Emerging Claudin18.2-targeting Therapy for Systemic Treatment of Gastric Cancer: Seeking Nobility Amidst Danger


Цитировать

Полный текст

Аннотация

Gastric cancer in advanced stages lacked effective treatment options. claudin18.2 (CLDN18.2) is a membrane protein that is crucial for close junctions in the differentiated epithelial cells of the gastric mucosa, playing a vital role in barrier function, and can be hardly recognized by immune cells due to its polarity pattern. As the polarity of gastric tumor cells changes, claudin18.2 is exposed on the cell surface, resulting in immune system recognition, and making it an ideal target. In this review, we summarized the expression regulation mechanism of claudin18.2 both in normal cells and malignant tumor cells. Besides, we analyzed the available clinical results and potential areas for future research on claudin18.2-positive gastric cancer and claudin18.2-targeting therapy. In conclusion, claudin18.2 is an ideal target for gastric cancer treatment, and the claudin18.2-targeting therapy has changed the treatment pattern of gastric cancer.

Об авторах

Xueshuai Ye

School of Clinical Medicine, Hebei University of Engineering

Автор, ответственный за переписку.
Email: info@benthamscience.net

Yongqiang Wu

Gene Editing Research Center, Hebei University of Science and Technology

Email: info@benthamscience.net

Haiqiang Zhang

Department of Surgery, The Second Hospital of Hebei Medical University

Email: info@benthamscience.net

Список литературы

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet, 2020, 396(10251), 635-648. doi: 10.1016/S0140-6736(20)31288-5 PMID: 32861308
  3. Chia, N.Y.; Tan, P. Molecular classification of gastric cancer. Ann. Oncol., 2016, 27(5), 763-769. doi: 10.1093/annonc/mdw040 PMID: 26861606
  4. Shitara, K.; Van Cutsem, E.; Bang, Y.J.; Fuchs, C.; Wyrwicz, L.; Lee, K.W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; Castro, H.R.; Mansoor, W.; Braghiroli, M.I.; Karaseva, N.; Caglevic, C.; Villanueva, L.; Goekkurt, E.; Satake, H.; Enzinger, P.; Alsina, M.; Benson, A.; Chao, J.; Ko, A.H.; Wainberg, Z.A.; Kher, U.; Shah, S.; Kang, S.P.; Tabernero, J. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer. JAMA Oncol., 2020, 6(10), 1571-1580. doi: 10.1001/jamaoncol.2020.3370 PMID: 32880601
  5. Kang, Y.K.; Chen, L.T.; Ryu, M.H.; Oh, D.Y.; Oh, S.C.; Chung, H.C.; Lee, K.W.; Omori, T.; Shitara, K.; Sakuramoto, S.; Chung, I.J.; Yamaguchi, K.; Kato, K.; Sym, S.J.; Kadowaki, S.; Tsuji, K.; Chen, J.S.; Bai, L.Y.; Oh, S.Y.; Choda, Y.; Yasui, H.; Takeuchi, K.; Hirashima, Y.; Hagihara, S.; Boku, N. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2022, 23(2), 234-247. doi: 10.1016/S1470-2045(21)00692-6 PMID: 35030335
  6. Mishima, S.; Shitara, K. Trastuzumab deruxtecan for the treatment of HER2-positive gastric cancer. Expert Opin. Biol. Ther., 2021, 21(7), 825-830. doi: 10.1080/14712598.2021.1912007 PMID: 33798395
