In silico-driven identification of Pranlukast as a Stabilizer of PD-L1 Homodimers
- Авторлар: Cordova-Bahena L.1, Landero-Marin C.1, Flores-Hernandez X.1, Alvarez-Coronel L.1, Jimenez-Uribe A.1, Salinas-Jazmin N.1, An Z.2, Velasco-Velazquez M.1
-
Мекемелер:
- School of Medicine, Universidad Nacional Autónoma de México (UNAM)
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center
- Шығарылым: Том 25, № 3 (2025)
- Беттер: 179-193
- Бөлім: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694482
- DOI: https://doi.org/10.2174/0118715206303675241009104647
- ID: 694482
Дәйексөз келтіру
Толық мәтін
Аннотация
Introduction:Programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are critical immune checkpoints in cancer biology. Multiple small-molecule drugs have been developed as inhibitors of the PD-1/PD-L1 axis. Those drugs promote the formation of PD-L1 homodimers, causing their stabilization, internalization, and subsequent degradation. Drug repurposing is a strategy that expedites the clinical translation by identifying new effects of drugs with clinical use. Herein, we aimed to repurpose drugs as inductors of PD-L1 homodimerization and, therefore, as potential inhibitors of PD-L1.
Methods:We generated a hybrid pharmacophore model by analyzing the structures of reported ligands that induce PD-L1 homodimerization and their target-binding mode. Pharmacophore-matching compounds were selected from a chemical library of Food and Drug Administration (FDA)-approved drugs. Their binding modes to PDL1 homodimers were assessed by molecular docking and the stability of the complexes and the corresponding binding energies were evaluated by molecular dynamics (MD) simulations. Finally, the activity of one drug as promoter of PD-L1 homodimerization was assessed in protein crosslinking assays.
Results:We identified 12 pharmacophore-matching compounds, but only 4 reproduced the binding mode of the reference inhibitors. Further characterization by MD showed that pranlukast, an antagonist of leukotriene receptors that is used to treat asthma, generated stable and energy-favorable interactions with PD-L1 homodimers and induced homodimerization of recombinant PD-L1.
Conclusion:Our results suggest that pranlukast inhibits the PD-1/PD-L1 axis, meriting its repurposing as an antitumor drug.
Авторлар туралы
Luis Cordova-Bahena
School of Medicine, Universidad Nacional Autónoma de México (UNAM)
Email: info@benthamscience.net
Carlos Landero-Marin
School of Medicine, Universidad Nacional Autónoma de México (UNAM)
Email: info@benthamscience.net
Xcaret Flores-Hernandez
School of Medicine, Universidad Nacional Autónoma de México (UNAM)
Email: info@benthamscience.net
Leonardo Alvarez-Coronel
School of Medicine, Universidad Nacional Autónoma de México (UNAM)
Email: info@benthamscience.net
Alexis Jimenez-Uribe
School of Medicine, Universidad Nacional Autónoma de México (UNAM)
Email: info@benthamscience.net
Nohemi Salinas-Jazmin
School of Medicine, Universidad Nacional Autónoma de México (UNAM)
Email: info@benthamscience.net
Zhiqiang An
Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center
Email: info@benthamscience.net
