Exploring Tryptophan-based Short Peptides: Promising Candidate for Anticancer and Antimicrobial Therapies


Cite item

Full Text

Abstract

Background:Ultra-short peptides are essential therapeutic agents due to their heightened selectivity and reduced toxicity. Scientific literature documents the utilization of dipeptides, tripeptides, and tetrapeptides as promising agents for combating cancer. We have created a range of tryptophan-based peptides derived from literature sources in order to assess their potential as anticancer drugs.

Methods:We present the results of our study on the antibacterial and anticancer effectiveness of 10 ultra-short peptides that were produced utilizing microwave-assisted solid phase peptide synthesis. The synthesized peptides underwent screening for in vitro antibacterial activity using the agar dilution method.

Results:HPLC, LC-MS, 1H NMR, and 13C NMR spectroscopy were used to analyze the synthesized peptides. In tests using the HeLa and MCF-7 cell lines, the synthesized peptides' anticancer efficacy was assessed. The study found that two peptides showed potential median inhibitory concentration (IC50) values of 3.9±0.13 μM and 1.8±0.09 μM, respectively, and showed more activity than the reference medication doxorubicin.

Conclusion:The antibacterial activity of synthesized peptides 3b and 4b was found to be better than the other synthetic peptides. MIC value of roughly 5–50 μg/mL for peptides 3a, 4c, and 4d showed strong antifungal activity against Candida albicans. The synthesized peptides were also evaluated for their anticancer activity against HeLa and MCF-7 cell lines, and found that peptides 3e and 4e were more potent than other peptides against doxorubicin.