  7. Huang, R.; Li, X.; He, Y.; Zhu, W.; Gao, L.; Liu, Y.; Gao, L.; Wen, Q.; Zhong, J.F.; Zhang, C.; Zhang, X. Recent advances in CAR-T cell engineering. J. Hematol. Oncol., 2020, 13(1), 86. doi: 10.1186/s13045-020-00910-5 PMID: 32616000
  8. Del Bufalo, F.; Becilli, M.; Rosignoli, C.; De Angelis, B.; Algeri, M.; Hanssens, L.; Gunetti, M.; Iacovelli, S.; Li Pira, G.; Girolami, E.; Leone, G.; Lazzaro, S.; Bertaina, V.; Sinibaldi, M.; Di Cecca, S.; Iaffaldano, L.; Künkele, A.; Boccieri, E.; Del Baldo, G.; Pagliara, D.; Merli, P.; Carta, R.; Quintarelli, C.; Locatelli, F. Allogeneic, donor-derived, second-generation, CD19-directed CAR-T cells for the treatment of pediatric relapsed/refractory BCP-ALL. Blood, 2023, 142(2), 146-157. PMID: 37172203
  9. Tsukita, S.; Tanaka, H.; Tamura, A. The claudins: From tight junctions to biological systems. Trends Biochem. Sci., 2019, 44(2), 141-152. doi: 10.1016/j.tibs.2018.09.008 PMID: 30665499
  10. Günzel, D.; Yu, A.S.L. Claudins and the modulation of tight junction permeability. Physiol. Rev., 2013, 93(2), 525-569. doi: 10.1152/physrev.00019.2012 PMID: 23589827
  11. Röcken, C. Predictive biomarkers in gastric cancer. J. Cancer Res. Clin. Oncol., 2023, 149(1), 467-481. doi: 10.1007/s00432-022-04408-0 PMID: 36260159
  12. Kozieł, M.J.; Ziaja, M.; Piastowska-Ciesielska, A.W. Intestinal barrier, claudins and mycotoxins Toxins (Basel), 2021, 13(11), 758. doi: 10.3390/toxins13110758
  13. Baek, J.H.; Park, D.J.; Kim, G.Y.; Cheon, J.; Kang, B.W.; Cha, H.J.; Kim, J.G. Clinical implications of claudin18.2 expression in patients with gastric cancer. Anticancer Res., 2019, 39(12), 6973-6979. doi: 10.21873/anticanres.13919 PMID: 31810969
  14. Dai, J.; Zheng, H.; Jin, J.; Cheng, Y.; Xu, H. Claudin18.2 expression and clinicopathological features in cytology effusion specimens from gastric adenocarcinoma: A comparative study with tissue specimens. Cancer Cytopathol., 2023, 131(6), 365-372. doi: 10.1002/cncy.22688 PMID: 36793190
  15. Rohde, C.; Yamaguchi, R.; Mukhina, S.; Sahin, U.; Itoh, K.; Türeci, Ö. Comparison of Claudin 18.2 expression in primary tumors and lymph node metastases in japanese patients with gastric adenocarcinoma. Jpn. J. Clin. Oncol., 2019, 49(9), 870-876. doi: 10.1093/jjco/hyz068 PMID: 31087075
  16. Strickland, M.R.; Lander, E.M.; Gibson, M.K.; Ilson, D.H.; Ajani, J.A.; Klempner, S.J. Gastroesophageal adenocarcinomas with defective mismatch repair: current knowledge and clinical management. J. Natl. Compr. Canc. Netw., 2024, 22(3), e237103. doi: 10.6004/jnccn.2023.7103 PMID: 38503041
  17. Ungureanu, B.S.; Lungulescu, C.V.; Pirici, D.; Turcu-Stiolica, A.; Gheonea, D.I.; Sacerdotianu, V.M.; Liliac, I.M.; Moraru, E.; Bende, F.; Saftoiu, A. Clinicopathologic relevance of claudin 18.2 expression in gastric cancer: A meta-analysis. Front. Oncol., 2021, 11, 643872. doi: 10.3389/fonc.2021.643872 PMID: 33747967