Marco Velasco-Velazquez
School of Medicine, Universidad Nacional Autónoma de México (UNAM)
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front. Immunol., 2020, 11, 940. doi: 10.3389/fimmu.2020.00940 PMID: 32499786
- Sun, X.; Wu, B.; Chiang, H.C.; Deng, H.; Zhang, X.; Xiong, W.; Liu, J.; Rozeboom, A.M.; Harris, B.T.; Blommaert, E.; Gomez, A.; Garcia, R.E.; Zhou, Y.; Mitra, P.; Prevost, M.; Zhang, D.; Banik, D.; Isaacs, C.; Berry, D.; Lai, C.; Chaldekas, K.; Latham, P.S.; Brantner, C.A.; Popratiloff, A.; Jin, V.X.; Zhang, N.; Hu, Y.; Pujana, M.A.; Curiel, T.J.; An, Z.; Li, R. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature, 2021, 599(7886), 673-678. doi: 10.1038/s41586-021-04057-2 PMID: 34732895
- Cha, J.H.; Chan, L.C.; Li, C.W.; Hsu, J.L.; Hung, M.C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell, 2019, 76(3), 359-370. doi: 10.1016/j.molcel.2019.09.030 PMID: 31668929
- Córdova-Bahena, L.; Velasco-Velázquez, M.A. Anti-PD-1 and Anti-PD-L1 antibodies as immunotherapy against cancer: A structural perspective. Rev. Invest. Clin., 2021, 73(1), 008-016. doi: 10.24875/RIC.20000341 PMID: 33079077
- Twomey, J.D.; Zhang, B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J., 2021, 23(2), 39. doi: 10.1208/s12248-021-00574-0 PMID: 33677681
- Badiee, P.; Maritz, M.F.; Dmochowska, N.; Cheah, E.; Thierry, B. Intratumoral Anti-PD-1 nanoformulation improves its biodistribution. ACS Appl. Mater. Interfaces, 2022, 14(14), 15881-15893. doi: 10.1021/acsami.1c22479 PMID: 35357803
- Baxi, S.; Yang, A.; Gennarelli, R.L.; Khan, N.; Wang, Z.; Boyce, L.; Korenstein, D. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ, 2018, 360, k793. doi: 10.1136/bmj.k793 PMID: 29540345
- Datta-Mannan, A.; Estwick, S.; Zhou, C.; Choi, H.; Douglass, N.E.; Witcher, D.R.; Lu, J.; Beidler, C.; Millican, R. Influence of physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. MAbs, 2020, 12(1), 1770028. doi: 10.1080/19420862.2020.1770028 PMID: 32486889
- Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol., 2015, 26(12), 2375-2391. doi: 10.1093/annonc/mdv383 PMID: 26371282
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355. doi: 10.1126/science.aar4060 PMID: 29567705
- Ai, L.; Chen, J.; Yan, H.; He, Q.; Luo, P.; Xu, Z.; Yang, X. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des. Devel. Ther., 2020, 14, 3625-3649. doi: 10.2147/DDDT.S267433 PMID: 32982171
- Guzik, K.; Tomala, M.; Muszak, D.; Konieczny, M.; Hec, A.; Błaszkiewicz, U.; Pustuła, M.; Butera, R.; Dömling, A.; Holak, T.A. Development of the inhibitors that target the PD-1/PD-L1 interaction—A brief look at progress on small molecules, peptides and macrocycles. Molecules, 2019, 24(11), 2071. doi: 10.3390/molecules24112071 PMID: 31151293
- Liu, C.; Zhou, F.; Yan, Z.; Shen, L.; Zhang, X.; He, F.; Wang, H.; Lu, X.; Yu, K.; Zhao, Y.; Zhu, D. Discovery of a novel, potent and selective small‐molecule inhibitor of PD‐1/PD‐L1 interaction with robust in vivo anti‐tumour efficacy. Br. J. Pharmacol., 2021, 178(13), 2651-2670. doi: 10.1111/bph.15457 PMID: 33768523
