In silico-driven identification of Pranlukast as a Stabilizer of PD-L1 Homodimers


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:Programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are critical immune checkpoints in cancer biology. Multiple small-molecule drugs have been developed as inhibitors of the PD-1/PD-L1 axis. Those drugs promote the formation of PD-L1 homodimers, causing their stabilization, internalization, and subsequent degradation. Drug repurposing is a strategy that expedites the clinical translation by identifying new effects of drugs with clinical use. Herein, we aimed to repurpose drugs as inductors of PD-L1 homodimerization and, therefore, as potential inhibitors of PD-L1.

Methods:We generated a hybrid pharmacophore model by analyzing the structures of reported ligands that induce PD-L1 homodimerization and their target-binding mode. Pharmacophore-matching compounds were selected from a chemical library of Food and Drug Administration (FDA)-approved drugs. Their binding modes to PDL1 homodimers were assessed by molecular docking and the stability of the complexes and the corresponding binding energies were evaluated by molecular dynamics (MD) simulations. Finally, the activity of one drug as promoter of PD-L1 homodimerization was assessed in protein crosslinking assays.

Results:We identified 12 pharmacophore-matching compounds, but only 4 reproduced the binding mode of the reference inhibitors. Further characterization by MD showed that pranlukast, an antagonist of leukotriene receptors that is used to treat asthma, generated stable and energy-favorable interactions with PD-L1 homodimers and induced homodimerization of recombinant PD-L1.

Conclusion:Our results suggest that pranlukast inhibits the PD-1/PD-L1 axis, meriting its repurposing as an antitumor drug.

Авторлар туралы

Luis Cordova-Bahena

School of Medicine, Universidad Nacional Autónoma de México (UNAM)

Email: info@benthamscience.net

Carlos Landero-Marin

School of Medicine, Universidad Nacional Autónoma de México (UNAM)

Email: info@benthamscience.net

Xcaret Flores-Hernandez

School of Medicine, Universidad Nacional Autónoma de México (UNAM)

Email: info@benthamscience.net

Leonardo Alvarez-Coronel

School of Medicine, Universidad Nacional Autónoma de México (UNAM)

Email: info@benthamscience.net

Alexis Jimenez-Uribe

School of Medicine, Universidad Nacional Autónoma de México (UNAM)

Email: info@benthamscience.net

Nohemi Salinas-Jazmin

School of Medicine, Universidad Nacional Autónoma de México (UNAM)

Email: info@benthamscience.net

Zhiqiang An

Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center

Email: info@benthamscience.net

Marco Velasco-Velazquez

School of Medicine, Universidad Nacional Autónoma de México (UNAM)