  18. Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; Dhaene, K.; Wiechen, K.; Huber, C.; Maurus, D.; Arozullah, A.; Park, J.W.; Schuler, M.; Al-Batran, S.E. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol., 2021, 32(5), 609-619. doi: 10.1016/j.annonc.2021.02.005 PMID: 33610734
  19. Zhu, G.; Foletti, D.; Liu, X.; Ding, S.; Melton Witt, J.; Hasa-Moreno, A.; Rickert, M.; Holz, C.; Aschenbrenner, L.; Yang, A.H.; Kraynov, E.; Evering, W.; Obert, L.; Lee, C.; Sai, T.; Mistry, T.; Lindquist, K.C.; Van Blarcom, T.; Strop, P.; Chaparro-Riggers, J.; Liu, S.H. Targeting CLDN18.2 by CD3 bispecific and adc modalities for the treatments of gastric and pancreatic cancer. Sci. Rep., 2019, 9(1), 8420. doi: 10.1038/s41598-019-44874-0 PMID: 31182754
  20. Xu, G.; Qian, N.; Liu, Y.; Li, H.; Yang, C.; Wang, J.; Wang, F.; Chen, L.; Bai, G.; Xu, Q.; Pan, X.; Gao, X. Preclinical characterization of a Fab-like CD3/CLDN18.2 XFab® bispecific antibody against solid tumors. Immunobiology, 2022, 227(6), 152283. doi: 10.1016/j.imbio.2022.152283 PMID: 36198215
  21. Ito, T.; Kojima, T.; Yamaguchi, H.; Kyuno, D.; Kimura, Y.; Imamura, M.; Takasawa, A.; Murata, M.; Tanaka, S.; Hirata, K.; Sawada, N. Transcriptional regulation of claudin‐18 via specific protein kinase C signaling pathways and modification of DNA methylation in human pancreatic cancer cells. J. Cell. Biochem., 2011, 112(7), 1761-1772. doi: 10.1002/jcb.23095 PMID: 21381080
  22. Yano, K.; Imaeda, T.; Niimi, T. Transcriptional activation of the human claudin-18 gene promoter through two AP-1 motifs in PMA-stimulated MKN45 gastric cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 294(1), G336-G343. doi: 10.1152/ajpgi.00328.2007 PMID: 18032479
  23. Han, X.; Li, B.; Bao, J.; Wu, Z.; Chen, C.; Ni, J.; Shen, J.; Song, P.; Peng, Q.; Wan, R.; Wang, X.; Wu, J.; Hu, G. Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation. Front. Immunol., 2022, 13, 968639. doi: 10.3389/fimmu.2022.968639 PMID: 36059491
  24. Mitsuno, Y.; Yoshida, H.; Maeda, S.; Ogura, K.; Hirata, Y.; Kawabe, T.; Shiratori, Y.; Omata, M. Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut, 2001, 49(1), 18-22. doi: 10.1136/gut.49.1.18 PMID: 11413105
  25. Tanaka, M.; Shibahara, J.; Fukushima, N.; Shinozaki, A.; Umeda, M.; Ishikawa, S.; Kokudo, N.; Fukayama, M. Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J. Histochem. Cytochem., 2011, 59(10), 942-952. doi: 10.1369/0022155411420569 PMID: 21832145
  26. Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Türeci, Ö. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res., 2008, 14(23), 7624-7634. doi: 10.1158/1078-0432.CCR-08-1547 PMID: 19047087
  27. Cox, K.E.; Liu, S.; Hoffman, R.M.; Batra, S.K.; Dhawan, P.; Bouvet, M. The expression of the claudin family of proteins in colorectal cancer. Biomolecules, 2024, 14(3), 272. doi: 10.3390/biom14030272 PMID: 38540693
