Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water
- Авторлар: Lakshmanan J.1, Jaganathan V.1, Zhang B.1, Werner G.1, Allen T.1, Schultz D.2, Klinge C.3, Harbrecht B.1
-
Мекемелер:
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville
- Department of Biology, School of Medicine, University of Louisville
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville
- Шығарылым: Том 25, № 3 (2025)
- Беттер: 207-221
- Бөлім: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694484
- DOI: https://doi.org/10.2174/0118715206327789241008162423
- ID: 694484
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW’s anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined.
Objective:In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity.
Methodology:Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW’s anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components.
Results:TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the ‘epithelial-to-mesenchymal’ (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells.
Conclusion:TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.
Негізгі сөздер
Авторлар туралы
Jaganathan Lakshmanan
Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Vaitheesh Jaganathan
Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville
Email: info@benthamscience.net
Boachun Zhang
Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville
Email: info@benthamscience.net
Grace Werner
Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville
Email: info@benthamscience.net
Tyler Allen
Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville
Email: info@benthamscience.net
David Schultz
Department of Biology, School of Medicine, University of Louisville
Email: info@benthamscience.net
Carolyn Klinge
Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville
Email: info@benthamscience.net
Brian Harbrecht
Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville
Email: info@benthamscience.net
Әдебиет тізімі
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin., 2024, 74(1), 12-49. doi: 10.3322/caac.21820 PMID: 38230766
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614. doi: 10.3389/fphar.2019.01614 PMID: 32116665
- Seca, A.; Pinto, D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263. doi: 10.3390/ijms19010263 PMID: 29337925
- Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol., 2011, 4(6), 687-699. doi: 10.1111/j.1751-7915.2010.00221.x PMID: 21375717
- Asma, S.T.; Acaroz, U.; Imre, K.; Morar, A.; Shah, S.R.A.; Hussain, S.Z.; Arslan-Acaroz, D.; Demirbas, H.; Hajrulai-Musliu, Z.; Istanbullugil, F.R.; Soleimanzadeh, A.; Morozov, D.; Zhu, K.; Herman, V.; Ayad, A.; Athanassiou, C.; Ince, S. Natural products/bioactive compounds as a source of anticancer drugs. Cancers (Basel), 2022, 14(24), 6203. doi: 10.3390/cancers14246203 PMID: 36551687
- Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural products as anticancer agents: Current status and future perspectives. Molecules, 2022, 27(23), 8367. doi: 10.3390/molecules27238367 PMID: 36500466
- Talib, W.H.; Daoud, S.; Mahmod, A.I.; Hamed, R.A.; Awajan, D.; Abuarab, S.F.; Odeh, L.H.; Khater, S.; Al Kury, L.T. Plants as a source of anticancer agents: From bench to bedside. Molecules, 2022, 27(15), 4818. doi: 10.3390/molecules27154818 PMID: 35956766
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054. doi: 10.1016/j.biopha.2022.113054 PMID: 35658225
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.; Kumar, S. Anticancer drug discovery based on natural products: From computational approaches to clinical studies. Biomed., 2024, 12(1), 201. doi: 10.3390/biomedicines12010201 PMID: 38255306