About the authors

Neha Rai

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Richa Tiwari

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Adarsh Sahu

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Ekta Verma

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Swati Rathore

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Shailendra Patil

SVN Institute of Pharmaceutical Sciences, Swami Vivekanand University

Email: info@benthamscience.net

Asmita Patil

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Abdel Monaim, S.A.H.; Jad, Y.E.; El-Faham, A.; de la Torre, B.G.; Albericio, F. Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg. Med. Chem., 2018, 26(10), 2788-2796. doi: 10.1016/j.bmc.2017.09.040 PMID: 29029900
  2. Mittal, S.; Kaur, S.; Swami, A.; Maurya, I.K.; Jain, R.; Wangoo, N.; Sharma, R.K. Alkylated histidine based short cationic antifungal peptides: Synthesis, biological evaluation and mechanistic investigations. RSC Advances, 2016, 6(48), 41951-41961.
  3. Monty, O.B.C.; Simmons, N.; Chamakuri, S.; Matzuk, M.M.; Young, D.W. Solution-phase Fmoc-based peptide synthesis for DNA-encoded chemical libraries: Reaction conditions, protecting group strategies, and pitfalls. ACS Comb. Sci., 2020, 22(12), 833-843. doi: 10.1021/acscombsci.0c00144 PMID: 33074645
  4. Nan, Y.H.; Bang, J.K.; Jacob, B.; Park, I.S.; Shin, S.Y. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides, 2012, 35(2), 239-247. doi: 10.1016/j.peptides.2012.04.004 PMID: 22521196
  5. Nawaz, M.I.; Rezzola, S.; Tobia, C.; Coltrini, D.; Belleri, M.; Mitola, S.; Corsini, M.; Sandomenico, A.; Caporale, A.; Ruvo, M.; Presta, M. D-Peptide analogues of Boc-Phe-Leu-Phe-Leu-Phe-COOH induce neovascularization via endothelial N-formyl peptide receptor 3. Angiogenesis, 2020, 23(3), 357-369. doi: 10.1007/s10456-020-09714-0
  6. Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250. doi: 10.1038/nrmicro1098 PMID: 15703760
  7. Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90. doi: 10.3322/caac.20107 PMID: 21296855
  8. Kamal, A.; Dastagiri, D.; Janaki Ramaiah, M.; Surendranadha Reddy, J.; Vijaya Bharathi, E.; Kashi Reddy, M.; Victor Prem Sagar, M.; Lakshminarayan Reddy, T.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. Eur. J. Med. Chem., 2011, 46(12), 5817-5824. doi: 10.1016/j.ejmech.2011.09.039 PMID: 22000207
  9. Kapoor, P.; Singh, H.; Gautam, A.; Chaudhary, K.; Kumar, R.; Raghava, G.P.S. TumorHoPe: A database of tumor homing peptides. PLoS One, 2012, 7(4), e35187. doi: 10.1371/journal.pone.0035187 PMID: 22523575
  10. Karstad, R.; Isaksen, G.; Brandsdal, B.O.; Svendsen, J.S.; Svenson, J. Unnatural amino acid side chains as S1, S1′, and S2′ probes yield cationic antimicrobial peptides with stability toward chymotryptic degradation. J. Med. Chem., 2010, 53(15), 5558-5566. doi: 10.1021/jm1006337 PMID: 20608742
  11. Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther., 2020, 26(3), 1451-1463. doi: 10.1007/s10989-019-09946-9
  12. Chinchilla, R.; Dodsworth, D.J.; Nájera, C.; Soriano, J.M. Polymer-bound TBTU as a new solid-supported reagent for peptide synthesis. Tetrahedron Lett., 2000, 41(14), 2463-2466. doi: 10.1016/S0040-4039(00)00180-5
  13. Chandrudu, S.; Simerska, P.; Toth, I. Chemical methods for peptide and protein production. Molecules, 2013, 18(4), 4373-4388. doi: 10.3390/molecules18044373 PMID: 23584057
  14. Christopher, D.F.; Jan, A.H.; Robert, E.W. Designing antimicrobial peptides: Form follows function. Natl. Rev., 2012, 11, 41-43.
