Exploring Tryptophan-based Short Peptides: Promising Candidate for Anticancer and Antimicrobial Therapies
- Authors: Rai N.1, Tiwari R.1, Sahu A.1, Verma E.1, Rathore S.1, Patil S.2, Patil A.1
-
Affiliations:
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)
- SVN Institute of Pharmaceutical Sciences, Swami Vivekanand University
- Issue: Vol 25, No 2 (2025)
- Pages: 124-133
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694478
- DOI: https://doi.org/10.2174/0118715206260662240613054521
- ID: 694478
Cite item
Full Text
Abstract
Background:Ultra-short peptides are essential therapeutic agents due to their heightened selectivity and reduced toxicity. Scientific literature documents the utilization of dipeptides, tripeptides, and tetrapeptides as promising agents for combating cancer. We have created a range of tryptophan-based peptides derived from literature sources in order to assess their potential as anticancer drugs.
Methods:We present the results of our study on the antibacterial and anticancer effectiveness of 10 ultra-short peptides that were produced utilizing microwave-assisted solid phase peptide synthesis. The synthesized peptides underwent screening for in vitro antibacterial activity using the agar dilution method.
Results:HPLC, LC-MS, 1H NMR, and 13C NMR spectroscopy were used to analyze the synthesized peptides. In tests using the HeLa and MCF-7 cell lines, the synthesized peptides' anticancer efficacy was assessed. The study found that two peptides showed potential median inhibitory concentration (IC50) values of 3.9±0.13 μM and 1.8±0.09 μM, respectively, and showed more activity than the reference medication doxorubicin.
Conclusion:The antibacterial activity of synthesized peptides 3b and 4b was found to be better than the other synthetic peptides. MIC value of roughly 5–50 μg/mL for peptides 3a, 4c, and 4d showed strong antifungal activity against Candida albicans. The synthesized peptides were also evaluated for their anticancer activity against HeLa and MCF-7 cell lines, and found that peptides 3e and 4e were more potent than other peptides against doxorubicin.
About the authors
Neha Rai
Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)
Email: info@benthamscience.net
Richa Tiwari
Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)
Email: info@benthamscience.net
Adarsh Sahu
Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)
Email: info@benthamscience.net
Ekta Verma
Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)
Email: info@benthamscience.net
Swati Rathore
Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)
Email: info@benthamscience.net
Shailendra Patil
SVN Institute of Pharmaceutical Sciences, Swami Vivekanand University
Email: info@benthamscience.net
Asmita Patil
Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)
Author for correspondence.
Email: info@benthamscience.net
References
- Abdel Monaim, S.A.H.; Jad, Y.E.; El-Faham, A.; de la Torre, B.G.; Albericio, F. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg. Med. Chem., 2018, 26(10), 2788-2796. doi: 10.1016/j.bmc.2017.09.040 PMID: 29029900
- Mittal, S.; Kaur, S.; Swami, A.; Maurya, I.K.; Jain, R.; Wangoo, N.; Sharma, R.K. Alkylated histidine based short cationic antifungal peptides: Synthesis, biological evaluation and mechanistic investigations. RSC Advances, 2016, 6(48), 41951-41961.