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front. Immunol., 2020, 11, 940. doi: 10.3389/fimmu.2020.00940 PMID: 32499786
  2. Sun, X.; Wu, B.; Chiang, H.C.; Deng, H.; Zhang, X.; Xiong, W.; Liu, J.; Rozeboom, A.M.; Harris, B.T.; Blommaert, E.; Gomez, A.; Garcia, R.E.; Zhou, Y.; Mitra, P.; Prevost, M.; Zhang, D.; Banik, D.; Isaacs, C.; Berry, D.; Lai, C.; Chaldekas, K.; Latham, P.S.; Brantner, C.A.; Popratiloff, A.; Jin, V.X.; Zhang, N.; Hu, Y.; Pujana, M.A.; Curiel, T.J.; An, Z.; Li, R. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature, 2021, 599(7886), 673-678. doi: 10.1038/s41586-021-04057-2 PMID: 34732895
  3. Cha, J.H.; Chan, L.C.; Li, C.W.; Hsu, J.L.; Hung, M.C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell, 2019, 76(3), 359-370. doi: 10.1016/j.molcel.2019.09.030 PMID: 31668929
  4. Córdova-Bahena, L.; Velasco-Velázquez, M.A. Anti-PD-1 and Anti-PD-L1 antibodies as immunotherapy against cancer: A structural perspective. Rev. Invest. Clin., 2021, 73(1), 008-016. doi: 10.24875/RIC.20000341 PMID: 33079077
  5. Twomey, J.D.; Zhang, B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J., 2021, 23(2), 39. doi: 10.1208/s12248-021-00574-0 PMID: 33677681
  6. Badiee, P.; Maritz, M.F.; Dmochowska, N.; Cheah, E.; Thierry, B. Intratumoral Anti-PD-1 nanoformulation improves its biodistribution. ACS Appl. Mater. Interfaces, 2022, 14(14), 15881-15893. doi: 10.1021/acsami.1c22479 PMID: 35357803
  7. Baxi, S.; Yang, A.; Gennarelli, R.L.; Khan, N.; Wang, Z.; Boyce, L.; Korenstein, D. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ, 2018, 360, k793. doi: 10.1136/bmj.k793 PMID: 29540345
  8. Datta-Mannan, A.; Estwick, S.; Zhou, C.; Choi, H.; Douglass, N.E.; Witcher, D.R.; Lu, J.; Beidler, C.; Millican, R. Influence of physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. MAbs, 2020, 12(1), 1770028. doi: 10.1080/19420862.2020.1770028 PMID: 32486889
  9. Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol., 2015, 26(12), 2375-2391. doi: 10.1093/annonc/mdv383 PMID: 26371282
  10. Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355. doi: 10.1126/science.aar4060 PMID: 29567705
  11. Ai, L.; Chen, J.; Yan, H.; He, Q.; Luo, P.; Xu, Z.; Yang, X. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy. Drug Des. Devel. Ther., 2020, 14, 3625-3649. doi: 10.2147/DDDT.S267433 PMID: 32982171
  12. Guzik, K.; Tomala, M.; Muszak, D.; Konieczny, M.; Hec, A.; Błaszkiewicz, U.; Pustuła, M.; Butera, R.; Dömling, A.; Holak, T.A. Development of the inhibitors that target the PD-1/PD-L1 interaction—A brief look at progress on small molecules, peptides and macrocycles. Molecules, 2019, 24(11), 2071. doi: 10.3390/molecules24112071 PMID: 31151293
  13. Liu, C.; Zhou, F.; Yan, Z.; Shen, L.; Zhang, X.; He, F.; Wang, H.; Lu, X.; Yu, K.; Zhao, Y.; Zhu, D. Discovery of a novel, potent and selective small‐molecule inhibitor of PD‐1/PD‐L1 interaction with robust in vivo anti‐tumour efficacy. Br. J. Pharmacol., 2021, 178(13), 2651-2670. doi: 10.1111/bph.15457 PMID: 33768523
