Lapatinib: A Potential Therapeutic Agent for Colon Cancer Targeting Ferroptosis
- Авторы: Sun Y.1, Wang D.1, Yuan C.2, Lang X.3, Fu S.1
-
Учреждения:
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province
- Basic Medical College, Harbin Medical University
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology
- Выпуск: Том 25, № 2 (2025)
- Страницы: 114-123
- Раздел: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694477
- DOI: https://doi.org/10.2174/0118715206327756240830062531
- ID: 694477
Цитировать
Полный текст
Аннотация
Background:Colon cancer poses a significant threat to the lives of several patients, impacting their quality of life, thus necessitating its urgent treatment. Lapatinib, a new generation of targeted anti-tumor drugs for clinical application, has yet to be studied for its molecular mechanisms in treating colon cancer.
Objectives:This study aimed to uncover the underlying molecular mechanisms through which lapatinib exerts its therapeutic effects in colon cancer treatment.
Methods:We accessed pertinent data on patients with colon cancer from the Cancer Genome Atlas (TCGA) database and performed bioinformatics analysis to derive valuable insights. The cell counting kit-8 (CCK8) assay was employed to assess whether lapatinib has a potential inhibitory effect on the growth and proliferation of HT- 29 cells. Additionally, we employed western blot and real-time quantitative polymerase chain reaction methods to investigate whether lapatinib regulates the expression of the ferroptosis-associated protein GPX4 in HT-29 cells. Furthermore, we utilized specific assay kits to measure the levels of reactive oxygen species (ROS) and malondialdehyde in HT-29 cells treated with lapatinib, aiming to elucidate the precise pattern of cell damage induced by this compound.
Results:GPX4 exhibited high expression levels in tissues from patients with colon cancer and was significantly associated with patient prognosis and diagnosis. Lapatinib inhibited the growth and proliferation of the colon cancer cell line HT-29. Additionally, lapatinib suppressed the expression of GPX4 in HT-29 cells, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially restored its expression. Lapatinib induced an increase in intracellular ROS levels and malondialdehyde content in HT-29 cells, with Fer-1 partially restoring these levels.
Conclusion:Our findings demonstrated that lapatinib could effectively suppress the mRNA and protein expression of GPX4 in colon cancer cells, which elevates intracellular levels of ROS and malondialdehyde, ultimately inducing ferroptosis in these cells. This mechanism underscores the potential of lapatinib as a therapeutic strategy for targeting tumors.
Ключевые слова
Об авторах
Yue Sun
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province
Email: info@benthamscience.net
Dan Wang
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province
Email: info@benthamscience.net
Chen Yuan
Basic Medical College, Harbin Medical University
Email: info@benthamscience.net
Xiujuan Lang
Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology
Автор, ответственный за переписку.
Email: info@benthamscience.net
Songbo Fu
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263. doi: 10.3322/caac.21834 PMID: 38572751
- Cappell, M.S. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol. Clin. North Am., 2008, 37(1), 1-24. v. doi: 10.1016/j.gtc.2007.12.002 PMID: 18313537
- Kalantzis, I.; Nonni, A.; Pavlakis, K.; Delicha, E.M.; Miltiadou, K.; Kosmas, C.; Ziras, N.; Gkoumas, K.; Gakiopoulou, H. Clinicopathological differences and correlations between right and left colon cancer. World J. Clin. Cases, 2020, 8(8), 1424-1443. doi: 10.12998/wjcc.v8.i8.1424 PMID: 32368535
- Mirón, F.I.; Mera, V.S.; Turiño, L.J.D.; González, P.I.; Ruiz, L.M.; Santoyo, S.J. Right and left colorectal cancer: differences in post-surgical-care outcomes and survival in elderly patients. Cancers, 2021, 13(11), 2647. doi: 10.3390/cancers13112647 PMID: 34071191
- Dong, J.; Chen, H. Cardiotoxicity of anticancer therapeutics. Front. Cardiovasc. Med., 2018, 5, 9. doi: 10.3389/fcvm.2018.00009 PMID: 29473044
- Huang, Y.; Qin, Y.; He, Y.; Qiu, D.; Zheng, Y.; Wei, J.; Zhang, L.; Yang, D.H.; Li, Y. Advances in molecular targeted drugs in combination with CAR-T cell therapy for hematologic malignancies. Drug Resist. Updat., 2024, 74, 101082. doi: 10.1016/j.drup.2024.101082 PMID: 38569225