  28. Sun, R.; Sun, Y.; Wu, C.; Liu, Y.; Zhou, M.; Dong, Y.; Du, G.; Luo, H.; Shi, B.; Jiang, H.; Li, Z. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Mol. Ther., 2023, 31(11), 3193-3209. doi: 10.1016/j.ymthe.2023.09.010 PMID: 37735875
  29. Hagen, S.J.; Ang, L.H.; Zheng, Y.; Karahan, S.N.; Wu, J.; Wang, Y.E.; Caron, T.J.; Gad, A.P.; Muthupalani, S.; Fox, J.G. Loss of tight junction protein claudin 18 promotes progressive neoplasia development in mouse stomach. Gastroenterology, 2018, 155(6), 1852-1867. doi: 10.1053/j.gastro.2018.08.041 PMID: 30195448
  30. Qi, C.; Chong, X.; Zhou, T.; Ma, M.; Gong, J.; Zhang, M.; Li, J.; Xiao, J.; Peng, X.; Liu, Z.; Li, Z.; Shen, L.; Zhang, X. Clinicopathological significance and immunotherapeutic outcome of claudin 18.2 expression in advanced gastric cancer: A retrospective study. Chin. J. Cancer Res., 2024, 36(1), 78-89. doi: 10.21147/j.issn.1000-9604.2024.01.08 PMID: 38455365
  31. Adams, G.P.; Weiner, L.M. Monoclonal antibody therapy of cancer. Nat. Biotechnol., 2005, 23(9), 1147-1157. doi: 10.1038/nbt1137 PMID: 16151408
  32. Grilo, A.L.; Mantalaris, A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol., 2019, 37(1), 9-16. doi: 10.1016/j.tibtech.2018.05.014 PMID: 29945725
  33. Zinn, S.; Vazquez-Lombardi, R.; Zimmermann, C.; Sapra, P.; Jermutus, L.; Christ, D. Advances in antibody-based therapy in oncology. Nat. Cancer, 2023, 4(2), 165-180. doi: 10.1038/s43018-023-00516-z PMID: 36806801
  34. Chung, H.C.; Bang, Y.J.; S Fuchs, C.; Qin, S.K.; Satoh, T.; Shitara, K.; Tabernero, J.; Van Cutsem, E.; Alsina, M.; Cao, Z.A.; Lu, J.; Bhagia, P.; Shih, C.S.; Janjigian, Y.Y. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811. Future Oncol., 2021, 17(5), 491-501. doi: 10.2217/fon-2020-0737 PMID: 33167735
  35. Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; Cunningham, D.; Rougier, P.; Komatsu, Y.; Ajani, J.; Emig, M.; Carlesi, R.; Ferry, D.; Chandrawansa, K.; Schwartz, J.D.; Ohtsu, A. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol., 2014, 15(11), 1224-1235. doi: 10.1016/S1470-2045(14)70420-6 PMID: 25240821
  36. Kyuno, D.; Takasawa, A.; Takasawa, K.; Ono, Y.; Aoyama, T.; Magara, K.; Nakamori, Y.; Takemasa, I.; Osanai, M. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers, 2022, 10(1), 1967080. doi: 10.1080/21688370.2021.1967080 PMID: 34486479
  37. Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Gallego, P.J.; Huang, J.; Shen, L.; Oh, S.C.; Sunpaweravong, P.; Soo, H.H.F.; Turk, H.M.; Oh, M.; Park, J.W.; Moran, D.; Bhattacharya, P.; Arozullah, A.; Xu, R.H. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med., 2023, 29(8), 2133-2141. doi: 10.1038/s41591-023-02465-7 PMID: 37524953