  14. Koblish, H.K.; Wu, L.; Wang, L.C.S.; Liu, P.C.C.; Wynn, R.; Rios-Doria, J.; Spitz, S.; Liu, H.; Volgina, A.; Zolotarjova, N.; Kapilashrami, K.; Behshad, E.; Covington, M.; Yang, Y.; Li, J.; Diamond, S.; Soloviev, M.; O’Hayer, K.; Rubin, S.; Kanellopoulou, C.; Yang, G.; Rupar, M.; DiMatteo, D.; Lin, L.; Stevens, C.; Zhang, Y.; Thekkat, P.; Geschwindt, R.; Marando, C.; Yeleswaram, S.; Jackson, J.; Scherle, P.; Huber, R.; Yao, W.; Hollis, G. Characterization of INCB086550: A potent and novel small-molecule PD-L1 inhibitor. Cancer Discov., 2022, 12(6), 1482-1499. doi: 10.1158/2159-8290.CD-21-1156 PMID: 35254416
  15. Wang, T.; Cai, S.; Cheng, Y.; Zhang, W.; Wang, M.; Sun, H.; Guo, B.; Li, Z.; Xiao, Y.; Jiang, S. Discovery of small-molecule inhibitors of the PD-1/PD-L1 axis that promote PD-L1 internalization and degradation. J. Med. Chem., 2022, 65(5), 3879-3893. doi: 10.1021/acs.jmedchem.1c01682 PMID: 35188766
  16. Liu, L.; Zhang, H.; Hou, J.; Zhang, Y.; Wang, L.; Wang, S.; Yao, Z.; Xie, T.; Wen, X.; Xu, Q.; Dai, L.; Feng, Z.; Zhang, P.; Wu, Y.; Sun, H.; Liu, J.; Yuan, H. Discovery of novel PD-L1 small-molecular inhibitors with potent in vivo anti-tumor immune activity. J. Med. Chem., 2024, 67(6), 4977-4997. doi: 10.1021/acs.jmedchem.4c00102 PMID: 38465588
  17. Park, J.J.; Thi, E.P.; Carpio, V.H.; Bi, Y.; Cole, A.G.; Dorsey, B.D.; Fan, K.; Harasym, T.; Iott, C.L.; Kadhim, S.; Kim, J.H.; Lee, A.C.H.; Nguyen, D.; Paratala, B.S.; Qiu, R.; White, A.; Lakshminarasimhan, D.; Leo, C.; Suto, R.K.; Rijnbrand, R.; Tang, S.; Sofia, M.J.; Moore, C.B. Checkpoint inhibition through small molecule-induced internalization of programmed death-ligand 1. Nat. Commun., 2021, 12(1), 1222. doi: 10.1038/s41467-021-21410-1 PMID: 33619272
  18. Lai, F.; Ji, M.; Huang, L.; Wang, Y.; Xue, N.; Du, T.; Dong, K.; Yao, X.; Jin, J.; Feng, Z.; Chen, X. YPD-30, a prodrug of YPD-29B, is an oral small-molecule inhibitor targeting PD-L1 for the treatment of human cancer. Acta Pharm. Sin. B, 2022, 12(6), 2845-2858. doi: 10.1016/j.apsb.2022.02.031 PMID: 35755282
  19. Wang, K.; Zhang, X.; Cheng, Y.; Qi, Z.; Ye, K.; Zhang, K.; Jiang, S.; Liu, Y.; Xiao, Y.; Wang, T. Discovery of novel PD-L1 inhibitors that induce the dimerization, internalization, and degradation of PD-L1 based on the fragment coupling strategy. J. Med. Chem., 2023, 66(24), 16807-16827. doi: 10.1021/acs.jmedchem.3c01534 PMID: 38109261
  20. Bailly, C.; Vergoten, G. Protein homodimer sequestration with small molecules: Focus on PD-L1. Biochem. Pharmacol., 2020, 174, 113821. doi: 10.1016/j.bcp.2020.113821 PMID: 31972166
  21. Verdura, S.; Cuyàs, E.; Cortada, E.; Brunet, J.; Lopez-Bonet, E.; Martin-Castillo, B.; Bosch-Barrera, J.; Encinar, J.A.; Menendez, J.A. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY), 2020, 12(1), 8-34. doi: 10.18632/aging.102646 PMID: 31901900
  22. Chen, T.; Li, Q.; Liu, Z.; Chen, Y.; Feng, F.; Sun, H. Peptide-based and small synthetic molecule inhibitors on PD-1/PD-L1 pathway: A new choice for immunotherapy? Eur. J. Med. Chem., 2019, 161, 378-398. doi: 10.1016/j.ejmech.2018.10.044 PMID: 30384043
  23. Zak, K.M.; Grudnik, P.; Guzik, K.; Zieba, B.J.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget, 2016, 7(21), 30323-30335. doi: 10.18632/oncotarget.8730 PMID: 27083005