- Monty, O.B.C.; Simmons, N.; Chamakuri, S.; Matzuk, M.M.; Young, D.W. Solution-phase Fmoc-based peptide synthesis for DNA-encoded chemical libraries: Reaction conditions, protecting group strategies, and pitfalls. ACS Comb. Sci., 2020, 22(12), 833-843. doi: 10.1021/acscombsci.0c00144 PMID: 33074645
- Nan, Y.H.; Bang, J.K.; Jacob, B.; Park, I.S.; Shin, S.Y. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides, 2012, 35(2), 239-247. doi: 10.1016/j.peptides.2012.04.004 PMID: 22521196
- Nawaz, M.I.; Rezzola, S.; Tobia, C.; Coltrini, D.; Belleri, M.; Mitola, S.; Corsini, M.; Sandomenico, A.; Caporale, A.; Ruvo, M.; Presta, M. D-Peptide analogues of Boc-Phe-Leu-Phe-Leu-Phe-COOH induce neovascularization via endothelial N-formyl peptide receptor 3. Angiogenesis, 2020, 23(3), 357-369. doi: 10.1007/s10456-020-09714-0
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250. doi: 10.1038/nrmicro1098 PMID: 15703760
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90. doi: 10.3322/caac.20107 PMID: 21296855
- Kamal, A.; Dastagiri, D.; Janaki Ramaiah, M.; Surendranadha Reddy, J.; Vijaya Bharathi, E.; Kashi Reddy, M.; Victor Prem Sagar, M.; Lakshminarayan Reddy, T.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. Eur. J. Med. Chem., 2011, 46(12), 5817-5824. doi: 10.1016/j.ejmech.2011.09.039 PMID: 22000207
- Kapoor, P.; Singh, H.; Gautam, A.; Chaudhary, K.; Kumar, R.; Raghava, G.P.S. TumorHoPe: A database of tumor homing peptides. PLoS One, 2012, 7(4), e35187. doi: 10.1371/journal.pone.0035187 PMID: 22523575
- Karstad, R.; Isaksen, G.; Brandsdal, B.O.; Svendsen, J.S.; Svenson, J. Unnatural amino acid side chains as S1, S1′, and S2′ probes yield cationic antimicrobial peptides with stability toward chymotryptic degradation. J. Med. Chem., 2010, 53(15), 5558-5566. doi: 10.1021/jm1006337 PMID: 20608742
- Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther., 2020, 26(3), 1451-1463. doi: 10.1007/s10989-019-09946-9
- Chinchilla, R.; Dodsworth, D.J.; Nájera, C.; Soriano, J.M. Polymer-bound TBTU as a new solid-supported reagent for peptide synthesis. Tetrahedron Lett., 2000, 41(14), 2463-2466. doi: 10.1016/S0040-4039(00)00180-5
- Chandrudu, S.; Simerska, P.; Toth, I. Chemical methods for peptide and protein production. Molecules, 2013, 18(4), 4373-4388. doi: 10.3390/molecules18044373 PMID: 23584057
- Christopher, D.F.; Jan, A.H.; Robert, E.W. Designing antimicrobial peptides: Form follows function. Natl. Rev., 2012, 11, 41-43.
- Cohen, S.J.; Alpaugh, R.K.; Gross, S.; O’Hara, S.M.; Smirnov, D.A.; Terstappen, L.W.M.M.; Allard, W.J.; Bilbee, M.; Cheng, J.D.; Hoffman, J.P.; Lewis, N.L.; Pellegrino, A.; Rogatko, A.; Sigurdson, E.; Wang, H.; Watson, J.C.; Weiner, L.M.; Meropol, N.J. Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clin. Colorectal Cancer, 2006, 6(2), 125-132. doi: 10.3816/CCC.2006.n.029 PMID: 16945168
- Raucher, D.; Ryu, J.S. Cell-penetrating peptides: Strategies for anticancer treatment. Trends Mol. Med., 2015, 21(9), 560-570. doi: 10.1016/j.molmed.2015.06.005 PMID: 26186888
- Shafiee, F.; Pourhadi, M.; Jamalzade, F.; Jahanian-Najafabadi, A. Expression, purification, and cytotoxic evaluation of IL24-BR2 fusion protein. Res. Pharm. Sci., 2019, 14(4), 320-328. doi: 10.4103/1735-5362.263556 PMID: 31516508
- Rai, N.; Rathore, S.; Tiwari, R.T.; Patil, S.; Gajbhiye, A. Synthesis, characterization and pharmacological evaluation of ultra short dipeptides as antimicrobial and anticancer agents. Int. J. Pharm. Investig., 2023, 13(3), 566-573. doi: 10.5530/ijpi.13.3.070