- Koblish, H.K.; Wu, L.; Wang, L.C.S.; Liu, P.C.C.; Wynn, R.; Rios-Doria, J.; Spitz, S.; Liu, H.; Volgina, A.; Zolotarjova, N.; Kapilashrami, K.; Behshad, E.; Covington, M.; Yang, Y.; Li, J.; Diamond, S.; Soloviev, M.; O’Hayer, K.; Rubin, S.; Kanellopoulou, C.; Yang, G.; Rupar, M.; DiMatteo, D.; Lin, L.; Stevens, C.; Zhang, Y.; Thekkat, P.; Geschwindt, R.; Marando, C.; Yeleswaram, S.; Jackson, J.; Scherle, P.; Huber, R.; Yao, W.; Hollis, G. Characterization of INCB086550: A potent and novel small-molecule PD-L1 inhibitor. Cancer Discov., 2022, 12(6), 1482-1499. doi: 10.1158/2159-8290.CD-21-1156 PMID: 35254416
- Wang, T.; Cai, S.; Cheng, Y.; Zhang, W.; Wang, M.; Sun, H.; Guo, B.; Li, Z.; Xiao, Y.; Jiang, S. Discovery of small-molecule inhibitors of the PD-1/PD-L1 axis that promote PD-L1 internalization and degradation. J. Med. Chem., 2022, 65(5), 3879-3893. doi: 10.1021/acs.jmedchem.1c01682 PMID: 35188766
- Liu, L.; Zhang, H.; Hou, J.; Zhang, Y.; Wang, L.; Wang, S.; Yao, Z.; Xie, T.; Wen, X.; Xu, Q.; Dai, L.; Feng, Z.; Zhang, P.; Wu, Y.; Sun, H.; Liu, J.; Yuan, H. Discovery of novel PD-L1 small-molecular inhibitors with potent in vivo anti-tumor immune activity. J. Med. Chem., 2024, 67(6), 4977-4997. doi: 10.1021/acs.jmedchem.4c00102 PMID: 38465588
- Park, J.J.; Thi, E.P.; Carpio, V.H.; Bi, Y.; Cole, A.G.; Dorsey, B.D.; Fan, K.; Harasym, T.; Iott, C.L.; Kadhim, S.; Kim, J.H.; Lee, A.C.H.; Nguyen, D.; Paratala, B.S.; Qiu, R.; White, A.; Lakshminarasimhan, D.; Leo, C.; Suto, R.K.; Rijnbrand, R.; Tang, S.; Sofia, M.J.; Moore, C.B. Checkpoint inhibition through small molecule-induced internalization of programmed death-ligand 1. Nat. Commun., 2021, 12(1), 1222. doi: 10.1038/s41467-021-21410-1 PMID: 33619272
- Lai, F.; Ji, M.; Huang, L.; Wang, Y.; Xue, N.; Du, T.; Dong, K.; Yao, X.; Jin, J.; Feng, Z.; Chen, X. YPD-30, a prodrug of YPD-29B, is an oral small-molecule inhibitor targeting PD-L1 for the treatment of human cancer. Acta Pharm. Sin. B, 2022, 12(6), 2845-2858. doi: 10.1016/j.apsb.2022.02.031 PMID: 35755282
- Wang, K.; Zhang, X.; Cheng, Y.; Qi, Z.; Ye, K.; Zhang, K.; Jiang, S.; Liu, Y.; Xiao, Y.; Wang, T. Discovery of novel PD-L1 inhibitors that induce the dimerization, internalization, and degradation of PD-L1 based on the fragment coupling strategy. J. Med. Chem., 2023, 66(24), 16807-16827. doi: 10.1021/acs.jmedchem.3c01534 PMID: 38109261
- Bailly, C.; Vergoten, G. Protein homodimer sequestration with small molecules: Focus on PD-L1. Biochem. Pharmacol., 2020, 174, 113821. doi: 10.1016/j.bcp.2020.113821 PMID: 31972166
- Verdura, S.; Cuyàs, E.; Cortada, E.; Brunet, J.; Lopez-Bonet, E.; Martin-Castillo, B.; Bosch-Barrera, J.; Encinar, J.A.; Menendez, J.A. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY), 2020, 12(1), 8-34. doi: 10.18632/aging.102646 PMID: 31901900
- Chen, T.; Li, Q.; Liu, Z.; Chen, Y.; Feng, F.; Sun, H. Peptide-based and small synthetic molecule inhibitors on PD-1/PD-L1 pathway: A new choice for immunotherapy? Eur. J. Med. Chem., 2019, 161, 378-398. doi: 10.1016/j.ejmech.2018.10.044 PMID: 30384043
- Zak, K.M.; Grudnik, P.; Guzik, K.; Zieba, B.J.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget, 2016, 7(21), 30323-30335. doi: 10.18632/oncotarget.8730 PMID: 27083005