  15. Cohen, S.J.; Alpaugh, R.K.; Gross, S.; O’Hara, S.M.; Smirnov, D.A.; Terstappen, L.W.M.M.; Allard, W.J.; Bilbee, M.; Cheng, J.D.; Hoffman, J.P.; Lewis, N.L.; Pellegrino, A.; Rogatko, A.; Sigurdson, E.; Wang, H.; Watson, J.C.; Weiner, L.M.; Meropol, N.J. Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clin. Colorectal Cancer, 2006, 6(2), 125-132. doi: 10.3816/CCC.2006.n.029 PMID: 16945168
  16. Raucher, D.; Ryu, J.S. Cell-penetrating peptides: Strategies for anticancer treatment. Trends Mol. Med., 2015, 21(9), 560-570. doi: 10.1016/j.molmed.2015.06.005 PMID: 26186888
  17. Shafiee, F.; Pourhadi, M.; Jamalzade, F.; Jahanian-Najafabadi, A. Expression, purification, and cytotoxic evaluation of IL24-BR2 fusion protein. Res. Pharm. Sci., 2019, 14(4), 320-328. doi: 10.4103/1735-5362.263556 PMID: 31516508
  18. Rai, N.; Rathore, S.; Tiwari, R.T.; Patil, S.; Gajbhiye, A. Synthesis, characterization and pharmacological evaluation of ultra short dipeptides as antimicrobial and anticancer agents. Int. J. Pharm. Investig., 2023, 13(3), 566-573. doi: 10.5530/ijpi.13.3.070
  19. Behera, B.; Mathur, P.; Das, A.; Kapil, A.; Gupta, B.; Bhoi, S.; Farooque, K.; Sharma, V.; Misra, M.C. Evaluation of susceptibility testing methods for polymyxin. Int. J. Infect. Dis., 2010, 14(7), e596-e601. doi: 10.1016/j.ijid.2009.09.001 PMID: 20045367
  20. Droin, N.; Hendra, J.B.; Ducoroy, P.; Solary, E. Human defensins as cancer biomarkers and antitumour molecules. J. Proteomics, 2009, 72(6), 918-927. doi: 10.1016/j.jprot.2009.01.002 PMID: 19186224
  21. Kim, M.; Kang, N.; Ko, S.; Park, J.; Park, E.; Shin, D.; Kim, S.; Lee, S.; Lee, J.; Lee, S.; Ha, E.; Jeon, S.; Park, Y. Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant Acinetobacter baumannii. Int. J. Mol. Sci., 2018, 19(10), 3041. doi: 10.3390/ijms19103041 PMID: 30301180
  22. Abdelmoty, I.; Albericio, F.; Carpino, L.A.; Foxman, B.M.; Kates, S.A. Structural studies of reagents for peptide bond formation: Crystal and molecular structures of HBTU and HATU. Lett. Pept. Sci., 1994, 1(2), 57-67. doi: 10.1007/BF00126274
  23. Ahmed, S.; Mirzaei, H.; Aschner, M.; Khan, A.; Al-Harrasi, A.; Khan, H. Marine peptides in breast cancer: Therapeutic and mechanistic understanding. Biomed. Pharmacother., 2021, 142, 112038. doi: 10.1016/j.biopha.2021.112038 PMID: 34411915
  24. Akram, M.; Asif, H.M.; Uzair, M.; Akhtar, N.; Madni, A.; Shah, S.A.; Hasan, Z. Amino acids: A review article. J. Med. Plants Res., 2011, 5, 17.
  25. Albericio, F.; Barany, G. An acid-labile anchoring linkage for solid-phase synthesis of C-terminal peptide amides under mild conditions. Int. J. Pept. Protein Res., 1987, 30(2), 206-216. doi: 10.1111/j.1399-3011.1987.tb03328.x PMID: 3679670
  26. Hansen, T.; Alst, T.; Havelkova, M.; Strom, M.B. Antimicrobial activity of small B -peptidomimetics based on the pharmacophore model of short cationic antimicrobial peptides. Peptides, 2010, 39, 595-606.
  27. Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; Perera, C.O.; Pickholz, M.; Remko, M.; Saviano, M.; Skwarczynski, M.; Tang, Y.; Wolf, W.M.; Yoshiya, T.; Zabrocki, J.; Zielenkiewicz, P.; AlKhazindar, M.; Barriga, V.; Kelaidonis, K.; Sarasia, E.M.; Toth, I. A global review on short peptides: Frontiers and perspectives. Molecules, 2021, 26(2), 430. doi: 10.3390/molecules26020430 PMID: 33467522
  28. Arias, M.; Haney, E.F.; Hilchie, A.L.; Corcoran, J.A.; Hyndman, M.E.; Hancock, R.E.W.; Vogel, H.J. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim. Biophys. Acta Biomembr., 2020, 1862(8), 183228. doi: 10.1016/j.bbamem.2020.183228 PMID: 32126228