- Sun, H.; Li, X.; Liu, Q.; Sheng, H.; Zhu, L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J. Drug Target., 2024, 32(6), 672-706. doi: 10.1080/1061186X.2024.2349124 PMID: 38682299
- Zhao, M.; Jing, Z.; Zhou, L.; Zhao, H.; Du, Q.; Sun, Z. Pharmacokinetic research progress of anti-tumor drugs targeting for pulmonary administration. Curr. Drug Metab., 2020, 21(14), 1117-1126. doi: 10.2174/1389200221999201111193910 PMID: 33183196
- Wang, S.; Zhou, D.; Xu, Z.; Song, J.; Qian, X.; Lv, X.; Luan, J. Anti-tumor drug targets analysis: current insight and future prospect. Curr. Drug Targets, 2019, 20(11), 1180-1202. doi: 10.2174/1389450120666190402145325 PMID: 30947670
- Crisci, S.; Amitrano, F.; Saggese, M.; Muto, T.; Sarno, S.; Mele, S.; Vitale, P.; Ronga, G.; Berretta, M.; Di Francia, R. Overview of current targeted anti-cancer drugs for therapy in onco-hematology. Medicina, 2019, 55(8), 414. doi: 10.3390/medicina55080414 PMID: 31357735
- D’Antonio, J. Chronic myelogenous leukemia. Clin. J. Oncol. Nurs., 2005, 9(5), 535-538. doi: 10.1188/05.CJON.535-538 PMID: 16235580
- Heo, Y.A. Mirvetuximab soravtansine: first approval. Drugs, 2023, 83(3), 265-273. doi: 10.1007/s40265-023-01834-3 PMID: 36656533
- Abaza, Y.; McMahon, C.; Garcia, J.S. Advancements and challenges in the treatment of AML. Am. Soc. Clin. Oncol. Educ. Book, 2024, 44(3), e438662. doi: 10.1200/EDBK_438662 PMID: 38662975
- Cappuyns, S.; Corbett, V.; Yarchoan, M.; Finn, R.S.; Llovet, J.M. Critical appraisal of guideline recommendations on systemic therapies for advanced hepatocellular carcinoma. JAMA Oncol., 2024, 10(3), 395-404. doi: 10.1001/jamaoncol.2023.2677 PMID: 37535375
- Galvano, A.; Guarini, A.; Iacono, F.; Castiglia, M.; Rizzo, S.; Tarantini, L.; Gori, S.; Novo, G.; Bazan, V.; Russo, A. An update on the conquests and perspectives of cardio-oncology in the field of tumor angiogenesis-targeting TKI-based therapy. Expert Opin. Drug Saf., 2019, 18(6), 485-496. doi: 10.1080/14740338.2019.1613371 PMID: 31062991
- Franco-Juárez, E.X.; González-Villasana, V.; Camacho-Moll, M.E.; Rendón-Garlant, L.; Ramírez-Flores, P.N.; Silva-Ramírez, B.; Peñuelas-Urquides, K.; Cabello-Ruiz, E.D.; Castorena-Torres, F.; Bermúdez de León, M. Mechanistic insights about sorafenib-, valproic acid- and metformin-induced cell death in hepatocellular carcinoma. Int. J. Mol. Sci., 2024, 25(3), 1760. doi: 10.3390/ijms25031760 PMID: 38339037
- Jabbour, E.; Kantarjian, H.M.; Aldoss, I.; Montesinos, P.; Leonard, J.T.; Gómez-Almaguer, D.; Baer, M.R.; Gambacorti-Passerini, C.; McCloskey, J.; Minami, Y.; Papayannidis, C.; Rocha, V.; Rousselot, P.; Vachhani, P.; Wang, E.S.; Wang, B.; Hennessy, M.; Vorog, A.; Patel, N.; Yeh, T.; Ribera, J.M. Ponatinib vs imatinib in frontline philadelphia chromosome–positive acute lymphoblastic leukemia. JAMA, 2024, 331(21), 1814-1823. doi: 10.1001/jama.2024.4783 PMID: 38722621
- Jabbour, E.; Short, N.J.; Jain, N.; Huang, X.; Montalban-Bravo, G.; Banerjee, P.; Rezvani, K.; Jiang, X.; Kim, K.H.; Kanagal-Shamanna, R.; Khoury, J.D.; Patel, K.; Kadia, T.M.; Daver, N.; Chien, K.; Alvarado, Y.; Garcia-Manero, G.; Issa, G.C.; Haddad, F.G.; Kwari, M.; Thankachan, J.; Delumpa, R.; Macaron, W.; Garris, R.; Konopleva, M.; Ravandi, F.; Kantarjian, H. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial. Lancet Haematol., 2023, 10(1), e24-e34. doi: 10.1016/S2352-3026(22)00319-2 PMID: 36402146
- Motzer, R.J.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Alekseev, B.; Rha, S.Y.; Merchan, J.; Goh, J.C.; Lalani, A.K.A.; De Giorgi, U.; Melichar, B.; Hong, S.H.; Gurney, H.; Méndez-Vidal, M.J.; Kopyltsov, E.; Tjulandin, S.; Gordoa, T.A.; Kozlov, V.; Alyasova, A.; Winquist, E.; Maroto, P.; Kim, M.; Peer, A.; Procopio, G.; Takagi, T.; Wong, S.; Bedke, J.; Schmidinger, M.; Rodriguez-Lopez, K.; Burgents, J.; He, C.; Okpara, C.E.; McKenzie, J.; Choueiri, T.K.; Motzer, R.J.; Choueiri, T.; Hutson, T.; Nordquist, L.; Spigel, D.; Merchan, J.; George, S.; Srinivas, S.; Curti, B.; Pippas, A.; Heath, E.; Rao, S.; Gourdin, T.; Hashmi, M.; Burhani, N.; Molina, A.; Koletsky, A.; Alter, R.; Alemany, C.; Gartrell, B.; Cusnir, M.; Vyas, H.; Graff, S.; Squillante, C.; Knapp, M.; Percent, I.; Patel, V.; Spitz, D.; Harkness, C.; Matrana, M.; Overton, L.; Richey, S.; Richards, D.; Ghaddar, H.; Galamaga, R.; Hauke, R.; Haggerty, J.; Harris, R.; Johns, M.; Kochuparambil, S.; Kollmannsberger, C.; Shayegan, B.; Canil, C.; Winquist, E.; Sperlich, C.; Bjarnason, G.; Basappa, N.; Loidl, W.; Horninger, W.; Schmidinger, M.; D’Hondt, L.; Schrijvers, D.; Rutten, A.; Schatteman, P.; Wynendaele, W.; Luyten, D.; Sideris, S.; Gennigens, C.; Melichar, B.; Katolicka, J.; Tomasek, J.; Prausova, J.; Buchler, T.; Holeckova, P.; Barthelemy, P.; Tosi, D.; Abbar, B.; Negrier, S.; Oudard, S.; Voog, E.; Zanetta, S.; Rolland, F.; Bedke, J.; Siemer, S.; Wirth, M.; Schleicher, J.; De