- Yamaguchi, H.; Hsu, J.M.; Yang, W.H.; Hung, M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol., 2022, 19(5), 287-305. doi: 10.1038/s41571-022-00601-9 PMID: 35132224
- Yang, J.; Hu, L. Immunomodulators targeting the PD‐1/PD‐L1 protein‐protein interaction: From antibodies to small molecules. Med. Res. Rev., 2019, 39(1), 265-301. doi: 10.1002/med.21530 PMID: 30215856
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
- Jarada, T.N.; Rokne, J.G.; Alhajj, R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J. Cheminform., 2020, 12(1), 46. doi: 10.1186/s13321-020-00450-7 PMID: 33431024
- Guzik, K.; Zak, K.M.; Grudnik, P.; Magiera, K.; Musielak, B.; Törner, R.; Skalniak, L.; Dömling, A.; Dubin, G.; Holak, T.A. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J. Med. Chem., 2017, 60(13), 5857-5867. doi: 10.1021/acs.jmedchem.7b00293 PMID: 28613862
- Perry, E.; Mills, J.J.; Zhao, B.; Wang, F.; Sun, Q.; Christov, P.P.; Tarr, J.C.; Rietz, T.A.; Olejniczak, E.T.; Lee, T.; Fesik, S. Fragment-based screening of programmed death ligand 1 (PD-L1). Bioorg. Med. Chem. Lett., 2019, 29(6), 786-790. doi: 10.1016/j.bmcl.2019.01.028 PMID: 30728114
- Chupak, L.S.; Zheng, X. Compounds useful as immunomodulators. WO2015034820A1, 2015.
- Feng, Z.; Chen, X.; Zhang, L.; Yang, Y.; Lai, F.; Ji, M.; Zhou, C.; Zhang, L.; Wang, K. Preparation method therefor, and pharmaceutical composition and uses thereof. U.S. Patent No. 10,941,129, 2021.
- White, K.A.; Grillo-Hill, B.K.; Barber, D.L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci., 2017, 130(4), 663-669. doi: 10.1242/jcs.195297 PMID: 28202602
- Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321. doi: 10.1021/jm051197e PMID: 16722650
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73. doi: 10.1038/nmeth.4067 PMID: 27819658
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-W447. doi: 10.1093/nar/gkv315 PMID: 25873628
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1) 33-38, 27-28. doi: 10.1016/0263-7855(96)00018-5 PMID: 8744570
- Sunseri, J.; Koes, D.R. Pharmit: interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1), W442-W448. doi: 10.1093/nar/gkw287 PMID: 27095195
- Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. doi: 10.1021/ci500020m PMID: 24850022
- Lung, J.; Hung, M.S.; Lin, Y.C.; Hung, C.H.; Chen, C.C.; Lee, K.D.; Tsai, Y. Virtual screening and in vitro evaluation of PD-L1 dimer stabilizers for uncoupling PD-1/PD-L1 interaction from natural products. Molecules, 2020, 25(22), 5293. doi: 10.3390/molecules25225293 PMID: 33202823
- Stael, S.; Miller, L.P.; Fernández-Fernández, Á.D.; Van Breusegem, F. Detection of damage-activated metacaspase activity activities by western blot in plants. Plant Proteases and Plant Cell Death: Methods and Protocols; Klemenčič, M.; Stael, S; Huesgen, P.F., Ed.; Springer US: New York, NY, 2022, pp. 127-137. doi: 10.1007/978-1-0716-2079-3_11
- Feng, Z.; Chen, X.; Yang, Y.; Zheng, Y.; Lai, F.; Ji, M.; Zhou, C.; Zhang, L.; Wang, K. Nicotinyl alcohol ether derivative, preparation method therefor, and pharmaceutical composition and uses thereof. U.S. Patent No. 10,975,049, 2021.