  29. Bode, S.A.; Löwik, D.W.P.M. Constrained cell penetrating peptides. Drug Discov. Today. Technol., 2017, 26, 33-42.
  30. Bojsen, R.; Torbensen, R.; Larsen, C.E.; Folkesson, A.; Regenberg, B. The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner. PLoS One, 2013, 8(7), e69483. doi: 10.1371/journal.pone.0069483 PMID: 23874964
  31. Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098. doi: 10.1016/S1473-3099(13)70318-9 PMID: 24252483
  32. Carpino, L.A.; Ghassemi, S.; Ionescu, D.; Ismail, M.; Sadat-Aalaee, D.; Truran, G.A.; Mansour, E.M.E.; Siwruk, G.A.; Eynon, J.S.; Morgan, B. Rapid, continuous solution phase peptide synthesis: Application to peptides of pharmaceutical interest. Org. Process Res. Dev., 2003, 7(1), 28-37. doi: 10.1021/op0202179
  33. Coligan, J.; Dunn, E.; Ben, M.; David, W. Guide for resin and linker selection in solid phase peptide synthesis. Curr. Prot. Prot. Sci., 2001, 7, 3-7-19.
  34. Dawson, R.M.; Liu, C.Q. Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics. Drug Dev. Res., 2009, 70(7), 481-498. doi: 10.1002/ddr.20329
  35. Doan, N.D.; Hopewell, R.; Lubell, W.D. N-aminoimidazolidin-2-one peptidomimetics. Org. Lett., 2014, 16(8), 2232-2235. doi: 10.1021/ol500739k PMID: 24697286
  36. Strøm, M.B.; Haug, B.E.; Skar, M.L.; Stensen, W.; Stiberg, T.; Svendsen, J.S.; Stiberg, T.; Svendsen, J.S. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem., 2003, 46(9), 1567-1570. doi: 10.1021/jm0340039 PMID: 12699374
  37. Banga, A.; Chien, Y. Systemic delivery of therapeutic peptides and proteins. Int. J. Pharm., 1988, 48(1-3), 15-50. doi: 10.1016/0378-5173(88)90246-3
  38. Faccone, D.; Veliz, O.; Corso, A.; Noguera, M.; Martínez, M.; Payes, C.; Semorile, L.; Maffía, P.C. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates. Eur. J. Med. Chem., 2014, 71, 31-35. doi: 10.1016/j.ejmech.2013.10.065 PMID: 24269514
  39. Eder, M.; Pavan, S.; Bauder-Wüst, U.; van Rietschoten, K.; Baranski, A.C.; Harrison, H.; Campbell, S.; Stace, C.L.; Walker, E.H.; Chen, L.; Bennett, G.; Mudd, G.; Schierbaum, U.; Leotta, K.; Haberkorn, U.; Kopka, K.; Teufel, D.P. Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors. Cancer Res., 2019, 79(4), 841-852. doi: 10.1158/0008-5472.CAN-18-0238 PMID: 30606721
  40. Edison, N.; Reingewertz, T.H.; Gottfried, Y.; Lev, T.; Zuri, D.; Maniv, I.; Carp, M.J.; Shalev, G.; Friedler, A.; Larisch, S. Peptides mimicking the unique ARTS-XIAP binding site promote apoptotic cell death in cultured cancer cells. Clin. Cancer Res., 2012, 18(9), 2569-2578. doi: 10.1158/1078-0432.CCR-11-1430 PMID: 22392914
  41. Fan, R.; Yuan, Y.; Zhang, Q.; Zhou, X.R.; Jia, L.; Liu, Z.; Yu, C.; Luo, S.Z.; Chen, L. Isoleucine/leucine residues at “a” and “d” positions of a heptad repeat sequence are crucial for the cytolytic activity of a short anticancer lytic peptide. Amino Acids, 2017, 49(1), 193-202. doi: 10.1007/s00726-016-2350-9 PMID: 27778166
  42. Gregg, B. Introduction to peptide synthesis. Curr. Protoc. Protein Sci., 2001, 26.1, 18-19.
  43. Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2012, 11(1), 37-51. doi: 10.1038/nrd3591 PMID: 22173434
  44. Fuertes, M.; Castilla, J.; Alonso, C.; Pérez, J. Cisplatin biochemical mechanism of action: From cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem., 2003, 10(3), 257-266. doi: 10.2174/0929867033368484 PMID: 12570712
  45. Gabernet, G.; Müller, A.T.; Hiss, J.A.; Schneider, G. Membranolytic anticancer peptides. MedChemComm, 2016, 7(12), 2232-2245. doi: 10.1039/C6MD00376A