- Grover, P.; Thakur, K.; Bhardwaj, M.; Mehta, L.; Raina, S.N.; Rajpal, V.R. Phytotherapeutics in cancer: From potential drug candidates to clinical translation. Curr. Top. Med. Chem., 2024, 24(12), 1050-1074. doi: 10.2174/0115680266282518231231075311 PMID: 38279745
- Kumar, M.; Gupta, S.; Kalia, K.; Kumar, D. Role of phytoconstituents in cancer treatment: A review. Rec. Adv. Food Nutr. Agric., 2024, 15(2), 115-137. doi: 10.2174/012772574X274566231220051254 PMID: 38369892
- Yuan, C.; Zhang, W.; Wang, J.; Huang, C.; Shu, B.; Liang, Q.; Huang, T.; Wang, J.; Shi, Q.; Tang, D.; Wang, Y. Chinese Medicine Phenomics (Chinmedphenomics): Personalized, Precise and Promising. Phenomics, 2022, 2(6), 383-388. doi: 10.1007/s43657-022-00074-x PMID: 36939806
- Zhang, N.; Xiao, X. Integrative medicine in the era of cancer immunotherapy: Challenges and opportunities. J. Integr. Med., 2021, 19(4), 291-294. doi: 10.1016/j.joim.2021.03.005 PMID: 33814325
- Yong, J.W.H.; Ge, L.; Ng, Y.F.; Tan, S.N. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules, 2009, 14(12), 5144-5164. doi: 10.3390/molecules14125144 PMID: 20032881
- Ge, L.; Yong, J.; Tan, S.; Yang, X.; Ong, E. Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction. J. Chromatogr. A, 2004, 1048(1), 119-126. doi: 10.1016/S0021-9673(04)01186-0 PMID: 15453426
- Tan, S.; Yong, J.; Ge, L. Analyses of phytohormones in coconut (Cocos nucifera L.) water using capillary electrophoresis-tandem mass spectrometry. Chromatography (Basel), 2014, 1(4), 211-226. doi: 10.3390/chromatography1040211
- Prabhu, S.; Dennison, S.R.; Mura, M.; Lea, R.W.; Snape, T.J.; Harris, F. Cn‐AMP2 from green coconut water is an anionic anticancer peptide. J. Pept. Sci., 2014, 20(12), 909-915. doi: 10.1002/psc.2684 PMID: 5234689
- Mahayothee, B.; Koomyart, I.; Khuwijitjaru, P.; Siriwongwilaichat, P.; Nagle, M.; Müller, J. Phenolic compounds, antioxidant activity, and medium chain fatty acids profiles of coconut water and meat at different maturity stages. Int. J. Food Prop., 2016, 19(9), 2041-2051. doi: 10.1080/10942912.2015.1099042
- DebMandal, M.; Mandal, S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac. J. Trop. Med., 2011, 4(3), 241-247. doi: 10.1016/S1995-7645(11)60078-3 PMID: 21771462
- Saat, M.; Singh, R.; Sirisinghe, R.G.; Nawawi, M. Rehydration after exercise with fresh young coconut water, carbohydrate-electrolyte beverage and plain water. J. Physiol. Anthropol. Appl. Human Sci., 2002, 21(2), 93-104. doi: 10.2114/jpa.21.93 PMID: 12056182
- Kalman, D.S.; Feldman, S.; Krieger, D.R.; Bloomer, R.J. Comparison of coconut water and a carbohydrate-electrolyte sport drink on measures of hydration and physical performance in exercise-trained men. J. Int. Soc. Sports Nutr., 2012, 9(1), 1. doi: 10.1186/1550-2783-9-1 PMID: 22257640
- Campbell-Falck, D.; Thomas, T.; Falck, T.M.; Tutuo, N.; Clem, K. The intravenous use of coconut water. Am. J. Emerg. Med., 2000, 18(1), 108-111. doi: 10.1016/S0735-6757(00)90062-7 PMID: 10674546
- Souza, B.D.M.; Lückemeyer, D.D.; Reyes-Carmona, J.F.; Felippe, W.T.; Simões, C.M.O.; Felippe, M.C.S. Viability of human periodontal ligament fibroblasts in milk, Hank’s balanced salt solution and coconut water as storage media. Int. Endod. J., 2011, 44(2), 111-115. doi: 10.1111/j.1365-2591.2010.01809.x PMID: 21083571
- Lakshmanan, J.; Zhang, B.; Wright, K.; Motameni, A.T.; Herbst, J.L.; Harbrecht, B.G. Tender coconut water protects mice from ischemia-reperfusion-mediated liver injury and secondary lung injury. Shock, 2021, 56(5), 762-772. doi: 10.1097/SHK.0000000000001770 PMID: 34652342