  38. Shitara, K.; Lordick, F.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Shah, M.A.; Van Cutsem, E.; Xu, R.H.; Aprile, G.; Xu, J.; Chao, J.; Pazo-Cid, R.; Kang, Y.K.; Yang, J.; Moran, D.; Bhattacharya, P.; Arozullah, A.; Park, J. W.; Oh, M.; Ajani, J.A. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet, 2023, 401(10389), 1655-1668.
  39. Liu, J.; Jiang, D.; Lei, Q.; Zhu, Q.; Zhu, H. Case Report: A rare case of recurrent ascites after anti-Claudin18.2 antibody therapy for metastatic gastric cancer while responding sustainingly. Front. Oncol., 2023, 13, 1211668. doi: 10.3389/fonc.2023.1211668 PMID: 37681021
  40. Chen, Y.; Hou, X.; Li, D.; Ding, J.; Liu, J.; Wang, Z.; Teng, F.; Li, H.; Zhang, F.; Gu, Y.; Yu, S.; Qian, X.; Yang, Z.; Zhu, H. Development of a CLDN18.2-targeting immuno-PET probe for non-invasive imaging in gastrointestinal tumors. J. Pharm. Anal., 2023, 13(4), 367-375. doi: 10.1016/j.jpha.2023.02.011 PMID: 37181294
  41. Shim, H. One target, different effects: A comparison of distinct therapeutic antibodies against the same targets. Exp. Mol. Med., 2011, 43(10), 539-549. doi: 10.3858/emm.2011.43.10.063 PMID: 21811090
  42. Friedrich, M.J.; Neri, P.; Kehl, N.; Michel, J.; Steiger, S.; Kilian, M.; Leblay, N.; Maity, R.; Sankowski, R.; Lee, H.; Barakat, E.; Ahn, S.; Weinhold, N.; Rippe, K.; Bunse, L.; Platten, M.; Goldschmidt, H.; Müller-Tidow, C.; Raab, M.S.; Bahlis, N.J. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell, 2023, 41(4), 711-725.e6. doi: 10.1016/j.ccell.2023.02.008 PMID: 36898378
  43. Zhou, S.; Liu, M.; Ren, F.; Meng, X.; Yu, J. The landscape of bispecific T cell engager in cancer treatment. Biomark. Res., 2021, 9(1), 38. doi: 10.1186/s40364-021-00294-9 PMID: 34039409
  44. Wei, J.; Yang, Y.; Wang, G.; Liu, M. Current landscape and future directions of bispecific antibodies in cancer immunotherapy. Front. Immunol., 2022, 13, 1035276. doi: 10.3389/fimmu.2022.1035276 PMID: 36389699
  45. van de Donk, N.W.C.J.; Zweegman, S. T-cell-engaging bispecific antibodies in cancer. Lancet, 2023, 402(10396), 142-158. doi: 10.1016/S0140-6736(23)00521-4 PMID: 37271153
  46. Cao, W.; Xing, H.; Li, Y.; Tian, W.; Song, Y.; Jiang, Z.; Yu, J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark. Res., 2022, 10(1), 38. doi: 10.1186/s40364-022-00385-1 PMID: 35642043
  47. Liang, J.; Zhang, H.; Huang, Y.; Fan, L.; Li, F.; Li, M.; Yan, Y.; Zhang, J.; Li, Z.; Yang, X. A CLDN18.2-targeting bispecific T cell co-stimulatory activator for cancer immunotherapy. Cancer Manag. Res., 2021, 13, 6977-6987. doi: 10.2147/CMAR.S330637 PMID: 34522140
  48. Gao, J.; Wang, Z.; Jiang, W.; Zhang, Y.; Meng, Z.; Niu, Y.; Sheng, Z.; Chen, C.; Liu, X.; Chen, X.; Liu, C.; Jia, K.; Zhang, C.; Liao, H.; Jung, J.; Sung, E.; Chung, H.; Zhang, J.Z.; Zhu, A.X.; Shen, L. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J. Immunother. Cancer, 2023, 11(6), e006704. doi: 10.1136/jitc-2023-006704 PMID: 37364935
  49. Meng, Q.; Hao, Y.; Yang, M.; Du, Y.; Wang, S. Development and validation of ELISA method for quantification of Q-1802 in serum and its application to pharmacokinetic study in ICR Mouse. J. Pharm. Biomed. Anal., 2024, 245, 116138. doi: 10.1016/j.jpba.2024.116138 PMID: 38636191
  50. Chen, Q.; Guo, X.; Ma, W. Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol. Res., 2024, 32(1), 49-60. doi: 10.32604/or.2023.042383 PMID: 38188674
  51. Catalán, R.; Orozco-Morales, M.; Hernández-Pedro, N.Y.; Guijosa, A.; Colín-González, A.L.; Ávila-Moreno, F.; Arrieta, O. CD47-SIRP α axis as a biomarker and therapeutic target in cancer: Current perspectives and future challenges in nonsmall cell lung cancer. J. Immunol. Res., 2020, 2020, 1-8. doi: 10.1155/2020/9435030 PMID: 33015199
  52. Overman, M.J.; Melhem, R.; Blum-Murphy, M.A.; Ramos, C.; Petrosyan, L.; Li, J.; Perer, J.K.; Zou, H.; Wang, M.; Wright, H.M. A phase I, first-in-human, open-label, dose escalation and expansion study of PT886 in adult patients with advanced gastric, gastroesophageal junction, and pancreatic adenocarcinomas. J. Clin. Oncol., 2023, 41(Suppl. 4), TPS765. doi: 10.1200/JCO.2023.41.4_suppl.TPS765
  53. McNamara, B.; Greenman, M.; Pebley, N.; Mutlu, L.; Santin, A.D. Antibody–drug conjugates (ADC) in HER2/neu-positive gynecologic tumors. Molecules, 2023, 28(21), 7389. doi: 10.3390/molecules28217389 PMID: 37959808
  54. Bardia, A.; Sun, S.; Thimmiah, N. Antibody drug conjugate sacituzumab govitecan enables a sequential top1/parp inhibitor cancer therapy strategy in breast cancer patients. Clin. Cancer. Res., 2024, 30(14), 2917-2924.
  55. Mckertish, C.M.; Kayser, V. A novel dual-payload ADC for the treatment of HER2+ breast and colon cancer. Pharmaceutics, 2023, 15(8), 2020. doi: 10.3390/pharmaceutics15082020 PMID: 37631234
  56. Pouzin, C.; Teutonico, D.; Fagniez, N.; Ziti-Ljajic, S.; Perreard-Dumaine, A.; Pardon, M.; Klieber, S.; Nguyen, L. Prediction of cyp down regulation after tusamitamab ravtansine administration (a DM4‐Conjugate), based on an In Vitro–In Vivo Extrapolation Approach. Clin. Pharmacol. Ther., 2024, 115(2), 278-287. doi: 10.1002/cpt.3102 PMID: 37964462
  57. Best, R.L.; LaPointe, N.E.; Azarenko, O.; Miller, H.; Genualdi, C.; Chih, S.; Shen, B.Q.; Jordan, M.A.; Wilson, L.; Feinstein, S.C.; Stagg, N.J. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): Mechanistic insights into MMAE ADC peripheral neuropathy. Toxicol. Appl. Pharmacol., 2021, 421, 115534. doi: 10.1016/j.taap.2021.115534 PMID: 33852878
  58. Collins, J.; van Noort, M.; Rathi, C.; Post, T.M.; Struemper, H.; Jewell, R.C.; Ferron-Brady, G. Longitudinal efficacy and safety modeling and simulation framework to aid dose selection of belantamab mafodotin for patients with multiple myeloma. CPT Pharmacometrics Syst. Pharmacol., 2023, 12(10), 1411-1424. doi: 10.1002/psp4.13016 PMID: 37465991