  46. Meienhofer, J.; Waki, M.; Heimre, E.P.; Lambros, T.J.; Makofske, R.C.; Chang, C.D. Solid phase synthesis without repetitive acidolysis. Preparation of leucyl-alanyl-glycyl-valine using 9-fluorenylmethyloxycarbonylamino acids. Int. J. Pept. Protein Res., 1979, 13(1), 35-42. doi: 10.1111/j.1399-3011.1979.tb01847.x PMID: 422322
  47. Mader, J.S.; Hoskin, D.W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin. Investig. Drugs, 2006, 15(8), 933-946. doi: 10.1517/13543784.15.8.933 PMID: 16859395
  48. Pawlas, J.; Rasmussen, J.H. Circular aqueous fmoc/t-bu solid-phase peptide synthesis. ChemSusChem, 2021, 14(16), 3231-3236.
  49. Ghosh, C.; Manjunath, G.B.; Akkapeddi, P.; Yarlagadda, V.; Hoque, J.; Uppu, D.S.S.M.; Konai, M.M.; Haldar, J. Small molecular antibacterial peptoid mimics: The simpler the better! J. Med. Chem., 2014, 57(4), 1428-1436. doi: 10.1021/jm401680a PMID: 24479371
  50. Giuliani, A.; Rinaldi, A.C. Beyond natural antimicrobial peptides: Multimeric peptides and other peptidomimetic approaches. Cell. Mol. Life Sci., 2011, 68(13), 2255-2266. doi: 10.1007/s00018-011-0717-3 PMID: 21598022
  51. Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515. doi: 10.1080/02713680590968637 PMID: 16020284
  52. Guo, Z.; Wang, Y.; Tan, T.; Ji, Y.; Hu, J.; Zhang, Y. Antimicrobial d-peptide hydrogels. ACS Biomater. Sci. Eng., 2021, 7(4), 1703-1712. doi: 10.1021/acsbiomaterials.1c00187 PMID: 33667076
  53. Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557. doi: 10.1038/nbt1267 PMID: 17160061
  54. Hancock, R.E.W.; Chapple, D.S. Peptide antibiotics. Antimicrob. Agents Chemother., 1999, 43(6), 1317-1323. doi: 10.1128/AAC.43.6.1317 PMID: 10348745
  55. Shenmar, K.; Sharma, K.K.; Wangoo, N.; Maurya, I.K.; Kumar, V.; Khan, S.I.; Jacob, M.R.; Tikoo, K.; Jain, R. Synthesis, stability and mechanistic studies of potent anticryptococcal hexapeptides. Eur. J. Med. Chem., 2017, 132, 192-203. doi: 10.1016/j.ejmech.2017.03.046 PMID: 28363154
  56. Hancock, R.E.W.; Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol., 2000, 8(9), 402-410. doi: 10.1016/S0966-842X(00)01823-0 PMID: 10989307
  57. Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev., 2013, 33(1), 190-234. doi: 10.1002/med.20252 PMID: 21922503
  58. Haug, B.E.; Stensen, W.; Stiberg, T.; Svendsen, J.S. Bulky nonproteinogenic amino acids permit the design of very small and effective cationic antibacterial peptides. J. Med. Chem., 2004, 47(17), 4159-4162. doi: 10.1021/jm049582b PMID: 15293987
  59. Hebda, J.A.; Saraogi, I.; Magzoub, M.; Hamilton, A.D.; Miranker, A.D. A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes. Chem. Biol., 2009, 16(9), 943-950. doi: 10.1016/j.chembiol.2009.08.013 PMID: 19778722
  60. Huang, Y.; Li, X.; Sha, H.; Zhang, L.; Bian, X.; Han, X.; Liu, B. Tumor-penetrating peptide fused to a pro-apoptotic peptide facilitates effective gastric cancer therapy. Oncol. Rep., 2017, 37(4), 2063-2070. doi: 10.3892/or.2017.5440 PMID: 28260064
  61. Huang, Y.; Huang, J.; Chen, Y. Alpha-helical cationic antimicrobial peptides: Relationships of structure and function. Protein Cell, 2010, 1(2), 143-152. doi: 10.1007/s13238-010-0004-3 PMID: 21203984
  62. Imura, Y.; Choda, N.; Matsuzaki, K. Magainin 2 in action: Distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys. J., 2008, 95(12), 5757-5765. doi: 10.1529/biophysj.108.133488 PMID: 18835901
  63. Prabha, N.; Sannasimuthu, A.; Kumaresan, V.; Elumalai, P.; Arockiaraj, J. Intensifying the anticancer potential of cationic peptide derived from serine threonine protein kinase of Teleost by tagging with Oligo Tryptophan. Int. J. Pept. Res. Ther., 2020, 26(1), 75-83. doi: 10.1007/s10989-019-09817-3