- Basu, S.; Yang, J.; Xu, B.; Magiera-Mularz, K.; Skalniak, L.; Musielak, B.; Kholodovych, V.; Holak, T.A.; Hu, L. Design, synthesis, evaluation, and structural studies of C2-symmetric small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein–protein interaction. J. Med. Chem., 2019, 62(15), 7250-7263. doi: 10.1021/acs.jmedchem.9b00795 PMID: 31298541
- Butera, R.; Ważyńska, M.; Magiera-Mularz, K.; Plewka, J.; Musielak, B.; Surmiak, E.; Sala, D.; Kitel, R.; de Bruyn, M.; Nijman, H.W.; Elsinga, P.H.; Holak, T.A.; Dömling, A. Design, synthesis, and biological evaluation of imidazopyridines as PD-1/PD-L1 antagonists. ACS Med. Chem. Lett., 2021, 12(5), 768-773. doi: 10.1021/acsmedchemlett.1c00033 PMID: 34055224
- Muszak, D.; Surmiak, E.; Plewka, J.; Magiera-Mularz, K.; Kocik-Krol, J.; Musielak, B.; Sala, D.; Kitel, R.; Stec, M.; Weglarczyk, K.; Siedlar, M.; Dömling, A.; Skalniak, L.; Holak, T.A. Terphenyl-based small-molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein–protein interaction. J. Med. Chem., 2021, 64(15), 11614-11636. doi: 10.1021/acs.jmedchem.1c00957 PMID: 34313116
- Skalniak, L.; Zak, K.M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M.; Krzanik, S.; Pyrc, K.; Dömling, A.; Dubin, G.; Holak, T.A. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 2017, 8(42), 72167-72181. doi: 10.18632/oncotarget.20050 PMID: 29069777
- Shaabani, S.; Huizinga, H.P.S.; Butera, R.; Kouchi, A.; Guzik, K.; Magiera-Mularz, K.; Holak, T.A.; Dömling, A. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018). Expert Opin. Ther. Pat., 2018, 28(9), 665-678. doi: 10.1080/13543776.2018.1512706 PMID: 30107136
- Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89. doi: 10.1007/s40484-019-0172-y
- Van der Spoel, D.; Zhang, J.; Zhang, H. Quantitative predictions from molecular simulations using explicit or implicit interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12(1), e1560. doi: 10.1002/wcms.1560
- Stanzione, F.; Giangreco, I.; Cole, J.C. Chapter four - use of molecular docking computational tools in drug discovery. In: Progress in Medicinal Chemistry; Witty, D.R.; Cox, B., Eds.; Elsevier, 2021; Vol. 60, pp. 273-343.
- Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; Shoichet, B.K. A practical guide to large-scale docking. Nat. Protoc., 2021, 16(10), 4799-4832. doi: 10.1038/s41596-021-00597-z PMID: 34561691
- Mittal, L.; Tonk, R.K.; Awasthi, A.; Asthana, S. Targeting cryptic-orthosteric site of PD-L1 for inhibitor identification using structure-guided approach. Arch. Biochem. Biophys., 2021, 713, 109059. doi: 10.1016/j.abb.2021.109059 PMID: 34673001
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron, 2018, 99(6), 1129-1143. doi: 10.1016/j.neuron.2018.08.011 PMID: 30236283
- Singh, S.; Bani Baker, Q.; Singh, D.B. Molecular docking and molecular dynamics simulation. Bioinformatics; Singh, D.B; Pathak, R.K., Ed.; Academic Press, 2022, pp. 291-304. doi: 10.1016/B978-0-323-89775-4.00014-6