- Behera, B.; Mathur, P.; Das, A.; Kapil, A.; Gupta, B.; Bhoi, S.; Farooque, K.; Sharma, V.; Misra, M.C. Evaluation of susceptibility testing methods for polymyxin. Int. J. Infect. Dis., 2010, 14(7), e596-e601. doi: 10.1016/j.ijid.2009.09.001 PMID: 20045367
- Droin, N.; Hendra, J.B.; Ducoroy, P.; Solary, E. Human defensins as cancer biomarkers and antitumour molecules. J. Proteomics, 2009, 72(6), 918-927. doi: 10.1016/j.jprot.2009.01.002 PMID: 19186224
- Kim, M.; Kang, N.; Ko, S.; Park, J.; Park, E.; Shin, D.; Kim, S.; Lee, S.; Lee, J.; Lee, S.; Ha, E.; Jeon, S.; Park, Y. Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant Acinetobacter baumannii. Int. J. Mol. Sci., 2018, 19(10), 3041. doi: 10.3390/ijms19103041 PMID: 30301180
- Abdelmoty, I.; Albericio, F.; Carpino, L.A.; Foxman, B.M.; Kates, S.A. Structural studies of reagents for peptide bond formation: Crystal and molecular structures of HBTU and HATU. Lett. Pept. Sci., 1994, 1(2), 57-67. doi: 10.1007/BF00126274
- Ahmed, S.; Mirzaei, H.; Aschner, M.; Khan, A.; Al-Harrasi, A.; Khan, H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed. Pharmacother., 2021, 142, 112038. doi: 10.1016/j.biopha.2021.112038 PMID: 34411915
- Akram, M.; Asif, H.M.; Uzair, M.; Akhtar, N.; Madni, A.; Shah, S.A.; Hasan, Z. Amino acids: A review article. J. Med. Plants Res., 2011, 5, 17.
- Albericio, F.; Barany, G. An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions. Int. J. Pept. Protein Res., 1987, 30(2), 206-216. doi: 10.1111/j.1399-3011.1987.tb03328.x PMID: 3679670
- Hansen, T.; Alst, T.; Havelkova, M.; Strom, M.B. Antimicrobial activity of small B -peptidomimetics based on the pharmacophore model of short cationic antimicrobial peptides. Peptides, 2010, 39, 595-606.
- Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; Perera, C.O.; Pickholz, M.; Remko, M.; Saviano, M.; Skwarczynski, M.; Tang, Y.; Wolf, W.M.; Yoshiya, T.; Zabrocki, J.; Zielenkiewicz, P.; AlKhazindar, M.; Barriga, V.; Kelaidonis, K.; Sarasia, E.M.; Toth, I. A global review on short peptides: Frontiers and perspectives. Molecules, 2021, 26(2), 430. doi: 10.3390/molecules26020430 PMID: 33467522
- Arias, M.; Haney, E.F.; Hilchie, A.L.; Corcoran, J.A.; Hyndman, M.E.; Hancock, R.E.W.; Vogel, H.J. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim. Biophys. Acta Biomembr., 2020, 1862(8), 183228. doi: 10.1016/j.bbamem.2020.183228 PMID: 32126228
- Bode, S.A.; Löwik, D.W.P.M. Constrained cell penetrating peptides. Drug Discov. Today. Technol., 2017, 26, 33-42.
- Bojsen, R.; Torbensen, R.; Larsen, C.E.; Folkesson, A.; Regenberg, B. The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner. PLoS One, 2013, 8(7), e69483. doi: 10.1371/journal.pone.0069483 PMID: 23874964
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098. doi: 10.1016/S1473-3099(13)70318-9 PMID: 24252483
- Carpino, L.A.; Ghassemi, S.; Ionescu, D.; Ismail, M.; Sadat-Aalaee, D.; Truran, G.A.; Mansour, E.M.E.; Siwruk, G.A.; Eynon, J.S.; Morgan, B. Rapid, continuous solution phase peptide synthesis: Application to peptides of pharmaceutical interest. Org. Process Res. Dev., 2003, 7(1), 28-37. doi: 10.1021/op0202179
- Coligan, J.; Dunn, E.; Ben, M.; David, W. Guide for resin and linker selection in solid phase peptide synthesis. Curr. Prot. Prot. Sci., 2001, 7, 3-7-19.
- Dawson, R.M.; Liu, C.Q. Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics. Drug Dev. Res., 2009, 70(7), 481-498. doi: 10.1002/ddr.20329
- Doan, N.D.; Hopewell, R.; Lubell, W.D. N-aminoimidazolidin-2-one peptidomimetics. Org. Lett., 2014, 16(8), 2232-2235. doi: 10.1021/ol500739k PMID: 24697286
- Strøm, M.B.; Haug, B.E.; Skar, M.L.; Stensen, W.; Stiberg, T.; Svendsen, J.S.; Stiberg, T.; Svendsen, J.S. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem., 2003, 46(9), 1567-1570. doi: 10.1021/jm0340039 PMID: 12699374
- Banga, A.; Chien, Y. Systemic delivery of therapeutic peptides and proteins. Int. J. Pharm., 1988, 48(1-3), 15-50. doi: 10.1016/0378-5173(88)90246-3
- Faccone, D.; Veliz, O.; Corso, A.; Noguera, M.; Martínez, M.; Payes, C.; Semorile, L.; Maffía, P.C. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. Eur. J. Med. Chem., 2014, 71, 31-35. doi: 10.1016/j.ejmech.2013.10.065 PMID: 24269514
- Eder, M.; Pavan, S.; Bauder-Wüst, U.; van Rietschoten, K.; Baranski, A.C.; Harrison, H.; Campbell, S.; Stace, C.L.; Walker, E.H.; Chen, L.; Bennett, G.; Mudd, G.; Schierbaum, U.; Leotta, K.; Haberkorn, U.; Kopka, K.; Teufel, D.P. Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors. Cancer Res., 2019, 79(4), 841-852. doi: 10.1158/0008-5472.CAN-18-0238 PMID: 30606721
- Edison, N.; Reingewertz, T.H.; Gottfried, Y.; Lev, T.; Zuri, D.; Maniv, I.; Carp, M.J.; Shalev, G.; Friedler, A.; Larisch, S. Peptides mimicking the unique ARTS-XIAP binding site promote apoptotic cell death in cultured cancer cells. Clin. Cancer Res., 2012, 18(9), 2569-2578. doi: 10.1158/1078-0432.CCR-11-1430 PMID: 22392914
- Fan, R.; Yuan, Y.; Zhang, Q.; Zhou, X.R.; Jia, L.; Liu, Z.; Yu, C.; Luo, S.Z.; Chen, L. Isoleucine/leucine residues at “a” and “d” positions of a heptad repeat sequence are crucial for the cytolytic activity of a short anticancer lytic peptide. Amino Acids, 2017, 49(1), 193-202. doi: 10.1007/s00726-016-2350-9 PMID: 27778166
- Gregg, B. Introduction to peptide synthesis. Curr. Protoc. Protein Sci., 2001, 26.1, 18-19.
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2012, 11(1), 37-51. doi: 10.1038/nrd3591 PMID: 22173434
- Fuertes, M.; Castilla, J.; Alonso, C.; Pérez, J. Cisplatin biochemical mechanism of action: From cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem., 2003, 10(3), 257-266. doi: 10.2174/0929867033368484 PMID: 12570712
- Gabernet, G.; Müller, A.T.; Hiss, J.A.; Schneider, G. Membranolytic anticancer peptides. MedChemComm, 2016, 7(12), 2232-2245. doi: 10.1039/C6MD00376A
- Meienhofer, J.; Waki, M.; Heimre, E.P.; Lambros, T.J.; Makofske, R.C.; Chang, C.D. Solid phase synthesis without repetitive acidolysis. Preparation of leucyl-alanyl-glycyl-valine using 9-fluorenylmethyloxycarbonylamino acids. Int. J. Pept. Protein Res., 1979, 13(1), 35-42. doi: 10.1111/j.1399-3011.1979.tb01847.x PMID: 422322
- Mader, J.S.; Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs, 2006, 15(8), 933-946. doi: 10.1517/13543784.15.8.933 PMID: 16859395
- Pawlas, J.; Rasmussen, J.H. Circular aqueous fmoc/t-bu solid-phase peptide synthesis. ChemSusChem, 2021, 14(16), 3231-3236.
- Ghosh, C.; Manjunath, G.B.; Akkapeddi, P.; Yarlagadda, V.; Hoque, J.; Uppu, D.S.S.M.; Konai, M.M.; Haldar, J. Small molecular antibacterial peptoid mimics: The simpler the better! J. Med. Chem., 2014, 57(4), 1428-1436. doi: 10.1021/jm401680a PMID: 24479371
- Giuliani, A.; Rinaldi, A.C. Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci., 2011, 68(13), 2255-2266. doi: 10.1007/s00018-011-0717-3 PMID: 21598022
- Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515. doi: 10.1080/02713680590968637 PMID: 16020284
- Guo, Z.; Wang, Y.; Tan, T.; Ji, Y.; Hu, J.; Zhang, Y. Antimicrobial d-peptide hydrogels. ACS Biomater. Sci. Eng., 2021, 7(4), 1703-1712. doi: 10.1021/acsbiomaterials.1c00187 PMID: 33667076
- Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557. doi: 10.1038/nbt1267 PMID: 17160061
- Hancock, R.E.W.; Chapple, D.S. Peptide antibiotics. Antimicrob. Agents Chemother., 1999, 43(6), 1317-1323. doi: 10.1128/AAC.43.6.1317 PMID: 10348745
- Shenmar, K.; Sharma, K.K.; Wangoo, N.; Maurya, I.K.; Kumar, V.; Khan, S.I.; Jacob, M.R.; Tikoo, K.; Jain, R. Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides. Eur. J. Med. Chem., 2017, 132, 192-203. doi: 10.1016/j.ejmech.2017.03.046 PMID: 28363154
- Hancock, R.E.W.; Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol., 2000, 8(9), 402-410. doi: 10.1016/S0966-842X(00)01823-0 PMID: 10989307
- Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev., 2013, 33(1), 190-234. doi: 10.1002/med.20252 PMID: 21922503
- Haug, B.E.; Stensen, W.; Stiberg, T.; Svendsen, J.S. Bulky nonproteinogenic amino acids permit the design of very small and effective cationic antibacterial peptides. J. Med. Chem., 2004, 47(17), 4159-4162. doi: 10.1021/jm049582b PMID: 15293987
- Hebda, J.A.; Saraogi, I.; Magzoub, M.; Hamilton, A.D.; Miranker, A.D. A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes. Chem. Biol., 2009, 16(9), 943-950. doi: 10.1016/j.chembiol.2009.08.013 PMID: 19778722
- Huang, Y.; Li, X.; Sha, H.; Zhang, L.; Bian, X.; Han, X.; Liu, B. Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncol. Rep., 2017, 37(4), 2063-2070. doi: 10.3892/or.2017.5440 PMID: 28260064
- Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell, 2010, 1(2), 143-152. doi: 10.1007/s13238-010-0004-3 PMID: 21203984
- Imura, Y.; Choda, N.; Matsuzaki, K. Magainin 2 in action: Distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys. J., 2008, 95(12), 5757-5765. doi: 10.1529/biophysj.108.133488 PMID: 18835901
- Prabha, N.; Sannasimuthu, A.; Kumaresan, V.; Elumalai, P.; Arockiaraj, J. Intensifying the anticancer potential of cationic peptide derived from serine threonine protein kinase of Teleost by tagging with Oligo Tryptophan. Int. J. Pept. Res. Ther., 2020, 26(1), 75-83. doi: 10.1007/s10989-019-09817-3
- Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817. doi: 10.1016/j.drudis.2013.05.011 PMID: 23726889
- Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2012, 22(10), 3445-3448. doi: 10.1016/j.bmcl.2012.03.092 PMID: 22520258
- Kharb, R.; Rana, M.; Sharma, P.C.; Yar, M.S. Therapeutic importance of peptidomimetics in medicinal chemistry. J. Chem. Pharm. Res., 2011, 3, 173-186.