  64. Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817. doi: 10.1016/j.drudis.2013.05.011 PMID: 23726889
  65. Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2012, 22(10), 3445-3448. doi: 10.1016/j.bmcl.2012.03.092 PMID: 22520258
  66. Kharb, R.; Rana, M.; Sharma, P.C.; Yar, M.S. Therapeutic importance of peptidomimetics in medicinal chemistry. J. Chem. Pharm. Res., 2011, 3, 173-186.
  67. Maani, Z.; Farajnia, S.; Rahbarnia, L.; Hosseingholi, E.Z.; Khajehnasiri, N.; Mansouri, P. Rational design of an anti-cancer peptide inhibiting CD147/Cyp A interaction. J. Mol. Struct., 2023, 1272, 134160. doi: 10.1016/j.molstruc.2022.134160 PMID: 36128074
  68. Da’san MMJ Thirteen decades of peptide synthesis: Key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 2018, 50(1), 39-68.
  69. Mahindra, A.; Bagra, N.; Wangoo, N.; Jain, R.; Khan, S.I.; Jacob, M.R.; Jain, R. Synthetically modified l-histidine-rich peptidomimetics exhibit potent activity against Cryptococcus neoformans. Bioorg. Med. Chem. Lett., 2014, 24(14), 3150-3154. doi: 10.1016/j.bmcl.2014.04.120 PMID: 24878194
  70. Mahindra, A.; Sharma, K.K.; Jain, R. Rapid microwave-assisted solution-phase peptide synthesis. Tetrahedron Lett., 2012, 53(51), 6931-6935. doi: 10.1016/j.tetlet.2012.10.028
  71. Mahindra, A.; Sharma, K.K.; Rathore, D.; Khan, S.I.; Jacob, M.R.; Jain, R. Synthesis and antimicrobial activities of His(2-aryl)-Arg and Trp-His(2-aryl) classes of dipeptidomimetics. MedChemComm, 2014, 5(5), 671-676. doi: 10.1039/C4MD00041B PMID: 24976942
  72. Mitchell, S.A.; Pratt, M.R.; Hruby, V.J.; Polt, R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J. Org. Chem., 2001, 66(7), 2327-2342. doi: 10.1021/jo005712m PMID: 11281773
  73. Han, Y.; Barany, G.; Novel, S. Xanthenyl protecting groups for cysteine and their applications for the Nα-9-Fluorenylmethyloxycarbonyl (Fmoc) strategy of peptide synthesis 1-3. J. Org. Chem., 1997, 62(12), 3841-3848. doi: 10.1021/jo961882g
  74. Aletras, A.; Barlos, K.; Gatos, D.; Koutsogianni, S.; Mamos, P. Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs. Int. J. Pept. Protein Res., 1995, 45(5), 488-496. doi: 10.1111/j.1399-3011.1995.tb01065.x PMID: 7591489
  75. Mant, C.T.; Kondejewski, L.H.; Cachia, P.J.; Monera, O.D.; Hodges, R.S. Analysis of synthetic peptides by high-performance liquid chromatography. Methods Enzymol., 1997, 289, 426-469. doi: 10.1016/S0076-6879(97)89058-1 PMID: 9353732
  76. Sahu, A.; Sahu, P.; Agrawal, R. Synthesis, pharmacological and toxicological screening of penicillin–triazole conjugates (PNTCs). ACS Omega, 2019, 4(17), 17230-17235. doi: 10.1021/acsomega.9b01724 PMID: 31656896
  77. da Silva, B.R.; de Freitas, V.A.A.; Carneiro, V.A.; Arruda, F.V.S.; Lorenzón, E.N.; de Aguiar, A.S.W.; Cilli, E.M.; Cavada, B.S.; Teixeira, E.H. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci. Peptides, 2013, 42, 78-83. doi: 10.1016/j.peptides.2012.12.001 PMID: 23340019
  78. Sahu, A.; Agrawal, R.K.; Pandey, R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg. Chem., 2019, 88, 102939. doi: 10.1016/j.bioorg.2019.102939 PMID: 31028993
  79. Dwivedi, D.K.; Sahu, A.; Dighade, S.J.; Agrawal, R.K. Design, synthesis, and antimicrobial evaluation of some nifuroxazide analogs against nosocomial infection. J. Heterocycl. Chem., 2020, 57(4), 1666-1671. doi: 10.1002/jhet.3891

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers