PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes
- Authors: Tuncbilek Z.1, Cakmak N.2, Tas A.3, Ayan D.4, Silig Y.5
-
Affiliations:
- Department of Chemistry and Chemical Technologies, Yildizeli Vocational School, Sivas Cumhuriyet University
- Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University
- Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University
- Department of Medical Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University
- Issue: Vol 25, No 4 (2025)
- Pages: 257-271
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694488
- DOI: https://doi.org/10.2174/0118715206330115241015092548
- ID: 694488
Cite item
Full Text
Abstract
Background:Prostate cancer (PC) is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide (TiO2) can improve treatment outcomes and increase the effectiveness of anticancer drugs.
Objective:This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the PC cell line by attaching them to PEGylated TiO2 nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.
Methods:Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated TiO2 system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.
Results:The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.
Conclusion:Accordingly, it was predicted that the PEGylated TiO2 nano-based carrier could be effective in PC.
About the authors
Zuhal Tuncbilek
Department of Chemistry and Chemical Technologies, Yildizeli Vocational School, Sivas Cumhuriyet University
Author for correspondence.
Email: info@benthamscience.net
Nese Cakmak
Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University
Email: info@benthamscience.net
Ayca Tas
Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University
Email: info@benthamscience.net
Durmus Ayan
Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University
Email: info@benthamscience.net
Yavuz Silig
Department of Medical Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University
Email: info@benthamscience.net
References
- Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci. (Basel), 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
- Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy; StatPearls Publishing: Treasure Island (FL), 2023.
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
- Sundararajan, S.; Vogelzang, N. Chemotherapy in the treatment of prostate cancer-the past, the present, and the future. Am. J. Hematol. Oncol., 2014, 10(6), 14-21.
- Kim, J.J.; Yin, B.; Christudass, C.S.; Terada, N.; Rajagopalan, K.; Fabry, B.; Lee, D.Y.; Shiraishi, T.; Getzenberg, R.H.; Veltri, R.W.; An, S.S.; Mooney, S.M. Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. J. Cell. Biochem., 2013, 114(6), 1286-1293. doi: 10.1002/jcb.24464 PMID: 23192682
- Mattioli, R.; Ilari, A.; Colotti, B.; Mosca, L.; Fazi, F.; Colotti, G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol. Aspects Med., 2023, 93, 101205. doi: 10.1016/j.mam.2023.101205 PMID: 37515939
- van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J., 2021, 288(21), 6095-6111. doi: 10.1111/febs.15583 PMID: 33022843
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
- Ahmed, B.; El-Sherbini, E.S.; El-sayed, G.; Eladl, M.; Akiyoshi Taniguchi, A. Applications of titanium dioxide nanoparticles in nanomedicine. Mansoura Veter. Med. J., 2021, 22(3), 111-116. doi: 10.21608/mvmj.2021.196036
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomedicine, 2020, 15, 3447-3470. doi: 10.2147/IJN.S249441 PMID: 32523343
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51. doi: 10.1016/j.addr.2015.09.012 PMID: 26456916
- Cohen, P. The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci., 2000, 25(12), 596-601. doi: 10.1016/S0968-0004(00)01712-6 PMID: 11116185
- Cheng, H.C.; Qi, R.Z.; Paudel, H.; Zhu, H.J. Regulation and function of protein kinases and phosphatases. Enzyme Res., 2011, 2011, 1-3. doi: 10.4061/2011/794089 PMID: 22195276
- Martellucci, S.; Clementi, L.; Sabetta, S.; Mattei, V.; Botta, L.; Angelucci, A. Src family kinases as therapeutic targets in advanced solid tumors: What we have learned so far. Cancers (Basel), 2020, 12(6), 1448. doi: 10.3390/cancers12061448 PMID: 32498343