  24. Yamaguchi, H.; Hsu, J.M.; Yang, W.H.; Hung, M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol., 2022, 19(5), 287-305. doi: 10.1038/s41571-022-00601-9 PMID: 35132224
  25. Yang, J.; Hu, L. Immunomodulators targeting the PD‐1/PD‐L1 protein‐protein interaction: From antibodies to small molecules. Med. Res. Rev., 2019, 39(1), 265-301. doi: 10.1002/med.21530 PMID: 30215856
  26. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  27. Jarada, T.N.; Rokne, J.G.; Alhajj, R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J. Cheminform., 2020, 12(1), 46. doi: 10.1186/s13321-020-00450-7 PMID: 33431024
  28. Guzik, K.; Zak, K.M.; Grudnik, P.; Magiera, K.; Musielak, B.; Törner, R.; Skalniak, L.; Dömling, A.; Dubin, G.; Holak, T.A. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J. Med. Chem., 2017, 60(13), 5857-5867. doi: 10.1021/acs.jmedchem.7b00293 PMID: 28613862
  29. Perry, E.; Mills, J.J.; Zhao, B.; Wang, F.; Sun, Q.; Christov, P.P.; Tarr, J.C.; Rietz, T.A.; Olejniczak, E.T.; Lee, T.; Fesik, S. Fragment-based screening of programmed death ligand 1 (PD-L1). Bioorg. Med. Chem. Lett., 2019, 29(6), 786-790. doi: 10.1016/j.bmcl.2019.01.028 PMID: 30728114
  30. Chupak, L.S.; Zheng, X. Compounds useful as immunomodulators. WO2015034820A1, 2015.
  31. Feng, Z.; Chen, X.; Zhang, L.; Yang, Y.; Lai, F.; Ji, M.; Zhou, C.; Zhang, L.; Wang, K. Preparation method therefor, and pharmaceutical composition and uses thereof. U.S. Patent No. 10,941,129, 2021.
  32. White, K.A.; Grillo-Hill, B.K.; Barber, D.L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci., 2017, 130(4), 663-669. doi: 10.1242/jcs.195297 PMID: 28202602
  33. Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321. doi: 10.1021/jm051197e PMID: 16722650
  34. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
  35. Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73. doi: 10.1038/nmeth.4067 PMID: 27819658
  36. Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-W447. doi: 10.1093/nar/gkv315 PMID: 25873628
  37. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1) 33-38, 27-28. doi: 10.1016/0263-7855(96)00018-5 PMID: 8744570
  38. Sunseri, J.; Koes, D.R. Pharmit: interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1), W442-W448. doi: 10.1093/nar/gkw287 PMID: 27095195
  39. Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. doi: 10.1021/ci500020m PMID: 24850022
  40. Lung, J.; Hung, M.S.; Lin, Y.C.; Hung, C.H.; Chen, C.C.; Lee, K.D.; Tsai, Y. Virtual screening and in vitro evaluation of PD-L1 dimer stabilizers for uncoupling PD-1/PD-L1 interaction from natural products. Molecules, 2020, 25(22), 5293. doi: 10.3390/molecules25225293 PMID: 33202823
  41. Stael, S.; Miller, L.P.; Fernández-Fernández, Á.D.; Van Breusegem, F. Detection of damage-activated metacaspase activity activities by western blot in plants. Plant Proteases and Plant Cell Death: Methods and Protocols; Klemenčič, M.; Stael, S; Huesgen, P.F., Ed.; Springer US: New York, NY, 2022, pp. 127-137. doi: 10.1007/978-1-0716-2079-3_11