Santis, M.; Bergmann, L.; Staehler, M.; Ivanyi, P.; Lutz, C.; Von Amsberg, G.; Boegemann, M.; Zimmermann, U.; McDermott, R.; Bambury, R.; Donnellan, P.; Breathnach, O.; Leibowitz-Amit, R.; Goldman, O.; Peer, A.; Sarid, D.; Nechushtan, H.; Berger, R.; Neiman, V.; Calabro, F.; Pedrazzoli, P.; Boccardo, F.; Hamzaj, A.; Riccardi, F.; De Giorgi, U.; Pignata, S.; Santarossa, S.; Massari, F.; Tonini, G.; Accettura, C.; Carrozza, F.; Sabbatini, R.; Verzoni, E.; Biscaldi, E.; Suelmann, B.; van den Eertwegh, A.; van Thienen, H.; Kalinka, E.; Jassem, J.; Sulzyc-Bielicka, V.; Mandziuk, S.; Tjulandin, S.; Karyakin, O.; Alyasova, A.; Alekseev, B.; Zyrianov, A.; Matveev, V.; Kopyltsov, E.; Kozlov, V.; Arranz Arija, J.A.; Garcia, P.B.; Climent Duran, M.A.; Valderrama, B.P.; Gonzalez, E.E.; Garcia del Muro Solans, F.J.; Garcia-Donas Jimenez, J.; Gordoa, T.A.; Maroto Rey, J.P.; Gonzalez, B.M.; Mendez Vidal, M.J.; Vazquez, J.P.; Rodriguez, C.S.; Pulido, E.G.; Crespo, G.; Nuñez, N.F.; Martinez, I.D.; Beyer, J.; Fischer, N.; Glen, H.; Frazer, R.; Allison, J.; Powles, T.; Malik, J.; Ralph, C.; Rudman, S.; Geldart, T.; Bamias, A.; Baka, S.; Georgoulias, V.; Papazisis, K.; Kalofonos, H.; Timotheadou, E.; Byun, S-S.; Lim, B.; Rha, S.Y.; Seo, S.I.; Chung, J.; Kim, M.; Hong, S-H.; Lee, J.L.; Park, S.H.; Kwon, T.G.; Davis, I.; Wong, S.; Byard, I.; Weickhardt, A.; Gurney, H.; Goh, J.; Osawa, T.; Masumori, N.; Hatakeyama, S.; Saito, M.; Tomita, Y.; Miura, Y.; Nagata, M.; Kimura, G.; Oya, M.; Takagi, T.; Nakamura, Y.; Hasumi, H.; Iwamura, M.; Komiya, A.; Komaru, A.; Oyama, M.; Matsukawa, Y.; Soga, N.; Kato, M.; Nozawa, M.; Miyake, M.; Nakano, Y.; Edamura, K.; Hinata, N.; Okazoe, H.; Takahashi, M.; Eto, M.; Oba, K.; Kishida, T.; Ukimura, O. Lenvatinib plus pembrolizumab versus sunitinib in first-line treatment of advanced renal cell carcinoma: Final prespecified overall survival analysis of clear, a phase III study. J. Clin. Oncol., 2024, 42(11), 1222-1228. doi: 10.1200/JCO.23.01569 PMID: 38227898
- Wang, X.; Wang, L.; Yu, Q.; Liu, Z.; Li, C.; Wang, F.; Yu, Z. The effectiveness of lapatinib in HER2-positive metastatic breast cancer patients pretreated with multiline anti-HER2 treatment: A retrospective study in China. Technol. Cancer Res. Treat., 2021, 20. doi: 10.1177/15330338211037812 PMID: 34342244
- Press, M.F.; Ellis, C.E.; Gagnon, R.C.; Grob, T.J.; Buyse, M.; Villalobos, I.; Liang, Z.; Wu, S.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.; Park, J.O.; Jeziorski, K.; Afenjar, K.; Ma, Y.; Estrada, M.C.; Robinson, D.M.; Scherer, S.J.; Sauter, G.; Hecht, J.R.; Slamon, D.J. HER2 Status in advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma for entry to the TRIO-013/LOGiC trial of lapatinib. Mol. Cancer Ther., 2017, 16(1), 228-238. doi: 10.1158/1535-7163.MCT-15-0887 PMID: 27811012
- Mimura, K.; Kono, K.; Maruyama, T.; Watanabe, M.; Izawa, S.; Shiba, S.; Mizukami, Y.; Kawaguchi, Y.; Inoue, M.; Kono, T.; Choudhury, A.; Kiessling, R.; Fujii, H. Lapatinib inhibits receptor phosphorylation and cell growth and enhances antibody‐dependent cellular cytotoxicity of EGFR‐ and HER2‐overexpressing esophageal cancer cell lines. Int. J. Cancer, 2011, 129(10), 2408-2416. doi: 10.1002/ijc.25896 PMID: 21207425
- Voigtlaender, M.; Schneider-Merck, T.; Trepel, M. Lapatinib. Recent Results Cancer Res., 2018, 211, 19-44. doi: 10.1007/978-3-319-91442-8_2 PMID: 30069757
- Guan, M.; Tong, Y.; Guan, M.; Liu, X.; Wang, M.; Niu, R.; Zhang, F.; Dong, D.; Shao, J.; Zhou, Y. Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression. Technol. Cancer Res. Treat., 2018, 17. doi: 10.1177/1533034617749418 PMID: 29343208
- Zhang, W.J.; Li, Y.; Wei, M.N.; Chen, Y.; Qiu, J.G.; Jiang, Q.W.; Yang, Y.; Zheng, D.W.; Qin, W.M.; Huang, J.R.; Wang, K.; Zhang, W.J.; Wang, Y.J.; Yang, D.H.; Chen, Z.S.; Shi, Z. Synergistic antitumor activity of regorafenib and lapatinib in preclinical models of human colorectal cancer. Cancer Lett., 2017, 386, 100-109. doi: 10.1016/j.canlet.2016.11.011 PMID: 27864115