  59. de Bever, L.; Popal, S.; van Schaik, J.; Rubahamya, B.; van Delft, F.L.; Thurber, G.M.; van Berkel, S.S. Generation of DAR1 antibody-drug conjugates for ultrapotent payloads using tailored glycoconnect technology. Bioconjug. Chem., 2023, 34(3), 538-548. doi: 10.1021/acs.bioconjchem.2c00611 PMID: 36857521
  60. Petersen, M.E.; Brant, M.G.; Lasalle, M.; Das, S.; Duan, R.; Wong, J.; Ding, T.; Wu, K.J.; Siddappa, D.; Fang, C.; Zhang, W.; Wu, A.M.L.; Hirkala-Schaefer, T.; Garnett, G.A.E.; Fung, V.; Yang, L.; Hernandez Rojas, A.; Lawn, S.O.; Barnscher, S.D.; Rich, J.R.; Colombo, R. Design and evaluation of zd06519, a novel camptothecin payload for antibody drug conjugates. Mol. Cancer Ther., 2024, 23(5), 606-618. doi: 10.1158/1535-7163.MCT-23-0822 PMID: 38354417
  61. Xu, R.; Wei, X.; Zhang, D.; Qiu, M.; Zhang, Y.; Zhao, H.; Chen, B.; Yan, J. A phase 1a dose-escalation, multicenter trial of anti-claudin 18.2 antibody drug conjugate CMG901 in patients with resistant/refractory solid tumors. J. Clin. Oncol., 2023, 41(Suppl. 4), 352. doi: 10.1200/JCO.2023.41.4_suppl.352
  62. Wang, Y.; Gong, J.; Lin, R.; Zhao, S.; Wang, J.; Wang, Q.; Zhang, Y.; Su, D.; Zhang, J.; Dong, Q.; Lin, L.; Tian, W.; Chen, Y.; Yang, Y.; Zhang, X.; Wan, X.; Gao, J.; An, N.; Jansen, V.M.; Shen, L. First-in-human dose escalation and expansion study of SYSA1801, an antibody-drug conjugate targeting claudin 18.2 in patients with resistant/refractory solid tumors. J. Clin. Oncol., 2023, 41(Suppl. 16), 3016. doi: 10.1200/JCO.2023.41.16_suppl.3016
  63. Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody drug conjugate: The “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther., 2022, 7(1), 93. doi: 10.1038/s41392-022-00947-7 PMID: 35318309
  64. Huang, W.; Li, Y.; Liu, Z.; Rodon, L.; Correia, S.; Li, Y.; Li, R. Preclinical activity for TPX-4589 (LM-302), an antibody-drug conjugate targeting tight junction protein CLDN18.2 in solid tumors. Eur. J. Cancer, 2022, 174, S41-S42. doi: 10.1016/S0959-8049(22)00911-X
  65. Zhao, A.; Zhao, M.; Qian, W.; Liang, A.; Li, P.; Liu, H. Secondary myeloid neoplasms after CD19 CAR T therapy in patients with refractory/relapsed B-cell lymphoma: Case series and review of literature. Front. Immunol., 2023, 13, 1063986. doi: 10.3389/fimmu.2022.1063986 PMID: 36713414
  66. Shi, M.; Wang, J.; Huang, H.; Liu, D.; Cheng, H.; Wang, X.; Chen, W.; Yan, Z.; Sang, W.; Qi, K.; Li, D.; Zhu, F.; Li, Z.; Qiao, J.; Wu, Q.; Zeng, L.; Fei, X.; Gu, W.; Miao, Y.; Xu, K.; Zheng, J.; Cao, J. Bispecific CAR T cell therapy targeting BCMA and CD19 in relapsed/refractory multiple myeloma: a phase I/II trial. Nat. Commun., 2024, 15(1), 3371. doi: 10.1038/s41467-024-47801-8 PMID: 38643278
  67. Wang, Q.; Wei, R.; Guo, S.; Min, C.; Zhong, X.; Huang, H.; Cheng, Z. An alternative fully human anti-BCMA CAR-T shows response for relapsed or refractory multiple myeloma with anti-BCMA CAR-T exposures previously. Cancer Gene Ther., 2024, 31(3), 420-426. doi: 10.1038/s41417-023-00712-0 PMID: 38102463