  42. Feng, Z.; Chen, X.; Yang, Y.; Zheng, Y.; Lai, F.; Ji, M.; Zhou, C.; Zhang, L.; Wang, K. Nicotinyl alcohol ether derivative, preparation method therefor, and pharmaceutical composition and uses thereof. U.S. Patent No. 10,975,049, 2021.
  43. Basu, S.; Yang, J.; Xu, B.; Magiera-Mularz, K.; Skalniak, L.; Musielak, B.; Kholodovych, V.; Holak, T.A.; Hu, L. Design, synthesis, evaluation, and structural studies of C2-symmetric small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein–protein interaction. J. Med. Chem., 2019, 62(15), 7250-7263. doi: 10.1021/acs.jmedchem.9b00795 PMID: 31298541
  44. Butera, R.; Ważyńska, M.; Magiera-Mularz, K.; Plewka, J.; Musielak, B.; Surmiak, E.; Sala, D.; Kitel, R.; de Bruyn, M.; Nijman, H.W.; Elsinga, P.H.; Holak, T.A.; Dömling, A. Design, synthesis, and biological evaluation of imidazopyridines as PD-1/PD-L1 antagonists. ACS Med. Chem. Lett., 2021, 12(5), 768-773. doi: 10.1021/acsmedchemlett.1c00033 PMID: 34055224
  45. Muszak, D.; Surmiak, E.; Plewka, J.; Magiera-Mularz, K.; Kocik-Krol, J.; Musielak, B.; Sala, D.; Kitel, R.; Stec, M.; Weglarczyk, K.; Siedlar, M.; Dömling, A.; Skalniak, L.; Holak, T.A. Terphenyl-based small-molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein–protein interaction. J. Med. Chem., 2021, 64(15), 11614-11636. doi: 10.1021/acs.jmedchem.1c00957 PMID: 34313116
  46. Skalniak, L.; Zak, K.M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M.; Krzanik, S.; Pyrc, K.; Dömling, A.; Dubin, G.; Holak, T.A. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 2017, 8(42), 72167-72181. doi: 10.18632/oncotarget.20050 PMID: 29069777
  47. Shaabani, S.; Huizinga, H.P.S.; Butera, R.; Kouchi, A.; Guzik, K.; Magiera-Mularz, K.; Holak, T.A.; Dömling, A. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018). Expert Opin. Ther. Pat., 2018, 28(9), 665-678. doi: 10.1080/13543776.2018.1512706 PMID: 30107136
  48. Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89. doi: 10.1007/s40484-019-0172-y
  49. Van der Spoel, D.; Zhang, J.; Zhang, H. Quantitative predictions from molecular simulations using explicit or implicit interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12(1), e1560. doi: 10.1002/wcms.1560
  50. Stanzione, F.; Giangreco, I.; Cole, J.C. Chapter four - use of molecular docking computational tools in drug discovery. In: Progress in Medicinal Chemistry; Witty, D.R.; Cox, B., Eds.; Elsevier, 2021; Vol. 60, pp. 273-343.
  51. Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; Shoichet, B.K. A practical guide to large-scale docking. Nat. Protoc., 2021, 16(10), 4799-4832. doi: 10.1038/s41596-021-00597-z PMID: 34561691
  52. Mittal, L.; Tonk, R.K.; Awasthi, A.; Asthana, S. Targeting cryptic-orthosteric site of PD-L1 for inhibitor identification using structure-guided approach. Arch. Biochem. Biophys., 2021, 713, 109059. doi: 10.1016/j.abb.2021.109059 PMID: 34673001
  53. Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron, 2018, 99(6), 1129-1143. doi: 10.1016/j.neuron.2018.08.011 PMID: 30236283
  54. Singh, S.; Bani Baker, Q.; Singh, D.B. Molecular docking and molecular dynamics simulation. Bioinformatics; Singh, D.B; Pathak, R.K., Ed.; Academic Press, 2022, pp. 291-304. doi: 10.1016/B978-0-323-89775-4.00014-6