- Lazim, R.; Suh, D.; Choi, S. Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. Int. J. Mol. Sci., 2020, 21(17), 6339. doi: 10.3390/ijms21176339 PMID: 32882859
- Bailly, C.; Vergoten, G. N-glycosylation and ubiquitinylation of PD-L1 do not restrict interaction with BMS-202: A molecular modeling study. Comput. Biol. Chem., 2020, 88, 107362. doi: 10.1016/j.compbiolchem.2020.107362 PMID: 32871472
- Sasmal, P.; Babasahib, S.; Kumar, B.R.; Raghavendra, N. Biphenyl-based small molecule inhibitors: Novel cancer immunotherapeutic agents targeting PD-1/PD-L1 interaction. Bioorg. Med. Chem., 2022, 73, 117001. doi: 10.1016/j.bmc.2022.117001 PMID: 36126447
- Xia, W.; He, L.; Bao, J.; Qi, Y.; Zhang, J.Z.H. Insights into small molecule inhibitor bindings to PD-L1 with residue-specific binding free energy calculation. J. Biomol. Struct. Dyn., 2022, 40(22), 12277-12285. doi: 10.1080/07391102.2021.1971558 PMID: 34486939
- Zak, K.M.; Kitel, R.; Przetocka, S.; Golik, P.; Guzik, K.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure, 2015, 23(12), 2341-2348. doi: 10.1016/j.str.2015.09.010 PMID: 26602187
- Tyagi, R.; Singh, A.; Chaudhary, K.K.; Yadav, M.K. Pharmacophore modeling and its applications. In: Bioinformatics; Singh, D.B.; Pathak, R.K., Eds.; Academic Press, 2022; pp. 269-289. doi: 10.1016/B978-0-323-89775-4.00009-2
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug design by pharmacophore and virtual screening approach. Pharm. (Basel), 2022, 15(5), 646. doi: 10.3390/ph15050646 PMID: 35631472
- Luo, L.; Zhong, A.; Wang, Q.; Zheng, T. Structure-based pharmacophore modeling, virtual screening, molecular docking, ADMET, and molecular dynamics (MD) simulation of potential inhibitors of PD-L1 from the library of marine natural products. Mar. Drugs, 2021, 20(1), 29. doi: 10.3390/md20010029 PMID: 35049884
- Mejías, C.; Guirola, O. Pharmacophore model of immunocheckpoint protein PD-L1 by cosolvent molecular dynamics simulations. J. Mol. Graph. Model., 2019, 91, 105-111. doi: 10.1016/j.jmgm.2019.06.001 PMID: 31202914
- Zhong, Y.; Li, X.; Yao, H.; Lin, K. The characteristics of PD-L1 inhibitors, from peptides to small molecules. Molecules, 2019, 24(10), 1940. doi: 10.3390/molecules24101940 PMID: 31137573
- Antoszczak, M.; Markowska, A.; Markowska, J.; Huczyński, A. Old wine in new bottles: Drug repurposing in oncology. Eur. J. Pharmacol., 2020, 866, 172784. doi: 10.1016/j.ejphar.2019.172784 PMID: 31730760
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085. doi: 10.1016/j.drudis.2019.06.014 PMID: 31238113
- Alhusban, A.; Al-Azayzih, A.; Goc, A.; Gao, F.; Fagan, S.C.; Somanath, P.R. Clinically relevant doses of candesartan inhibit growth of prostate tumor xenografts in vivo through modulation of tumor angiogenesis. J. Pharmacol. Exp. Ther., 2014, 350(3), 635-645. doi: 10.1124/jpet.114.216382 PMID: 24990940
- Bellamkonda, K.; Satapathy, S.R.; Douglas, D.; Chandrashekar, N.; Selvanesan, B.C.; Liu, M.; Savari, S.; Jonsson, G.; Sjölander, A. Montelukast, a CysLT1 receptor antagonist, reduces colon cancer stemness and tumor burden in a mouse xenograft model of human colon cancer. Cancer Lett., 2018, 437, 13-24. doi: 10.1016/j.canlet.2018.08.019 PMID: 30144515