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072. doi: 10.1016/j.cell.2012.03.042 PMID: 22632970
- Yan, H.; Zou, T.; Tuo, Q.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: mechanisms and links with diseases. Signal Transduct. Target. Ther., 2021, 6(1), 49. doi: 10.1038/s41392-020-00428-9 PMID: 33536413
- Zhang, W.; Liu, Y.; Liao, Y.; Zhu, C.; Zou, Z. GPX4, ferroptosis, and diseases. Biomed. Pharmacother., 2024, 174, 116512. doi: 10.1016/j.biopha.2024.116512 PMID: 38574617
- Liu, P.; Zhang, Z.; Cai, Y.; Li, Z.; Zhou, Q.; Chen, Q. Ferroptosis: Mechanisms and role in diabetes mellitus and its complications. Ageing Res. Rev., 2024, 94, 102201. doi: 10.1016/j.arr.2024.102201 PMID: 38242213
- Ahola, S.; Langer, T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol., 2024, 34(2), 150-160. doi: 10.1016/j.tcb.2023.06.002 PMID: 37419738
- Shah, R.; Ibis, B.; Kashyap, M.; Boussiotis, V.A. The role of ROS in tumor infiltrating immune cells and cancer immunotherapy. Metabolism, 2024, 151, 155747. doi: 10.1016/j.metabol.2023.155747 PMID: 38042522
- Huang, H.; Tsui, Y.M.; Ho, D.W.H.; Chung, C.Y.S.; Sze, K.M.F.; Lee, E.; Cheung, G.C.H.; Zhang, V.X.; Wang, X.; Lyu, X.; Ng, I.O.L. LANCL1, a cell surface protein, promotes liver tumor initiation through FAM49B-Rac1 axis to suppress oxidative stress. Hepatology, 2024, 79(2), 323-340. doi: 10.1097/HEP.0000000000000523 PMID: 37540188
- Ucche, S.; Hayakawa, Y. Immunological aspects of cancer cell metabolism. Int. J. Mol. Sci., 2024, 25(10), 5288. doi: 10.3390/ijms25105288 PMID: 38791327
- Gao, Y.; Liu, S.; Huang, Y.; Li, F.; Zhang, Y. Regulation of anti-tumor immunity by metal ion in the tumor microenvironment. Front. Immunol., 2024, 15, 1379365. doi: 10.3389/fimmu.2024.1379365 PMID: 38915413
- Bahcheli, A.T.; Min, H.K.; Bayati, M.; Zhao, H.; Fortuna, A.; Dong, W.; Dzneladze, I.; Chan, J.; Chen, X.; Guevara-Hoyer, K.; Dirks, P.B.; Huang, X.; Reimand, J. Pan-cancer ion transport signature reveals functional regulators of glioblastoma aggression. EMBO J., 2024, 43(2), 196-224. doi: 10.1038/s44318-023-00016-x PMID: 38177502
- Li, D.; Li, Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct. Target. Ther., 2020, 5(1), 108. doi: 10.1038/s41392-020-00216-5 PMID: 32606298
- Su, Y.; Zhao, B.; Zhou, L.; Zhang, Z.; Shen, Y.; Lv, H.; AlQudsy, L.H.H.; Shang, P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett., 2020, 483, 127-136. doi: 10.1016/j.canlet.2020.02.015 PMID: 32067993
- Jin, J.; Fan, Z.; Long, Y.; Li, Y.; He, Q.; Yang, Y.; Zhong, W.; Lin, D.; Lian, D.; Wang, X.; Xiao, J.; Chen, Y. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel. Phytomedicine, 2024, 122, 155165. doi: 10.1016/j.phymed.2023.155165 PMID: 37922791
- Wu, Y.; Jia, C.; Liu, W.; Zhan, W.; Chen, Y.; Lu, J.; Bao, Y.; Wang, S.; Yu, C.; Zheng, L.; Sun, L.; Song, Z. Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer. J. Adv. Res., 2024, S2090-1232(24), 00175-9. doi: 10.1016/j.jare.2024.04.033 PMID: 38724006
- Zeng, F.; Ye, L.; Zhou, Q.; He, Y.; Zhang, Y.; Deng, G.; Chen, X.; Liu, H. Inhibiting SCD expression by IGF1R during lorlatinib therapy sensitizes melanoma to ferroptosis. Redox Biol., 2023, 61, 102653. doi: 10.1016/j.redox.2023.102653 PMID: 36889082
- Yun, Z.Y.; Wu, D.; Wang, X.; Huang, P.; Li, N. MIR ‐214‐3p overexpression‐triggered chondroitin polymerizing factor (CHPF) inhibition modulates the ferroptosis and metabolism in colon cancer. Kaohsiung J. Med. Sci., 2024, 40(3), 244-254. doi: 10.1002/kjm2.12802 PMID: 38190270
- Ji, X.; Chen, Z.; Lin, W.; Wu, Q.; Wu, Y.; Hong, Y.; Tong, H.; Wang, C.; Zhang, Y. Esculin induces endoplasmic reticulum stress and drives apoptosis and ferroptosis in colorectal cancer via PERK regulating eIF2α/CHOP and Nrf2/HO-1 cascades. J. Ethnopharmacol., 2024, 328, 118139. doi: 10.1016/j.jep.2024.118139 PMID: 38561058
- Uram, Ł.; Wróbel, K.; Walczak, M.; Szymaszek, Ż.; Twardowska, M.; Wołowiec, S. Exploring the potential of lapatinib, fulvestrant, and paclitaxel conjugated with glycidylated pamam g4 dendrimers for cancer and parasite treatment. Molecules, 2023, 28(17), 6334. doi: 10.3390/molecules28176334 PMID: 37687164
- Fehm, T.; Mueller, V.; Banys-Paluchowski, M.; Fasching, P.A.; Friedl, T.W.P.; Hartkopf, A.; Huober, J.; Loehberg, C.; Rack, B.; Riethdorf, S.; Schneeweiss, A.; Wallwiener, D.; Meier-Stiegen, F.; Krawczyk, N.; Jaeger, B.; Reinhardt, F.; Hoffmann, O.; Mueller, L.; Wimberger, P.; Ruckhaeberle, E.; Blohmer, J.U.; Cieslik, J.P.; Franken, A.; Niederacher, D.; Neubauer, H.; Pantel, K.; Janni, W. Efficacy of lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells—the DETECT III clinical trial. Clin. Chem., 2024, 70(1), 307-318. doi: 10.1093/clinchem/hvad144 PMID: 38175595
- Ni, J.; Chen, K.; Zhang, J.; Zhang, X. Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells. Biochem. Biophys. Res. Commun., 2021, 567, 154-160. doi: 10.1016/j.bbrc.2021.06.051 PMID: 34157442
- Mansour, H.M.F.; Mohamed, A.; Khattab, M.M.; El-Khatib, A.S. Lapatinib ditosylate rescues motor deficits in rotenone-intoxicated rats: Potential repurposing of anti-cancer drug as a disease-modifying agent in Parkinson’s disease. Eur. J. Pharmacol., 2023, 954, 175875. doi: 10.1016/j.ejphar.2023.175875 PMID: 37385578
- Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307. doi: 10.1038/cddis.2016.208 PMID: 27441659
- Fu, D.; Wang, C.; Yu, L.; Yu, R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell. Mol. Biol. Lett., 2021, 26(1), 26. doi: 10.1186/s11658-021-00271-y PMID: 34098867
- Gong, D.; Chen, M.; Wang, Y.; Shi, J.; Hou, Y. Role of ferroptosis on tumor progression and immunotherapy. Cell Death Discov., 2022, 8(1), 427. doi: 10.1038/s41420-022-01218-8 PMID: 36289191
- Xu, T.; Liu, Y.; Zhao, Z.; Liu, J.; Chai, J.; Yang, Y.; Zuo, S.; Li, M.; Jia, Q. Ferroptosis in cancer stem cells. Pathol. Res. Pract., 2023, 245, 154492. doi: 10.1016/j.prp.2023.154492 PMID: 37119732
- Wang, X.; Tan, X.; Zhang, J.; Wu, J.; Shi, H. The emerging roles of MAPK-AMPK in ferroptosis regulatory network. Cell Commun. Signal., 2023, 21(1), 200. doi: 10.1186/s12964-023-01170-9 PMID: 37580745
- Saint-Germain, E.; Mignacca, L.; Vernier, M.; Bobbala, D.; Ilangumaran, S.; Ferbeyre, G. SOCS1 regulates senescence and ferroptosis by modulating the expression of p53 target genes. Aging, 2017, 9(10), 2137-2162. doi: 10.18632/aging.101306 PMID: 29081404
- Ge, F.; Wang, Y.; Sharma, A.; Jaehde, U.; Essler, M.; Schmid, M.; Schmidt-Wolf, I.G.H. Computational analysis of heat shock proteins and ferroptosis-associated lncRNAs to predict prognosis in acute myeloid leukemia patients. Front. Genet., 2023, 14, 1218276. doi: 10.3389/fgene.2023.1218276 PMID: 37600655
- Qu, Z.; Pang, X.; Mei, Z.; Li, Y.; Zhang, Y.; Huang, C.; Liu, K.; Yu, S.; Wang, C.; Sun, Z.; Liu, Y.; Li, X.; Jia, Y.; Dong, Y.; Lu, M.; Ju, T.; Wu, F.; Huang, M.; Li, N.; Dou, S.; Jiang, J.; Dong, X.; Zhang, Y.; Li, W.; Yang, B.; Du, W. The positive feedback loop of the NAT10/Mybbp1a/p53 axis promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury. Redox Biol., 2024, 72, 103145. doi: 10.1016/j.redox.2024.103145 PMID: 38583415
- Eling, N.; Reuter, L.; Hazin, J.; Hamacher-Brady, A.; Brady, N.R. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience, 2015, 2(5), 517-532. doi: 10.18632/oncoscience.160 PMID: 26097885
- Li, Y.; Xia, J.; Shao, F.; Zhou, Y.; Yu, J.; Wu, H.; Du, J.; Ren, X. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis. Biochem. Biophys. Res. Commun., 2021, 534, 877-884. doi: 10.1016/j.bbrc.2020.10.083 PMID: 33162029
- Liu, M.; Shi, C.; Song, Q.; Kang, M.; Jiang, X.; Liu, H.; Pei, D. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma. Hepatol. Commun., 2023, 7(10), e0246. doi: 10.1097/HC9.0000000000000246 PMID: 37695069
- Cui, W.; Guo, M.; Liu, D.; Xiao, P.; Yang, C.; Huang, H.; Liang, C.; Yang, Y.; Fu, X.; Zhang, Y.; Liu, J.; Shi, S.; Cong, J.; Han, Z.; Xu, Y.; Du, L.; Yin, C.; Zhang, Y.; Sun, J.; Gu, W.; Chai, R.; Zhu, S.; Chu, B. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nat. Cell Biol., 2024, 26(1), 124-137. doi: 10.1038/s41556-023-01314-6 PMID: 38168770
- Wang, Z.; Erb, B. Receptors and cancer. Methods Mol. Biol., 2017, 1652, 3-35. doi: 10.1007/978-1-4939-7219-7_1 PMID: 28791631
- Pellat, A.; Vaquero, J.; Fouassier, L. Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology, 2018, 67(2), 762-773. doi: 10.1002/hep.29350 PMID: 28671339
- Kumar, R.; George, B.; Campbell, M.R.; Verma, N.; Paul, A.M.; Melo-Alvim, C.; Ribeiro, L.; Pillai, M.R.; da Costa, L.M.; Moasser, M.M. HER family in cancer progression: From discovery to 2020 and beyond. Adv. Cancer Res., 2020, 147, 109-160. doi: 10.1016/bs.acr.2020.04.001 PMID: 32593399
- Krishnamurti, U.; Silverman, J.F. HER2 in breast cancer: a review and update. Adv. Anat. Pathol., 2014, 21(2), 100-107. doi: 10.1097/PAP.0000000000000015 PMID: 24508693