- Lakshmanan, J.; Zhang, B.; Wright, K.; Motameni, A.T.; Jaganathan, V.L.; Schultz, D.J.; Klinge, C.M.; Harbrecht, B.G. Tender coconut water suppresses hepatic inflammation by activating AKT and JNK signaling pathways in an in vitro model of sepsis. J. Funct. Foods, 2020, 64, 103637. doi: 10.1016/j.jff.2019.103637 PMID: 32863888
- Ge, L.; Yong, J.W.H.; Goh, N.K.; Chia, L.S.; Tan, S.N.; Ong, E.S. Identification of kinetin and kinetin riboside in coconut (Cocos nucifera L.) water using a combined approach of liquid chromatography–tandem mass spectrometry, high performance liquid chromatography and capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 829(1-2), 26-34. doi: 10.1016/j.jchromb.2005.09.026 PMID: 16216563
- Chang, C.L.; Wu, R.T. Quantification of (+)-catechin and (−)-epicatechin in coconut water by LC–MS. Food Chem., 2011, 126(2), 710-717. doi: 10.1016/j.foodchem.2010.11.034
- Cabello, C.M.; Bair, W.B., III; Ley, S.; Lamore, S.D.; Azimian, S.; Wondrak, G.T. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A (p21) upregulation in human cancer cell lines. Biochem. Pharmacol., 2009, 77(7), 1125-1138. doi: 10.1016/j.bcp.2008.12.002 PMID: 19186174
- Casati, S.; Ottria, R.; Baldoli, E.; Lopez, E.; Maier, J.A.M.; Ciuffreda, P. Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer Res., 2011, 31(10), 3401-3406. PMID: 21965753
- Sharma, E.; Attri, D.C.; Sati, P.; Dhyani, P.; Szopa, A.; Sharifi-Rad, J.; Hano, C.; Calina, D.; Cho, W.C. Recent updates on anticancer mechanisms of polyphenols. Front. Cell Dev. Biol., 2022, 10, 1005910. doi: 10.3389/fcell.2022.1005910 PMID: 36247004
- Kirszberg, C.; Esquenazi, D.; Alviano, C.S.; Rumjanek, V.M. The effect of a catechin‐rich extract of Cocos nucifera on lymphocytes proliferation. Phytother. Res., 2003, 17(9), 1054-1058. doi: 10.1002/ptr.1297 PMID: 14595586
- Prades, A.; Dornier, M.; Diop, N.; Pain, J-P. Coconut water uses, composition and properties: A review. Fruits, 2012, 67(2), 87-107. doi: 10.1051/fruits/2012002
- Chen, W.; Zhang, G.; Chen, W.; Zhong, Q.; Chen, H. Metabolomic profiling of matured coconut water during post-harvest storage revealed discrimination and distinct changes in metabolites. RSC Advances, 2018, 8(55), 31396-31405. doi: 10.1039/C8RA04213F PMID: 35548195
- Zhang, Y.; Chen, W.; Chen, H.; Zhong, Q.; Yun, Y.; Chen, W. Metabolomics analysis of the deterioration mechanism and storage time limit of tender coconut water during storage. Foods, 2020, 9(1), 46-46. doi: 10.3390/foods9010046 PMID: 31947875
- Alseekh, S.; Fernie, A.R. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J., 2018, 94(6), 933-942. doi: 10.1111/tpj.13950 PMID: 29734513
- Ghalehno, A.; Boustan, A.; Abdi, H.; Aganj, Z.; Mosaffa, F.; Jamialahmadi, K. The potential for natural products to overcome cancer drug resistance by modulation of epithelial-mesenchymal transition. Nutr. Cancer, 2022, 74(8), 2686-2712. doi: 10.1080/01635581.2021.2022169 PMID: 34994266
- Bahrami, A.; Majeed, M.; Sahebkar, A. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol. (Dordr.), 2019, 42, 405-421. doi: 10.1007/s13402-019-00442-2 PMID: 30980365
- Lee, S.; Choi, E.J.; Cho, E.J.; Lee, Y.B.; Lee, J.H.; Yu, S.J.; Yoon, J.H.; Kim, Y.J. Inhibition of PI3K/Akt signaling suppresses epithelial-to-mesenchymal transition in hepatocellular carcinoma through the Snail/GSK-3/beta-catenin pathway. Clin. Mol. Hepatol., 2020, 26(4), 529-539. doi: 10.3350/cmh.2019.0056n PMID: 32829570
- Yang, Y.; Li, Y.; Wang, K.; Wang, Y.; Yin, W.; Li, L. P38/NF-κB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PLoS One, 2013, 8(3), e58915. doi: 10.1371/journal.pone.0058915 PMID: 23516577