  68. Smole, A.; Benton, A.; Poussin, M.A.; Eiva, M.A.; Mezzanotte, C.; Camisa, B.; Greco, B.; Sharma, P.; Minutolo, N.G.; Gray, F.; Bear, A.S.; Baroja, M.L.; Cummins, C.; Xu, C.; Sanvito, F.; Goldgewicht, A.L.; Blanchard, T.; Rodriguez-Garcia, A.; Klichinsky, M.; Bonini, C.; June, C.H.; Posey, A.D., Jr; Linette, G.P.; Carreno, B.M.; Casucci, M.; Powell, D.J., Jr Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer Cell, 2022, 40(12), 1470-1487.e7. doi: 10.1016/j.ccell.2022.11.006 PMID: 36513049
  69. Zhang, Y.; Li, Y.; Cao, W.; Wang, F.; Xie, X.; Li, Y.; Wang, X.; Guo, R.; Jiang, Z.; Guo, R. Single-cell analysis of target antigens of CAR-T reveals a potential landscape of “on-target, off-tumor toxicity”. Front. Immunol., 2021, 12, 799206. doi: 10.3389/fimmu.2021.799206 PMID: 34975912
  70. Jiang, H.; Shi, Z.; Wang, P.; Wang, C.; Yang, L.; Du, G.; Zhang, H.; Shi, B.; Jia, J.; Li, Q.; Wang, H.; Li, Z. Claudin18.2-Specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J. Natl. Cancer Inst., 2019, 111(4), 409-418. doi: 10.1093/jnci/djy134 PMID: 30203099
  71. Luo, H.; Su, J.; Sun, R.; Sun, Y.; Wang, Y.; Dong, Y.; Shi, B.; Jiang, H.; Li, Z. Coexpression of IL7 and CCL21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion. Clin. Cancer Res., 2020, 26(20), 5494-5505. doi: 10.1158/1078-0432.CCR-20-0777 PMID: 32816947
  72. Shi, H.; Li, A.; Dai, Z.; Xue, J.; Zhao, Q.; Tian, J.; Song, D.; Wang, H.; Chen, J.; Zhang, X.; Zhou, K.; Wei, H.; Qin, S. IL-15 armoring enhances the antitumor efficacy of claudin 18.2-targeting CAR-T cells in syngeneic mouse tumor models. Front. Immunol., 2023, 14, 1165404. doi: 10.3389/fimmu.2023.1165404 PMID: 37564658
  73. Qi, C.; Xie, T.; Zhou, J.; Wang, X.; Gong, J.; Zhang, X.; Li, J.; Yuan, J.; Liu, C.; Shen, L. CT041 CAR T cell therapy for Claudin18.2-positive metastatic pancreatic cancer. J. Hematol. Oncol., 2023, 16(1), 102. doi: 10.1186/s13045-023-01491-9 PMID: 37689733
  74. Derks, S.; van Laarhoven, H.W.M. SPOTlight on GLOW. Cell Rep. Med., 2023, 4(10), 101233. doi: 10.1016/j.xcrm.2023.101233 PMID: 37852180
  75. Mathias-Machado, M.C.; de Jesus, V.H.F.; Jácome, A.; Donadio, M.D.; Aruquipa, M.P.S.; Fogacci, J.; Cunha, R.G.; da Silva, L.M.; Peixoto, R.D.A. Claudin 18.2 as a new biomarker in gastric cancer—what should we know? Cancers (Basel), 2024, 16(3), 679. doi: 10.3390/cancers16030679 PMID: 38339430
  76. Nave, O.P.; Sigron, M. A mathematical model for cancer treatment based on combination of anti-angiogenic and immune cell therapies. Res. Appl. Math., 2022, 16, 100330. doi: 10.1016/j.rinam.2022.100330
  77. Nakayama, I.; Qi, C.; Chen, Y.; Nakamura, Y.; Shen, L.; Shitara, K. Claudin 18.2 as a novel therapeutic target. Nat. Rev. Clin. Oncol., 2024, 21(5), 354-369. doi: 10.1038/s41571-024-00874-2 PMID: 38503878

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025