- Park, J.W.; Neve, R.M.; Szollosi, J.; Benz, C.C. Unraveling the biologic and clinical complexities of HER2. Clin. Breast Cancer, 2008, 8(5), 392-401. doi: 10.3816/CBC.2008.n.047 PMID: 18952552
- Li, X.; Xu, Y.; Ding, Y.; Li, C.; Zhao, H.; Wang, J.; Meng, S. Posttranscriptional upregulation of HER3 by HER2 mRNA induces trastuzumab resistance in breast cancer. Mol. Cancer, 2018, 17(1), 113. doi: 10.1186/s12943-018-0862-5 PMID: 30068375
- López-Guerrero, J.A.; Llombart-Cussac, A.; Noguera, R.; Navarro, S.; Pellin, A.; Almenar, S.; Vazquez-Alvadalejo, C.; Llombart-Bosch, A. HER2 amplification in recurrent breast cancer following breast‐conserving therapy correlates with distant metastasis and poor survival. Int. J. Cancer, 2006, 118(7), 1743-1749. doi: 10.1002/ijc.21497 PMID: 16217770
- Cheang, M.C.U.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; Perou, C.M.; Ellis, M.J.; Nielsen, T.O. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst., 2009, 101(10), 736-750. doi: 10.1093/jnci/djp082 PMID: 19436038
- Daniele, L.; Sapino, A. Anti-HER2 treatment and breast cancer: state of the art, recent patents, and new strategies. Recent Patents Anticancer Drug Discov., 2009, 4(1), 9-18. doi: 10.2174/157489209787002489 PMID: 19149684
- Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K.J.; Rusnak, D.W.; Gilmer, T.M.; Shewchuk, L. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res., 2004, 64(18), 6652-6659. doi: 10.1158/0008-5472.CAN-04-1168 PMID: 15374980
- Scaltriti, M.; Rojo, F.; Ocaña, A.; Anido, J.; Guzman, M.; Cortes, J.; Di Cosimo, S.; Matias-Guiu, X.; Ramon y Cajal, S.; Arribas, J.; Baselga, J. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J. Natl. Cancer Inst., 2007, 99(8), 628-638. doi: 10.1093/jnci/djk134 PMID: 17440164
- Wang, S.; Li, Y.; Lin, Y.; Li, J.; Guo, L.; Wang, H.; Lin, X.; Liu, Z.; Zhang, B.; Liao, Z.; Zhang, Z. Bioinformatics analysis and experimental verification of the cancer-promoting effect of DHODH in clear cell renal cell carcinoma. Sci. Rep., 2024, 14(1), 11985. doi: 10.1038/s41598-024-62738-0 PMID: 38796629
- García-Lainez, G.; Vayá, I.; Marín, M.P.; Miranda, M.A.; Andreu, I. In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Arch. Toxicol., 2021, 95(1), 169-178. doi: 10.1007/s00204-020-02880-6 PMID: 32815004
- Jiang, L.; Zeng, Y.; Ai, L.; Yan, H.; Yang, X.; Luo, P.; Yang, B.; Xu, Z.; He, Q. Decreased HMGB1 expression contributed to cutaneous toxicity caused by lapatinib. Biochem. Pharmacol., 2022, 201, 115105. doi: 10.1016/j.bcp.2022.115105 PMID: 35617997
- McGill, M.R.; Kaufmann, Y.; LoBianco, F.V.; Schleiff, M.A.; Aykin-Burns, N.; Miller, G.P. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity. Livers, 2023, 3(2), 310-321. doi: 10.3390/livers3020022 PMID: 38037613
- Chen, S.; Li, X.; Li, Y.; He, X.; Bryant, M.; Qin, X.; Li, F.; Seo, J.E.; Guo, X.; Mei, N.; Guo, L. The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib. Toxicol. Sci., 2024, 197(1), 69-78. doi: 10.1093/toxsci/kfad099 PMID: 37788138
- Du, K.; Liu, Y.; Zhang, L.; Peng, L.; Dong, W.; Jiang, Y.; Niu, M.; Sun, Y.; Wu, C.; Niu, Y.; Ding, Y. Lapatinib combined with doxorubicin causes dose-dependent cardiotoxicity partially through activating the p38MAPK signaling pathway in zebrafish embryos. Biomed. Pharmacother., 2024, 175, 116637. doi: 10.1016/j.biopha.2024.116637 PMID: 38653111
- Sun, L.; Wang, H.; Xu, D.; Yu, S.; Zhang, L.; Li, X. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered, 2022, 13(1), 48-60. doi: 10.1080/21655979.2021.2004980 PMID: 34898356
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; Omberg, L.; Wolf, D.M.; Shriver, C.D.; Thorsson, V.; Hu, H.; Caesar-Johnson, S.J.; Demchok, J.A.; Felau, I.; Kasapi, M.; Ferguson, M.L.; Hutter, C.M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Zhang, J.J.; Chudamani, S.; Liu, J.; Lolla, L.; Naresh, R.; Pihl, T.; Sun, Q.; Wan, Y.; Wu, Y.; Cho, J.; DeFreitas, T.; Frazer, S.; Gehlenborg, N.; Getz, G.; Heiman, D.I.; Kim, J.; Lawrence, M.S.; Lin, P.; Meier, S.; Noble, M.S.; Saksena, G.; Voet, D.; Zhang, H.; Bernard, B.; Chambwe, N.; Dhankani, V.; Knijnenburg, T.; Kramer, R.; Leinonen, K.; Liu, Y.; Miller, M.; Reynolds, S.; Shmulevich, I.; Thorsson, V.; Zhang, W.; Akbani, R.; Broom, B.M.; Hegde, A.M.; Ju, Z.; Kanchi, R.S.; Korkut, A.; Li, J.; Liang, H.; Ling, S.; Liu, W.; Lu, Y.; Mills, G.B.; Ng, K-S.; Rao, A.; Ryan, M.; Wang, J.; Weinstein, J.N.; Zhang, J.; Abeshouse, A.; Armenia, J.; Chakravarty, D.; Chatila, W.K.; de Bruijn, I.; Gao, J.; Gross, B.E.; Heins, Z.J.; Kundra, R.; La, K.; Ladanyi, M.; Luna, A.; Nissan, M.G.; Ochoa, A.; Phillips, S.M.; Reznik, E.; Sanchez-Vega, F.; Sander, C.; Schultz, N.; Sheridan, R.; Sumer, S.O.; Sun, Y.; Taylor, B.S.; Wang, J.; Zhang, H.; Anur, P.; Peto, M.; Spellman, P.; Benz, C.; Stuart, J.M.; Wong, C.K.; Yau, C.; Hayes, D.N.; Parker, J.S.; Wilkerson, M.D.; Ally, A.; Balasundaram, M.; Bowlby, R.; Brooks, D.; Carlsen, R.; Chuah, E.; Dhalla, N.; Holt, R.; Jones, S.J.M.; Kasaian, K.; Lee, D.; Ma, Y.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Mungall, K.; Robertson, A.G.; Sadeghi, S.; Schein, J.E.; Sipahimalani, P.; Tam, A.; Thiessen, N.; Tse, K.; Wong, T.; Berger, A.C.; Beroukhim, R.; Cherniack, A.D.; Cibulskis, C.; Gabriel, S.B.; Gao, G.F.; Ha, G.; Meyerson, M.; Schumacher, S.E.; Shih, J.; Kucherlapati, M.H.; Kucherlapati, R.S.; Baylin, S.; Cope, L.; Danilova, L.; Bootwalla, M.S.; Lai, P.H.; Maglinte, D.T.; Van Den Berg, D.J.; Weisenberger, D.J.; Auman, J.T.; Balu, S.; Bodenheimer, T.; Fan, C.; Hoadley, K.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, C.D.; Meng, S.; Mieczkowski, P.A.; Mose, L.E.; Perou, A.H.; Perou, C.M.; Roach, J.; Shi, Y.; Simons, J.V.; Skelly, T.; Soloway, M.G.; Tan, D.; Veluvolu, U.; Fan, H.; Hinoue, T.; Laird, P.W.; Shen, H.; Zhou, W.; Bellair, M.; Chang, K.; Covington, K.; Creighton, C.J.; Dinh, H.; Doddapaneni, H.V.; Donehower, L.A.; Drummond, J.; Gibbs, R.A.; Glenn, R.; Hale, W.; Han, Y.; Hu, J.; Korchina, V.; Lee, S.; Lewis, L.; Li, W.; Liu, X.; Morgan, M.; Morton, D.; Muzny, D.; Santibanez, J.; Sheth, M.; Shinbro, E.; Wang, L.; Wang, M.; Wheeler, D.A.; Xi, L.; Zhao, F.; Hess, J.; Appelbaum, E.L.; Bailey, M.; Cordes, M.G.; Ding, L.; Fronick, C.C.; Fulton, L.A.; Fulton, R.S.; Kandoth, C.; Mardis, E.R.; McLellan, M.D.; Miller, C.A.; Schmidt, H.K.; Wilson, R.K.; Crain, D.; Curley, E.; Gardner, J.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, C.; Shelton, T.; Sherman, M.; Thompson, E.; Yena, P.; Bowen, J.; Gastier-Foster, J.M.; Gerken, M.; Leraas, K.M.; Lichtenberg, T.M.; Ramirez, N.C.; Wise, L.; Zmuda, E.; Corcoran, N.; Costello, T.; Hovens, C.; Carvalho, A.L.; de Carvalho, A.C.; Fregnani, J.H.; Longatto-Filho, A.; Reis, R.M.; Scapulatempo-Neto, C.; Silveira, H.C.S.; Vidal, D.O.; Burnette, A.; Eschbacher, J.; Hermes, B.; Noss, A.; Singh, R.; Anderson, M.L.; Castro, P.D.; Ittmann, M.; Huntsman, D.; Kohl, B.; Le, X.; Thorp, R.; Andry, C.; Duffy, E.R.; Lyadov, V.; Paklina, O.; Setdikova, G.; Shabunin, A.; Tavobilov, M.; McPherson, C.; Warnick, R.; Berkowitz, R.; Cramer, D.; Feltmate, C.; Horowitz, N.; Kibel, A.; Muto, M.; Raut, C.P.; Malykh, A.; Barnholtz-Sloan, J.S.; Barrett, W.; Devine, K.; Fulop, J.; Ostrom, Q.T.; Shimmel, K.; Wolinsky, Y.; Sloan, A.E.; De Rose, A.; Giuliante, F.; Goodman, M.; Karlan, B.Y.; Hagedorn, C.H.; Eckman, J.; Harr, J.; Myers, J.; Tucker, K.; Zach, L.A.; Deyarmin, B.; Hu, H.; Kvecher, L.; Larson, C.; Mural, R.J.; Somiari, S.; Vicha, A.; Zelinka, T.; Bennett, J.; Iacocca, M.; Rabeno, B.; Swanson, P.; Latour, M.; Lacombe, L.; Têtu, B.; Bergeron, A.; McGraw, M.; Staugaitis, S.M.; Chabot, J.; Hibshoosh, H.; Sepulveda, A.; Su, T.; Wang, T.; Potapova, O.; Voronina, O.; Desjardins, L.; Mariani, O.; Roman-Roman, S.; Sastre, X.; Stern, M-H.; Cheng, F.; Signoretti, S.; Berchuck, A.; Bigner, D.; Lipp, E.; Marks, J.; McCall, S.; McLendon, R.; Secord, A.; Sharp, A.; Behera, M.; Brat, D.J.; Chen, A.; Delman, K.; Force, S.; Khuri, F.; Magliocca, K.; Maithel, S.; Olson, J.J.; Owonikoko, T.; Pickens, A.; Ramalingam, S.; Shin, D.M.; Sica, G.; Van Meir, E.G.; Zhang, H.; Eijckenboom, W.; Gillis, A.; Korpershoek, E.; Looijenga, L.; Oosterhuis, W.; Stoop, H.; van Kessel, K.E.; Zwarthoff, E.C.; Calatozzolo, C.; Cuppini, L.; Cuzzubbo, S.; DiMeco, F.; Finocchiaro, G.; Mattei, L.; Perin, A.; Pollo, B.; Chen, C.; Houck, J.; Lohavanichbutr, P.; Hartmann, A.; Stoehr, C.; Stoehr, R.; Taubert, H.; Wach, S.; Wullich, B.; Kycler, W.; Murawa, D.; Wiznerowicz, M.; Chung, K.; Edenfield, W.J.; Martin, J.; Baudin, E.; Bubley, G.; Bueno, R.; De Rienzo, A.; Richards, W.G.; Kalkanis, S.; Mikkelsen, T.; Noushmehr, H.; Scarpace, L.; Girard, N.; Aymerich, M.; Campo, E.; Giné, E.; Guillermo, A.L.; Van