- Yilmaz, M.; Christofori, G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev., 28(1-2), 15-33. doi: 10.1007/s10555-008-9169-0 PMID: 19169796
- Perez-Oquendo, M.; Gibbons, D.L. Regulation of ZEB1 function and molecular associations in tumor Progression and metastasis. Cancers (Basel), 2022, 14(8), 1864. doi: 10.3390/cancers14081864 PMID: 35454770
- Xu, W.; Yang, Z.; Lu, N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes. Migr., 2015, 9(4), 317-324. doi: 10.1080/19336918.2015.1016686 PMID: 26241004
- Torii, S.; Yamamoto, T.; Tsuchiya, Y.; Nishida, E. ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci., 2006, 97(8), 697-701. doi: 10.1111/j.1349-7006.2006.00244.x PMID: 16800820
- Calvisi, D.F.; Ladu, S.; Gorden, A.; Farina, M.; Conner, E.A.; Lee, J.S.; Factor, V.M.; Thorgeirsson, S.S. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology, 2006, 130(4), 1117-1128. doi: 10.1053/j.gastro.2006.01.006 PMID: 16618406
- Chiu, L-Y.; Hsin, I-L.; Yang, T-Y.; Sung, W-W.; Chi, J-Y.; Chang, J.T.; Ko, J-L.; Sheu, G-T. The ERK–ZEB1 pathway mediates epithelial–mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene, 2017, 36(2), 242-253. doi: 10.1038/onc.2016.195 PMID: 27270426
- Zhang, A.; Lakshmanan, J.; Motameni, A.; Harbrecht, B.G. MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling. Mol. Cell. Biochem., 2018, 441(1-2), 89-98. doi: 10.1007/s11010-017-3176-9 PMID: 28887744
- Schultz, D.J.; Muluhngwi, P.; Alizadeh-Rad, N.; Green, M.A.; Rouchka, E.C.; Waigel, S.J.; Klinge, C.M. Genome-wide miRNA response to anacardic acid in breast cancer cells. PLoS One, 2017, 12(9), e0184471-e0184471. doi: 10.1371/journal.pone.0184471 PMID: 28886127
- Crane, A.M.; Bhattacharya, S.K. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol. Biol., 2013, 1014, 65-70. doi: 10.1007/978-1-62703-432-6_4 PMID: 23690005
- Borowicz, S.; Van Scoyk, M.; Avasarala, S.; Karuppusamy, R.M.K.; Tauler, J.; Bikkavilli, R.K.; Winn, R.A. The soft agar colony formation assay. J. Vis. Exp., 2014, (92), e51998. doi: 10.3791/51998 PMID: 25408172
- Lakshmanan, J.; Zhang, B.; Nweze, I.C.; Du, Y.; Harbrecht, B.G. Glycogen synthase kinase 3 regulates IL-1β mediated iNOS expression in hepatocytes by down-regulating c-Jun. J. Cell. Biochem., 2015, 116(1), 133-141. doi: 10.1002/jcb.24951 PMID: 25160751
- Ardalani, H.; Vidkjær, N.H.; Kryger, P.; Fiehn, O.; Fomsgaard, I.S. Metabolomics unveils the influence of dietary phytochemicals on residual pesticide concentrations in honey bees. Environ. Int., 2021, 152, 106503. doi: 10.1016/j.envint.2021.106503 PMID: 33756430
- Bonini, P.; Kind, T.; Tsugawa, H.; Barupal, D.K.; Fiehn, O. Retip: Retention time prediction for compound annotation in untargeted metabolomics. Anal. Chem., 2020, 92(11), 7515-7522. doi: 10.1021/acs.analchem.9b05765 PMID: 32390414
- Wang, L-H. Molecular signaling regulating anchorage-independent growth of cancer cells. Mt. Sinai J. Med., 2004, 71(6), 361-367. PMID: 15592654
- David-Pfeuty, T. The flexible evolutionary anchorage-dependent Pardee’s restriction point of mammalian cells: how its deregulation may lead to cancer. Biochim. Biophys. Acta, 2006, 1765(1), 38-66. PMID: 16219425
- Schmalhofer, O.; Brabletz, S.; Brabletz, T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev., 2009, 28(1-2), 151-166. doi: 10.1007/s10555-008-9179-y PMID: 19153669
- Soule, H.D.; Maloney, T.M.; Wolman, S.R.; Peterson, W.D., Jr; Brenz, R.; McGrath, C.M.; Russo, J.; Pauley, R.J.; Jones, R.F.; Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res., 1990, 50(18), 6075-6086. PMID: 1975513
- Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D.S. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform., 2016, 8(1), 61. doi: 10.1186/s13321-016-0174-y PMID: 27867422
- Appaiah, P.; Sunil, L.; Kumar, P.K.P.; Krishna, A.G.G. Physico-chemical characteristics and stability aspects of coconut water and kernel at different stages of maturity. J. Food Sci. Technol., 2015, 52(8), 5196-5203. doi: 10.1007/s13197-014-1559-4 PMID: 26243942
- Amawi, H.; Ashby, C.R., Jr; Tiwari, A.K. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin. J. Cancer, 2017, 36(1), 50. doi: 10.1186/s40880-017-0217-4 PMID: 28629389
- Voller, J.; Béres, T.; Zatloukal, M.; Džubák, P.; Hajdúch, M.; Doležal, K.; Schmülling, T.; Miroslav, S. Anti-cancer activities of cytokinin ribosides. Phytochem. Rev., 2019, 18(4), 1101-1113. doi: 10.1007/s11101-019-09620-4
- Garcia-Lezana, T.; Lopez-Canovas, J.L.; Villanueva, A. Signaling pathways in hepatocellular carcinoma. Adv. Cancer Res., 2021, 149, 63-101. doi: 10.1016/bs.acr.2020.10.002 PMID: 33579428
- Fatima, I.; El-Ayachi, I.; Taotao, L.; Lillo, M.A.; Krutilina, R.; Seagroves, T.N.; Radaszkiewicz, T.W.; Hutnan, M.; Bryja, V.; Krum, S.A.; Rivas, F.; Miranda-Carboni, G.A. The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS One, 2017, 12(12), e0189864. doi: 10.1371/journal.pone.0189864 PMID: 29281678
- Lou, W.; Chen, Y.; Zhu, K.; Deng, H.; Wu, T.; Wang, J.; Polyphyllin, I. Polyphyllin I overcomes EMT-associated resistance to erlotinib in lung cancer cells via IL-6/STAT3 pathway inhibition. Biol. Pharm. Bull., 2017, 40(8), 1306-1313. doi: 10.1248/bpb.b17-00271 PMID: 28515374
- Lee, G.A.; Hwang, K.A.; Choi, K.C. Roles of dietary phytoestrogens on the regulation of epithelial-mesenchymal transition in diverse cancer metastasis. Toxins (Basel), 2016, 8(6), 162. doi: 10.3390/toxins8060162 PMID: 27231938
- Qiu, G.H.; Xie, X.; Xu, F.; Shi, X.; Wang, Y.; Deng, L. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology, 2015, 67(1), 1-12. doi: 10.1007/s10616-014-9761-9 PMID: 25002206
- Bressac, B.; Galvin, K.M.; Liang, T.J.; Isselbacher, K.J.; Wands, J.R.; Ozturk, M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA, 1990, 87(5), 1973-1977. doi: 10.1073/pnas.87.5.1973 PMID: 2155427
- Slany, A.; Haudek, V.J.; Zwickl, H.; Gundacker, N.C.; Grusch, M.; Weiss, T.S.; Seir, K.; Rodgarkia-Dara, C.; Hellerbrand, C.; Gerner, C. Cell characterization by proteome profiling applied to primary hepatocytes and hepatocyte cell lines Hep-G2 and Hep-3B. J. Proteome Res., 2010, 9(1), 6-21. doi: 10.1021/pr900057t PMID: 19678649
- Clement, E.; Inuzuka, H.; Nihira, N.T.; Wei, W.; Toker, A. Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors. Sci. Signal., 2018, 11(521), eaao3810. doi: 10.1126/scisignal.aao3810 PMID: 29535262
- Cunha, A.G.; Filho, E.G.; Silva, L.M.A.; Ribeiro, P.R.V.; Rodrigues, T.H.S.; Brito, E.S.; Miranda, M.R.A. Chemical composition of thermally processed coconut water evaluated by GC–MS, UPLC-HRMS, and NMR. Food Chem., 2020, 324, 126874-126874. doi: 10.1016/j.foodchem.2020.126874 PMID: 32353658
- Kim, K.H.; Moon, E.; Kim, H.K.; Oh, J.Y.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Phenolic constituents from the rhizomes of Acorus gramineus and their biological evaluation on antitumor and anti-inflammatory activities. Bioorg. Med. Chem. Lett., 2012, 22(19), 6155-6159. doi: 10.1016/j.bmcl.2012.08.016 PMID: 22951040
- Mohamed, A.; Ashour, E.S.E.; Rainer, E. RuAngelie, E.; Peter, P. Indole alkaloid from the red sea sponge Hytitos erectus. ARKIVOC, 2007, XV, 225-231.
- Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; Aref, A.R.; Ashrafizadeh, M.; Zarrabi, A.; Sethi, G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res., 2021, 171, 105759. doi: 10.1016/j.phrs.2021.105759 PMID: 34245864
- Morré, D.J.; Morré, D.M.; Sun, H.; Cooper, R.; Chang, J.; Janle, E.M. Tea catechin synergies in inhibition of cancer cell proliferation and of a cancer specific cell surface oxidase (ECTO-NOX). Pharmacol. Toxicol., 2003, 92(5), 234-241. doi: 10.1034/j.1600-0773.2003.920506.x PMID: 12753411
- Kuzuhara, T.; Suganuma, M.; Fujiki, H. Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett., 2008, 261(1), 12-20. doi: 10.1016/j.canlet.2007.10.037 PMID: 18068893
- Voller, J.; Zatloukal, M.; Lenobel, R.; Doležal, K.; Béreš, T.; Kryštof, V.; Spíchal, L.; Niemann, P.; Džubák, P.; Hajdúch, M.; Strnad, M. Anticancer activity of natural cytokinins: A structure–activity relationship study. Phytochemistry, 2010, 71(11-12), 1350-1359. doi: 10.1016/j.phytochem.2010.04.018 PMID: 20553699
- Habtemariam, S.; Lentini, G. Plant-derived anticancer agents: Lessons from the pharmacology of geniposide and its aglycone, genipin. Biomed., 2018, 6(2), 39. doi: 10.3390/biomedicines6020039 PMID: 29587429
- Kim, N.Y.; Ha, I.J.; Um, J.Y.; Kumar, A.P.; Sethi, G.; Ahn, K.S. Loganic acid regulates the transition between epithelial and mesenchymal-like phenotypes by alleviating MnSOD expression in hepatocellular carcinoma cells. Life Sci., 2023, 317, 121458. doi: 10.1016/j.lfs.2023.121458 PMID: 36731649
- Tintelnot, J.; Xu, Y.; Lesker, T.R.; Schönlein, M.; Konczalla, L.; Giannou, A.D.; Pelczar, P.; Kylies, D.; Puelles, V.G.; Bielecka, A.A.; Peschka, M.; Cortesi, F.; Riecken, K.; Jung, M.; Amend, L.; Bröring, T.S.; Trajkovic-Arsic, M.; Siveke, J.T.; Renné, T.; Zhang, D.; Boeck, S.; Strowig, T.; Uzunoglu, F.G.; Güngör, C.; Stein, A.; Izbicki, J.R.; Bokemeyer, C.; Sinn, M.; Kimmelman, A.C.; Huber, S.; Gagliani, N. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. Nature, 2023, 615(7950), 168-174. doi: 10.1038/s41586-023-05728-y PMID: 36813961
- Santos, R.A.; Pessoa, H.R.; Daleprane, J.B.; De Faria Lopes, G.P.; da Costa, D.C.F. Comparative anticancer potential of green tea extract and epigallocatechin-3-gallate on breast cancer spheroids. Foods, 2023, 13(1), 64. doi: 10.3390/foods13010064 PMID: 38201092
- Tapadar, P.; Pal, A.; Ghosal, N.; Dutta, S.; Pal, R. Reactive oxygen species–dependent upregulation of death receptor, tumor necrosis factor receptor 1, is responsible for theophylline-mediated cytotoxicity in MDA-MB-231 breast cancer cells. Anticancer Drugs, 2022, 33(8), 731-740. doi: 10.1097/CAD.0000000000001322 PMID: 35946512
- Efferth, T.; Koch, E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug Targets, 2011, 12(1), 122-132. doi: 10.2174/138945011793591626 PMID: 20735354
Қосымша файлдар