- Fan, F.; Tian, C.; Tao, L.; Wu, H.; Liu, Z.; Shen, C.; Jiang, G.; Lu, Y. Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. Biomed. Pharmacother., 2016, 83, 704-711. doi: 10.1016/j.biopha.2016.07.039 PMID: 27470571
- Gonçalves, J.M.; Silva, C.A.B.; Rivero, E.R.C.; Cordeiro, M.M.R. Inhibition of cancer stem cells promoted by Pimozide. Clin. Exp. Pharmacol. Physiol., 2019, 46(2), 116-125. doi: 10.1111/1440-1681.13049 PMID: 30383889
- Kachi, K.; Kato, H.; Naiki-Ito, A.; Komura, M.; Nagano-Matsuo, A.; Naitoh, I.; Hayashi, K.; Kataoka, H.; Inaguma, S.; Takahashi, S. Anti-allergic drug suppressed pancreatic carcinogenesis via down-regulation of cellular proliferation. Int. J. Mol. Sci., 2021, 22(14), 7444. doi: 10.3390/ijms22147444 PMID: 34299067
- Kobara, H.; Fujihara, S.; Iwama, H.; Matsui, T.; Fujimori, A.; Chiyo, T.; Tingting, S.; Kobayashi, N.; Nishiyama, N.; Yachida, T.; Tadokoro, T.; Oura, K.; Tani, J.; Fujita, K.; Nomura, T.; Yoneyama, H.; Morishita, A.; Okano, K.; Suzuki, Y.; Mori, H.; Masaki, T. Antihypertensive drug telmisartan inhibits cell proliferation of gastrointestinal stromal tumor cells in vitro. Mol. Med. Rep., 2020, 22(2), 1063-1071. doi: 10.3892/mmr.2020.11144 PMID: 32626983
- Nozaki, M.; Yoshikawa, M.; Ishitani, K.; Kobayashi, H.; Houkin, K.; Imai, K.; Ito, Y.; Muraki, T. Cysteinyl leukotriene receptor antagonists inhibit tumor metastasis by inhibiting capillary permeability. Keio J. Med., 2010, 59(1), 10-18. doi: 10.2302/kjm.59.10 PMID: 20375653
- Suknuntha, K.; Yubolphan, R.; Krueaprasertkul, K.; Srihirun, S.; Sibmooh, N.; Vivithanaporn, P. Leukotriene receptor antagonists inhibit mitogenic activity in triple negative breast cancer cells. Asian Pac. J. Cancer Prev., 2018, 19(3), 833-837. doi: 10.22034/APJCP.2018.19.3.833 PMID: 29582642
- Tabatabai, E.; Khazaei, M.; Asgharzadeh, F.; Nazari, S.E.; Shakour, N.; Fiuji, H.; Ziaeemehr, A.; Mostafapour, A.; Parizadeh, M.R.; Nouri, M.; Hassanian, S.M.; Hadizadeh, F.; Ferns, G.A.; Rahmati, M.; Rahmani, F.; Avan, A. Inhibition of angiotensin II type 1 receptor by candesartan reduces tumor growth and ameliorates fibrosis in colorectal cancer. EXCLI J., 2021, 20, 863-878. doi: 10.17179/excli2021-3421 PMID: 34121975
- Tang, C.; Lei, H.; Zhang, J.; Liu, M.; Jin, J.; Luo, H.; Xu, H.; Wu, Y. Montelukast inhibits hypoxia inducible factor-1α translation in prostate cancer cells. Cancer Biol. Ther., 2018, 19(8), 715-721. doi: 10.1080/15384047.2018.1451279 PMID: 29708817
- Tsai, M.J.; Chang, W.A.; Tsai, P.H.; Wu, C.Y.; Ho, Y.W.; Yen, M.C.; Lin, Y.S.; Kuo, P.L.; Hsu, Y.L. Montelukast induces apoptosis-inducing factor-mediated cell death of lung cancer cells. Int. J. Mol. Sci., 2017, 18(7), 1353. doi: 10.3390/ijms18071353 PMID: 28672809