  55. Lazim, R.; Suh, D.; Choi, S. Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. Int. J. Mol. Sci., 2020, 21(17), 6339. doi: 10.3390/ijms21176339 PMID: 32882859
  56. Bailly, C.; Vergoten, G. N-glycosylation and ubiquitinylation of PD-L1 do not restrict interaction with BMS-202: A molecular modeling study. Comput. Biol. Chem., 2020, 88, 107362. doi: 10.1016/j.compbiolchem.2020.107362 PMID: 32871472
  57. Sasmal, P.; Babasahib, S.; Kumar, B.R.; Raghavendra, N. Biphenyl-based small molecule inhibitors: Novel cancer immunotherapeutic agents targeting PD-1/PD-L1 interaction. Bioorg. Med. Chem., 2022, 73, 117001. doi: 10.1016/j.bmc.2022.117001 PMID: 36126447
  58. Xia, W.; He, L.; Bao, J.; Qi, Y.; Zhang, J.Z.H. Insights into small molecule inhibitor bindings to PD-L1 with residue-specific binding free energy calculation. J. Biomol. Struct. Dyn., 2022, 40(22), 12277-12285. doi: 10.1080/07391102.2021.1971558 PMID: 34486939
  59. Zak, K.M.; Kitel, R.; Przetocka, S.; Golik, P.; Guzik, K.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure, 2015, 23(12), 2341-2348. doi: 10.1016/j.str.2015.09.010 PMID: 26602187
  60. Tyagi, R.; Singh, A.; Chaudhary, K.K.; Yadav, M.K. Pharmacophore modeling and its applications. In: Bioinformatics; Singh, D.B.; Pathak, R.K., Eds.; Academic Press, 2022; pp. 269-289. doi: 10.1016/B978-0-323-89775-4.00009-2
  61. Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug design by pharmacophore and virtual screening approach. Pharm. (Basel), 2022, 15(5), 646. doi: 10.3390/ph15050646 PMID: 35631472
  62. Luo, L.; Zhong, A.; Wang, Q.; Zheng, T. Structure-based pharmacophore modeling, virtual screening, molecular docking, ADMET, and molecular dynamics (MD) simulation of potential inhibitors of PD-L1 from the library of marine natural products. Mar. Drugs, 2021, 20(1), 29. doi: 10.3390/md20010029 PMID: 35049884
  63. Mejías, C.; Guirola, O. Pharmacophore model of immunocheckpoint protein PD-L1 by cosolvent molecular dynamics simulations. J. Mol. Graph. Model., 2019, 91, 105-111. doi: 10.1016/j.jmgm.2019.06.001 PMID: 31202914
  64. Zhong, Y.; Li, X.; Yao, H.; Lin, K. The characteristics of PD-L1 inhibitors, from peptides to small molecules. Molecules, 2019, 24(10), 1940. doi: 10.3390/molecules24101940 PMID: 31137573
  65. Antoszczak, M.; Markowska, A.; Markowska, J.; Huczyński, A. Old wine in new bottles: Drug repurposing in oncology. Eur. J. Pharmacol., 2020, 866, 172784. doi: 10.1016/j.ejphar.2019.172784 PMID: 31730760
  66. Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085. doi: 10.1016/j.drudis.2019.06.014 PMID: 31238113
  67. Alhusban, A.; Al-Azayzih, A.; Goc, A.; Gao, F.; Fagan, S.C.; Somanath, P.R. Clinically relevant doses of candesartan inhibit growth of prostate tumor xenografts in vivo through modulation of tumor angiogenesis. J. Pharmacol. Exp. Ther., 2014, 350(3), 635-645. doi: 10.1124/jpet.114.216382 PMID: 24990940