- Turdo, A.; D’Accardo, C.; Glaviano, A.; Porcelli, G.; Colarossi, C.; Colarossi, L.; Mare, M.; Faldetta, N.; Modica, C.; Pistone, G.; Bongiorno, M.R.; Todaro, M.; Stassi, G. Targeting phosphatases and kinases: How to checkmate cancer. Front. Cell Dev. Biol., 2021, 9, 690306. doi: 10.3389/fcell.2021.690306 PMID: 34778245
- Ventura, J.J.; Nebreda, Á.R. Protein kinases and phosphatases as therapeutic targets in cancer. Clin. Transl. Oncol., 2006, 8(3), 153-160. doi: 10.1007/s12094-006-0005-0 PMID: 16648114
- Alonso, A.; Pulido, R. The extended human PTP ome: A growing tyrosine phosphatase family. FEBS J., 2016, 283(8), 1404-1429. doi: 10.1111/febs.13600 PMID: 26573778
- Bhore, N.; Wang, B.J.; Chen, Y.W.; Liao, Y.F. Critical roles of dual-specificity phosphatases in neuronal proteostasis and neurological diseases. Int. J. Mol. Sci., 2017, 18(9), 1963. doi: 10.3390/ijms18091963 PMID: 28902166
- Patterson, K.I.; Brummer, T.; O’brien, P.M.; Daly, R.J. Dual-specificity phosphatases: Critical regulators with diverse cellular targets. Biochem. J., 2009, 418(3), 475-489. doi: 10.1042/BJ20082234 PMID: 19228121
- Subbannayya, Y.; Pinto, S.M.; Bösl, K.; Prasad, T.S.K.; Kandasamy, R.K. Dynamics of dual specificity phosphatases and their interplay with protein kinases in immune signaling. Int. J. Mol. Sci., 2019, 20(9), 2086. doi: 10.3390/ijms20092086 PMID: 31035605
- Chen, H.F.; Chuang, H.C.; Tan, T.H. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. Int. J. Mol. Sci., 2019, 20(11), 2668. doi: 10.3390/ijms20112668 PMID: 31151270
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83. doi: 10.1128/MMBR.00031-10 PMID: 21372320
- Rodríguez-Berriguete, G.; Fraile, B.; Martínez-Onsurbe, P.; Olmedilla, G.; Paniagua, R.; Royuela, M. MAP Kinases and Prostate Cancer. J. Signal Transduct., 2012, 2012(1), 169170. PMID: 22046506
- Arnoldussen, Y.J.; Saatcioglu, F. Dual specificity phosphatases in prostate cancer. Mol. Cell. Endocrinol., 2009, 309(1-2), 1-7. doi: 10.1016/j.mce.2009.05.019 PMID: 19501628
- Low, H.B.; Zhang, Y. Regulatory Roles of MAPK Phosphatases in Cancer. Immune Netw., 2016, 16(2), 85-98. doi: 10.4110/in.2016.16.2.85 PMID: 27162525
- Bolukbasi, S.S.; Cakmak, N.K.; Tas, A.; Ozmen, E.; Cevik, E.; Gumus, E.; Silig, Y. The cytotoxic effects of titanium oxide nanoparticle on MDA-MB–231 AND MCF–7 cells. Int. J. Sci. Technol. Res., 2018, 4(8), 44476.
- Tas, A.; Cakmak, N.; Gumus, E.; Atabey, M.; Silig, Y. Chemotherapeutic effects of doxorubicin loaded Peg coated TiO2 nanocarriers on breast cancer cell lines. Ann. Med. Res., 2019, 26(0), 1. doi: 10.5455/annalsmedres.2019.02.078
- Du, Y.; Ren, W.; Li, Y.; Zhang, Q.; Zeng, L.; Chi, C.; Wu, A.; Tian, J. The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(8), 1518-1528. doi: 10.1039/C4TB01781A PMID: 32262424
- Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27. doi: 10.1016/j.neo.2022.01.001 PMID: 35078134
- Tas, A.; Çakmak, N.K.; Silig, Y. Development of TiO2-PEG-PTX nanoparticle based drug systems and investigation of anticancer activity on SH-SY5Y. Asian J. Sci. Technol., 2018, 9(12), 9079-9082.
- Li, J.; Fu, A.; Zhang, L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci., 2019, 11(2), 320-328. doi: 10.1007/s12539-019-00327-w PMID: 30877639
- Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–ligand molecular docking. Biophys. Rev., 2014, 6(1), 75-87. doi: 10.1007/s12551-013-0130-2 PMID: 28509958
- Uniyal, A.; Mahapatra, M.K.; Tiwari, V.; Sandhir, R.; Kumar, R. Targeting SARS-CoV-2 main protease: Structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors. J. Biomol. Struct. Dyn., 2022, 40(8), 3609-3625. doi: 10.1080/07391102.2020.1848636 PMID: 33226303
- Seven, D.; Yavuz, E.; Kilic, E.; Baltaci, E.; Karaman, E.; Ulutin, T.; Buyru, N. DLEC1 is not silenced solely by promoter methylation in head and neck squamous cell carcinoma. Gene, 2015, 563(1), 83-86. doi: 10.1016/j.gene.2015.03.004 PMID: 25746324
- Li, S.; Tollefsbol, T.O. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods, 2021, 187, 28-43. doi: 10.1016/j.ymeth.2020.10.002 PMID: 33039572