- Maani, Z.; Farajnia, S.; Rahbarnia, L.; Hosseingholi, E.Z.; Khajehnasiri, N.; Mansouri, P. Rational design of an anti-cancer peptide inhibiting CD147/Cyp A interaction. J. Mol. Struct., 2023, 1272, 134160. doi: 10.1016/j.molstruc.2022.134160 PMID: 36128074
- Da’san MMJ Thirteen decades of peptide synthesis: Key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 2018, 50(1), 39-68.
- Mahindra, A.; Bagra, N.; Wangoo, N.; Jain, R.; Khan, S.I.; Jacob, M.R.; Jain, R. Synthetically modified l-histidine-rich peptidomimetics exhibit potent activity against Cryptococcus neoformans. Bioorg. Med. Chem. Lett., 2014, 24(14), 3150-3154. doi: 10.1016/j.bmcl.2014.04.120 PMID: 24878194
- Mahindra, A.; Sharma, K.K.; Jain, R. Rapid microwave-assisted solution-phase peptide synthesis. Tetrahedron Lett., 2012, 53(51), 6931-6935. doi: 10.1016/j.tetlet.2012.10.028
- Mahindra, A.; Sharma, K.K.; Rathore, D.; Khan, S.I.; Jacob, M.R.; Jain, R. Synthesis and antimicrobial activities of His(2-aryl)-Arg and Trp-His(2-aryl) classes of dipeptidomimetics. MedChemComm, 2014, 5(5), 671-676. doi: 10.1039/C4MD00041B PMID: 24976942
- Mitchell, S.A.; Pratt, M.R.; Hruby, V.J.; Polt, R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J. Org. Chem., 2001, 66(7), 2327-2342. doi: 10.1021/jo005712m PMID: 11281773
- Han, Y.; Barany, G.; Novel, S. Xanthenyl protecting groups for cysteine and their applications for the Nα-9-Fluorenylmethyloxycarbonyl (Fmoc) strategy of peptide synthesis 1-3. J. Org. Chem., 1997, 62(12), 3841-3848. doi: 10.1021/jo961882g
- Aletras, A.; Barlos, K.; Gatos, D.; Koutsogianni, S.; Mamos, P. Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs. Int. J. Pept. Protein Res., 1995, 45(5), 488-496. doi: 10.1111/j.1399-3011.1995.tb01065.x PMID: 7591489
- Mant, C.T.; Kondejewski, L.H.; Cachia, P.J.; Monera, O.D.; Hodges, R.S. Analysis of synthetic peptides by high-performance liquid chromatography. Methods Enzymol., 1997, 289, 426-469. doi: 10.1016/S0076-6879(97)89058-1 PMID: 9353732
- Sahu, A.; Sahu, P.; Agrawal, R. Synthesis, pharmacological and toxicological screening of penicillin–triazole conjugates (PNTCs). ACS Omega, 2019, 4(17), 17230-17235. doi: 10.1021/acsomega.9b01724 PMID: 31656896
- da Silva, B.R.; de Freitas, V.A.A.; Carneiro, V.A.; Arruda, F.V.S.; Lorenzón, E.N.; de Aguiar, A.S.W.; Cilli, E.M.; Cavada, B.S.; Teixeira, E.H. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci. Peptides, 2013, 42, 78-83. doi: 10.1016/j.peptides.2012.12.001 PMID: 23340019
- Sahu, A.; Agrawal, R.K.; Pandey, R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg. Chem., 2019, 88, 102939. doi: 10.1016/j.bioorg.2019.102939 PMID: 31028993
- Dwivedi, D.K.; Sahu, A.; Dighade, S.J.; Agrawal, R.K. Design, synthesis, and antimicrobial evaluation of some nifuroxazide analogs against nosocomial infection. J. Heterocycl. Chem., 2020, 57(4), 1666-1671. doi: 10.1002/jhet.3891
Supplementary files