  68. Bellamkonda, K.; Satapathy, S.R.; Douglas, D.; Chandrashekar, N.; Selvanesan, B.C.; Liu, M.; Savari, S.; Jonsson, G.; Sjölander, A. Montelukast, a CysLT1 receptor antagonist, reduces colon cancer stemness and tumor burden in a mouse xenograft model of human colon cancer. Cancer Lett., 2018, 437, 13-24. doi: 10.1016/j.canlet.2018.08.019 PMID: 30144515
  69. Fan, F.; Tian, C.; Tao, L.; Wu, H.; Liu, Z.; Shen, C.; Jiang, G.; Lu, Y. Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. Biomed. Pharmacother., 2016, 83, 704-711. doi: 10.1016/j.biopha.2016.07.039 PMID: 27470571
  70. Gonçalves, J.M.; Silva, C.A.B.; Rivero, E.R.C.; Cordeiro, M.M.R. Inhibition of cancer stem cells promoted by Pimozide. Clin. Exp. Pharmacol. Physiol., 2019, 46(2), 116-125. doi: 10.1111/1440-1681.13049 PMID: 30383889
  71. Kachi, K.; Kato, H.; Naiki-Ito, A.; Komura, M.; Nagano-Matsuo, A.; Naitoh, I.; Hayashi, K.; Kataoka, H.; Inaguma, S.; Takahashi, S. Anti-allergic drug suppressed pancreatic carcinogenesis via down-regulation of cellular proliferation. Int. J. Mol. Sci., 2021, 22(14), 7444. doi: 10.3390/ijms22147444 PMID: 34299067
  72. Kobara, H.; Fujihara, S.; Iwama, H.; Matsui, T.; Fujimori, A.; Chiyo, T.; Tingting, S.; Kobayashi, N.; Nishiyama, N.; Yachida, T.; Tadokoro, T.; Oura, K.; Tani, J.; Fujita, K.; Nomura, T.; Yoneyama, H.; Morishita, A.; Okano, K.; Suzuki, Y.; Mori, H.; Masaki, T. Antihypertensive drug telmisartan inhibits cell proliferation of gastrointestinal stromal tumor cells in vitro. Mol. Med. Rep., 2020, 22(2), 1063-1071. doi: 10.3892/mmr.2020.11144 PMID: 32626983
  73. Nozaki, M.; Yoshikawa, M.; Ishitani, K.; Kobayashi, H.; Houkin, K.; Imai, K.; Ito, Y.; Muraki, T. Cysteinyl leukotriene receptor antagonists inhibit tumor metastasis by inhibiting capillary permeability. Keio J. Med., 2010, 59(1), 10-18. doi: 10.2302/kjm.59.10 PMID: 20375653
  74. Suknuntha, K.; Yubolphan, R.; Krueaprasertkul, K.; Srihirun, S.; Sibmooh, N.; Vivithanaporn, P. Leukotriene receptor antagonists inhibit mitogenic activity in triple negative breast cancer cells. Asian Pac. J. Cancer Prev., 2018, 19(3), 833-837. doi: 10.22034/APJCP.2018.19.3.833 PMID: 29582642
  75. Tabatabai, E.; Khazaei, M.; Asgharzadeh, F.; Nazari, S.E.; Shakour, N.; Fiuji, H.; Ziaeemehr, A.; Mostafapour, A.; Parizadeh, M.R.; Nouri, M.; Hassanian, S.M.; Hadizadeh, F.; Ferns, G.A.; Rahmati, M.; Rahmani, F.; Avan, A. Inhibition of angiotensin II type 1 receptor by candesartan reduces tumor growth and ameliorates fibrosis in colorectal cancer. EXCLI J., 2021, 20, 863-878. doi: 10.17179/excli2021-3421 PMID: 34121975
  76. Tang, C.; Lei, H.; Zhang, J.; Liu, M.; Jin, J.; Luo, H.; Xu, H.; Wu, Y. Montelukast inhibits hypoxia inducible factor-1α translation in prostate cancer cells. Cancer Biol. Ther., 2018, 19(8), 715-721. doi: 10.1080/15384047.2018.1451279 PMID: 29708817
  77. Tsai, M.J.; Chang, W.A.; Tsai, P.H.; Wu, C.Y.; Ho, Y.W.; Yen, M.C.; Lin, Y.S.; Kuo, P.L.; Hsu, Y.L. Montelukast induces apoptosis-inducing factor-mediated cell death of lung cancer cells. Int. J. Mol. Sci., 2017, 18(7), 1353. doi: 10.3390/ijms18071353 PMID: 28672809