Bang, N.; Hanh, P.T.; Phu, B.D.; Tang, Y.; Colman, H.; Evason, K.; Dottino, P.R.; Martignetti, J.A.; Gabra, H.; Juhl, H.; Akeredolu, T.; Stepa, S.; Hoon, D.; Ahn, K.; Kang, K.J.; Beuschlein, F.; Breggia, A.; Birrer, M.; Bell, D.; Borad, M.; Bryce, A.H.; Castle, E.; Chandan, V.; Cheville, J.; Copland, J.A.; Farnell, M.; Flotte, T.; Giama, N.; Ho, T.; Kendrick, M.; Kocher, J-P.; Kopp, K.; Moser, C.; Nagorney, D.; O’Brien, D.; O’Neill, B.P.; Patel, T.; Petersen, G.; Que, F.; Rivera, M.; Roberts, L.; Smallridge, R.; Smyrk, T.; Stanton, M.; Thompson, R.H.; Torbenson, M.; Yang, J.D.; Zhang, L.; Brimo, F.; Ajani, J.A.; Angulo Gonzalez, A.M.; Behrens, C.; Bondaruk, J.; Broaddus, R.; Czerniak, B.; Esmaeli, B.; Fujimoto, J.; Gershenwald, J.; Guo, C.; Lazar, A.J.; Logothetis, C.; Meric-Bernstam, F.; Moran, C.; Ramondetta, L.; Rice, D.; Sood, A.; Tamboli, P.; Thompson, T.; Troncoso, P.; Tsao, A.; Wistuba, I.; Carter, C.; Haydu, L.; Hersey, P.; Jakrot, V.; Kakavand, H.; Kefford, R.; Lee, K.; Long, G.; Mann, G.; Quinn, M.; Saw, R.; Scolyer, R.; Shannon, K.; Spillane, A.; Stretch, J.; Synott, M.; Thompson, J.; Wilmott, J.; Al-Ahmadie, H.; Chan, T.A.; Ghossein, R.; Gopalan, A.; Levine, D.A.; Reuter, V.; Singer, S.; Singh, B.; Tien, N.V.; Broudy, T.; Mirsaidi, C.; Nair, P.; Drwiega, P.; Miller, J.; Smith, J.; Zaren, H.; Park, J-W.; Hung, N.P.; Kebebew, E.; Linehan, W.M.; Metwalli, A.R.; Pacak, K.; Pinto, P.A.; Schiffman, M.; Schmidt, L.S.; Vocke, C.D.; Wentzensen, N.; Worrell, R.; Yang, H.; Moncrieff, M.; Goparaju, C.; Melamed, J.; Pass, H.; Botnariuc, N.; Caraman, I.; Cernat, M.; Chemencedji, I.; Clipca, A.; Doruc, S.; Gorincioi, G.; Mura, S.; Pirtac, M.; Stancul, I.; Tcaciuc, D.; Albert, M.; Alexopoulou, I.; Arnaout, A.; Bartlett, J.; Engel, J.; Gilbert, S.; Parfitt, J.; Sekhon, H.; Thomas, G.; Rassl, D.M.; Rintoul, R.C.; Bifulco, C.; Tamakawa, R.; Urba, W.; Hayward, N.; Timmers, H.; Antenucci, A.; Facciolo, F.; Grazi, G.; Marino, M.; Merola, R.; de Krijger, R.; Gimenez-Roqueplo, A-P.; Piché, A.; Chevalier, S.; McKercher, G.; Birsoy, K.; Barnett, G.; Brewer, C.; Farver, C.; Naska, T.; Pennell, N.A.; Raymond, D.; Schilero, C.; Smolenski, K.; Williams, F.; Morrison, C.; Borgia, J.A.; Liptay, M.J.; Pool, M.; Seder, C.W.; Junker, K.; Omberg, L.; Dinkin, M.; Manikhas, G.; Alvaro, D.; Bragazzi, M.C.; Cardinale, V.; Carpino, G.; Gaudio, E.; Chesla, D.; Cottingham, S.; Dubina, M.; Moiseenko, F.; Dhanasekaran, R.; Becker, K-F.; Janssen, K-P.; Slotta-Huspenina, J.; Abdel-Rahman, M.H.; Aziz, D.; Bell, S.; Cebulla, C.M.; Davis, A.; Duell, R.; Elder, J.B.; Hilty, J.; Kumar, B.; Lang, J.; Lehman, N.L.; Mandt, R.; Nguyen, P.; Pilarski, R.; Rai, K.; Schoenfield, L.; Senecal, K.; Wakely, P.; Hansen, P.; Lechan, R.; Powers, J.; Tischler, A.; Grizzle, W.E.; Sexton, K.C.; Kastl, A.; Henderson, J.; Porten, S.; Waldmann, J.; Fassnacht, M.; Asa, S.L.; Schadendorf, D.; Couce, M.; Graefen, M.; Huland, H.; Sauter, G.; Schlomm, T.; Simon, R.; Tennstedt, P.; Olabode, O.; Nelson, M.; Bathe, O.; Carroll, P.R.; Chan, J.M.; Disaia, P.; Glenn, P.; Kelley, R.K.; Landen, C.N.; Phillips, J.; Prados, M.; Simko, J.; Smith-McCune, K.; VandenBerg, S.; Roggin, K.; Fehrenbach, A.; Kendler, A.; Sifri, S.; Steele, R.; Jimeno, A.; Carey, F.; Forgie, I.; Mannelli, M.; Carney, M.; Hernandez, B.; Campos, B.; Herold-Mende, C.; Jungk, C.; Unterberg, A.; von Deimling, A.; Bossler, A.; Galbraith, J.; Jacobus, L.; Knudson, M.; Knutson, T.; Ma, D.; Milhem, M.; Sigmund, R.; Godwin, A.K.; Madan, R.; Rosenthal, H.G.; Adebamowo, C.; Adebamowo, S.N.; Boussioutas, A.; Beer, D.; Giordano, T.; Mes-Masson, A-M.; Saad, F.; Bocklage, T.; Landrum, L.; Mannel, R.; Moore, K.; Moxley, K.; Postier, R.; Walker, J.; Zuna, R.; Feldman, M.; Valdivieso, F.; Dhir, R.; Luketich, J.; Mora Pinero, E.M.; Quintero-Aguilo, M.; Carlotti, C.G., Jr; Dos Santos, J.S.; Kemp, R.; Sankarankuty, A.; Tirapelli, D.; Catto, J.; Agnew, K.; Swisher, E.; Creaney, J.; Robinson, B.; Shelley, C.S.; Godwin, E.M.; Kendall, S.; Shipman, C.; Bradford, C.; Carey, T.; Haddad, A.; Moyer, J.; Peterson, L.; Prince, M.; Rozek, L.; Wolf, G.; Bowman, R.; Fong, K.M.; Yang, I.; Korst, R.; Rathmell, W.K.; Fantacone-Campbell, J.L.; Hooke, J.A.; Kovatich, A.J.; Shriver, C.D.; DiPersio, J.; Drake, B.; Govindan, R.; Heath, S.; Ley, T.; Van Tine, B.; Westervelt, P.; Rubin, M.A.; Lee, J.I.; Aredes, N.D.; Mariamidze, A. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 2018, 173(2), 400-416.e11. doi: 10.1016/j.cell.2018.02.052 PMID: 29625055
Дополнительные файлы