- Velázquez-Quesada, I.; Ruiz-Moreno, A.J.; Casique-Aguirre, D.; Aguirre-Alvarado, C.; Cortés-Mendoza, F.; De la Fuente-Granada, M.; García-Pérez, C.; Pérez-Tapia, S.M.; González-Arenas, A.; Segura-Cabrera, A.; Velasco-Velázquez, M.A. Pranlukast antagonizes CD49f and reduces stemness in triple-negative breast cancer cells. Drug Des. Devel. Ther., 2020, 14, 1799-1811. doi: 10.2147/DDDT.S247730 PMID: 32494122
- Zovko, A.; Yektaei-Karin, E.; Salamon, D.; Nilsson, A.; Wallvik, J.; Stenke, L. Montelukast, a cysteinyl leukotriene receptor antagonist, inhibits the growth of chronic myeloid leukemia cells through apoptosis. Oncol. Rep., 2018, 40(2), 902-908. doi: 10.3892/or.2018.6465 PMID: 29845257
- Keam, S.J.; Lyseng-Williamson, K.A.; Goa, K.L. Pranlukast. Drugs, 2003, 63(10), 991-1019. doi: 10.2165/00003495-200363100-00005 PMID: 12699401
- Figueroa, E.E.; Kramer, M.; Strange, K.; Denton, J.S. CysLT1 receptor antagonists pranlukast and zafirlukast inhibit LRRC8-mediated volume regulated anion channels independently of the receptor. Am. J. Physiol. Cell Physiol., 2019, 317(4), C857-C866. doi: 10.1152/ajpcell.00281.2019 PMID: 31390227
- Montes-Grajales, D.; Puerta-Guardo, H.; Espinosa, D.A.; Harris, E.; Caicedo-Torres, W.; Olivero-Verbel, J.; Martínez-Romero, E. In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res., 2020, 173, 104668. doi: 10.1016/j.antiviral.2019.104668 PMID: 31786251
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; Chawla, A.; Curran, M.; Hwu, P.; Sharma, P.; Litton, J.K.; Molldrem, J.J.; Alatrash, G. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res., 2014, 2(4), 361-370. doi: 10.1158/2326-6066.CIR-13-0127 PMID: 24764583
- Ehrt, C.; Brinkjost, T.; Koch, O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J. Med. Chem., 2016, 59(9), 4121-4151. doi: 10.1021/acs.jmedchem.6b00078 PMID: 27046190
- Ehrt, C.; Brinkjost, T.; Koch, O. Binding site characterization – similarity, promiscuity, and druggability. MedChemComm, 2019, 10(7), 1145-1159. doi: 10.1039/C9MD00102F PMID: 31391887
- Haupt, V.J.; Daminelli, S.; Schroeder, M. Drug promiscuity in PDB: Protein binding site similarity is key. PLoS One, 2013, 8(6), e65894. doi: 10.1371/journal.pone.0065894 PMID: 23805191
- Luginina, A.; Gusach, A.; Marin, E.; Mishin, A.; Brouillette, R.; Popov, P.; Shiriaeva, A.; Besserer-Offroy, É.; Longpré, J.M.; Lyapina, E.; Ishchenko, A.; Patel, N.; Polovinkin, V.; Safronova, N.; Bogorodskiy, A.; Edelweiss, E.; Hu, H.; Weierstall, U.; Liu, W.; Batyuk, A.; Gordeliy, V.; Han, G.W.; Sarret, P.; Katritch, V.; Borshchevskiy, V.; Cherezov, V. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv., 2019, 5(10), eaax2518. doi: 10.1126/sciadv.aax2518 PMID: 31633023
- Hoffer, L.; Muller, C.; Roche, P.; Morelli, X. Chemistry‐driven Hit‐to‐lead optimization guided by structure‐based approaches. Mol. Inform., 2018, 37(9-10), 1800059. doi: 10.1002/minf.201800059 PMID: 30051601
- Mignani, S.; Rodrigues, J.; Tomas, H.; Jalal, R.; Singh, P.P.; Majoral, J.P.; Vishwakarma, R.A. Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov. Today, 2018, 23(3), 605-615. doi: 10.1016/j.drudis.2018.01.010 PMID: 29330127
Қосымша файлдар