  78. Velázquez-Quesada, I.; Ruiz-Moreno, A.J.; Casique-Aguirre, D.; Aguirre-Alvarado, C.; Cortés-Mendoza, F.; De la Fuente-Granada, M.; García-Pérez, C.; Pérez-Tapia, S.M.; González-Arenas, A.; Segura-Cabrera, A.; Velasco-Velázquez, M.A. Pranlukast antagonizes CD49f and reduces stemness in triple-negative breast cancer cells. Drug Des. Devel. Ther., 2020, 14, 1799-1811. doi: 10.2147/DDDT.S247730 PMID: 32494122
  79. Zovko, A.; Yektaei-Karin, E.; Salamon, D.; Nilsson, A.; Wallvik, J.; Stenke, L. Montelukast, a cysteinyl leukotriene receptor antagonist, inhibits the growth of chronic myeloid leukemia cells through apoptosis. Oncol. Rep., 2018, 40(2), 902-908. doi: 10.3892/or.2018.6465 PMID: 29845257
  80. Keam, S.J.; Lyseng-Williamson, K.A.; Goa, K.L. Pranlukast. Drugs, 2003, 63(10), 991-1019. doi: 10.2165/00003495-200363100-00005 PMID: 12699401
  81. Figueroa, E.E.; Kramer, M.; Strange, K.; Denton, J.S. CysLT1 receptor antagonists pranlukast and zafirlukast inhibit LRRC8-mediated volume regulated anion channels independently of the receptor. Am. J. Physiol. Cell Physiol., 2019, 317(4), C857-C866. doi: 10.1152/ajpcell.00281.2019 PMID: 31390227
  82. Montes-Grajales, D.; Puerta-Guardo, H.; Espinosa, D.A.; Harris, E.; Caicedo-Torres, W.; Olivero-Verbel, J.; Martínez-Romero, E. In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res., 2020, 173, 104668. doi: 10.1016/j.antiviral.2019.104668 PMID: 31786251
  83. Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; Chawla, A.; Curran, M.; Hwu, P.; Sharma, P.; Litton, J.K.; Molldrem, J.J.; Alatrash, G. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res., 2014, 2(4), 361-370. doi: 10.1158/2326-6066.CIR-13-0127 PMID: 24764583
  84. Ehrt, C.; Brinkjost, T.; Koch, O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J. Med. Chem., 2016, 59(9), 4121-4151. doi: 10.1021/acs.jmedchem.6b00078 PMID: 27046190
  85. Ehrt, C.; Brinkjost, T.; Koch, O. Binding site characterization – similarity, promiscuity, and druggability. MedChemComm, 2019, 10(7), 1145-1159. doi: 10.1039/C9MD00102F PMID: 31391887
  86. Haupt, V.J.; Daminelli, S.; Schroeder, M. Drug promiscuity in PDB: Protein binding site similarity is key. PLoS One, 2013, 8(6), e65894. doi: 10.1371/journal.pone.0065894 PMID: 23805191
  87. Luginina, A.; Gusach, A.; Marin, E.; Mishin, A.; Brouillette, R.; Popov, P.; Shiriaeva, A.; Besserer-Offroy, É.; Longpré, J.M.; Lyapina, E.; Ishchenko, A.; Patel, N.; Polovinkin, V.; Safronova, N.; Bogorodskiy, A.; Edelweiss, E.; Hu, H.; Weierstall, U.; Liu, W.; Batyuk, A.; Gordeliy, V.; Han, G.W.; Sarret, P.; Katritch, V.; Borshchevskiy, V.; Cherezov, V. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. Sci. Adv., 2019, 5(10), eaax2518. doi: 10.1126/sciadv.aax2518 PMID: 31633023
  88. Hoffer, L.; Muller, C.; Roche, P.; Morelli, X. Chemistry‐driven Hit‐to‐lead optimization guided by structure‐based approaches. Mol. Inform., 2018, 37(9-10), 1800059. doi: 10.1002/minf.201800059 PMID: 30051601
  89. Mignani, S.; Rodrigues, J.; Tomas, H.; Jalal, R.; Singh, P.P.; Majoral, J.P.; Vishwakarma, R.A. Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov. Today, 2018, 23(3), 605-615. doi: 10.1016/j.drudis.2018.01.010 PMID: 29330127

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025