting effect of DHODH in clear cell renal cell carcinoma. Sci. Rep., 2024, 14(1), 11985. doi: 10.1038/s41598-024-62738-0 PMID: 38796629
  71. García-Lainez, G.; Vayá, I.; Marín, M.P.; Miranda, M.A.; Andreu, I. In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Arch. Toxicol., 2021, 95(1), 169-178. doi: 10.1007/s00204-020-02880-6 PMID: 32815004
  72. Jiang, L.; Zeng, Y.; Ai, L.; Yan, H.; Yang, X.; Luo, P.; Yang, B.; Xu, Z.; He, Q. Decreased HMGB1 expression contributed to cutaneous toxicity caused by lapatinib. Biochem. Pharmacol., 2022, 201, 115105. doi: 10.1016/j.bcp.2022.115105 PMID: 35617997
  73. McGill, M.R.; Kaufmann, Y.; LoBianco, F.V.; Schleiff, M.A.; Aykin-Burns, N.; Miller, G.P. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity. Livers, 2023, 3(2), 310-321. doi: 10.3390/livers3020022 PMID: 38037613
  74. Chen, S.; Li, X.; Li, Y.; He, X.; Bryant, M.; Qin, X.; Li, F.; Seo, J.E.; Guo, X.; Mei, N.; Guo, L. The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib. Toxicol. Sci., 2024, 197(1), 69-78. doi: 10.1093/toxsci/kfad099 PMID: 37788138
  75. Du, K.; Liu, Y.; Zhang, L.; Peng, L.; Dong, W.; Jiang, Y.; Niu, M.; Sun, Y.; Wu, C.; Niu, Y.; Ding, Y. Lapatinib combined with doxorubicin causes dose-dependent cardiotoxicity partially through activating the p38MAPK signaling pathway in zebrafish embryos. Biomed. Pharmacother., 2024, 175, 116637. doi: 10.1016/j.biopha.2024.116637 PMID: 38653111
  76. Sun, L.; Wang, H.; Xu, D.; Yu, S.; Zhang, L.; Li, X. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered, 2022, 13(1), 48-60. doi: 10.1080/21655979.2021.2004980 PMID: 34898356
  77. Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; Omberg, L.; Wolf, D.M.; Shriver, C.D.; Thorsson, V.; Hu, H.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbro, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Angulo Gonzalez, A.M.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Mora Pinero, E.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 2018, 173(2), 400-416.e11. doi: 10.1016/j.cell.2018.02.052 PMID: 29625055

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025