- Shen, J.; Zhang, Y.; Yu, H.; Shen, B.; Liang, Y.; Jin, R.; Liu, X.; Shi, L.; Cai, X. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med., 2016, 5(8), 2061-2068. doi: 10.1002/cam4.772 PMID: 27227569
- Seternes, O.M.; Kidger, A.M.; Keyse, S.M. Dual-specificity MAP kinase phosphatases in health and disease. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(1), 124-143. doi: 10.1016/j.bbamcr.2018.09.002 PMID: 30401534
- Kang, Y.S.; Seok, H.J.; Jeong, E.J.; Kim, Y.; Yun, S.J.; Min, J.K.; Kim, S.J.; Kim, J.S. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells. Biochem. Biophys. Res. Commun., 2016, 478(1), 403-409. doi: 10.1016/j.bbrc.2016.07.035 PMID: 27422607
- Fang, J.; Ye, Z.; Gu, F.; Yan, M.; Lin, Q.; Lin, J.; Wang, Z.; Xu, Y.; Wang, Y. DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncol. Lett., 2018, 16(2), 1869-1875. doi: 10.3892/ol.2018.8822 PMID: 30008878
- Small, G.W.; Shi, Y.Y.; Higgins, L.S.; Orlowski, R.Z. Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res., 2007, 67(9), 4459-4466. doi: 10.1158/0008-5472.CAN-06-2644 PMID: 17483361
- Lin, S.C.; Chien, C.W.; Lee, J.C.; Yeh, Y.C.; Hsu, K.F.; Lai, Y.Y.; Lin, S.C.; Tsai, S.J. Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells. J. Clin. Invest., 2011, 121(5), 1905-1916. doi: 10.1172/JCI44362 PMID: 21490398
- Dong, W.; Li, N.; Pei, X.; Wu, X. Differential expression of DUSP2 in left- and right-sided colon cancer is associated with poor prognosis in colorectal cancer. Oncol. Lett., 2018, 15(4), 4207-4214. doi: 10.3892/ol.2018.7881 PMID: 29541187
- Wu, J.; Jin, Y.J.; Calaf, G.M.; Huang, W-L.; Yin, Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene, 2007, 26(45), 6526-6535. doi: 10.1038/sj.onc.1210484 PMID: 17471234
- Lawan, A.; Al-Harthi, S.; Cadalbert, L.; McCluskey, A.G.; Shweash, M.; Grassia, G.; Grant, A.; Boyd, M.; Currie, S.; Plevin, R. Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival. J. Biol. Chem., 2011, 286(15), 12933-12943. doi: 10.1074/jbc.M110.181370 PMID: 21317287
- Yip-Schneider, M.T.; Lin, A.; Marshall, M.S. Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochem. Biophys. Res. Commun., 2001, 280(4), 992-997. doi: 10.1006/bbrc.2001.4243 PMID: 11162624
- Yokoyama, A.; Karasaki, H.; Urushibara, N.; Nomoto, K.; Imai, Y.; Nakamura, K.; Mizuno, Y.; Ogawa, K.; Kikuchi, K. The characteristic gene expressions of MAPK phosphatases 1 and 2 in hepatocarcinogenesis, rat ascites hepatoma cells, and regenerating rat liver. Biochem. Biophys. Res. Commun., 1997, 239(3), 746-751. doi: 10.1006/bbrc.1997.7547 PMID: 9367840
- Hasegawa, T.; Enomoto, A.; Kato, T.; Kawai, K.; Miyamoto, R.; Jijiwa, M.; Ichihara, M.; Ishida, M.; Asai, N.; Murakumo, Y.; Ohara, K.; Niwa, Y.; Goto, H.; Takahashi, M. Roles of induced expression of MAPK phosphatase-2 in tumor development in RET-MEN2A transgenic mice. Oncogene, 2008, 27(43), 5684-5695. doi: 10.1038/onc.2008.182 PMID: 18542059
- Keyse, S.M. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev., 2008, 27(2), 253-261. doi: 10.1007/s10555-008-9123-1 PMID: 18330678
- Gröschl, B.; Bettstetter, M.; Giedl, C.; Woenckhaus, M.; Edmonston, T.; Hofstädter, F.; Dietmaier, W. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int. J. Cancer, 2013, 132(7), 1537-1546. doi: 10.1002/ijc.27834 PMID: 22965873
- Balko, J.M.; Cook, R.S.; Vaught, D.B.; Kuba, M.G.; Miller, T.W.; Bhola, N.E.; Sanders, M.E.; Granja-Ingram, N.M.; Smith, J.J.; Meszoely, I.M.; Salter, J.; Dowsett, M.; Stemke-Hale, K.; González-Angulo, A.M.; Mills, G.B.; Pinto, J.A.; Gómez, H.L.; Arteaga, C.L. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat. Med., 2012, 18(7), 1052-1059. doi: 10.1038/nm.2795 PMID: 22683778
- Chen, M.; Zhang, J.; Berger, A.H.; Diolombi, M.S.; Ng, C.; Fung, J.; Bronson, R.T.; Castillo-Martin, M.; Thin, T.H.; Cordon-Cardo, C.; Plevin, R.; Pandolfi, P.P. Compound haploinsufficiency of Dok2 and DUSP4 promotes lung tumorigenesis. J. Clin. Invest., 2018, 129(1), 215-222. doi: 10.1172/JCI99699 PMID: 30475228
- Kim, H.; Jang, S.M.; Ahn, H.; Sim, J.; Yi, K.; Chung, Y.; Han, H.; Rehman, A.; Chung, M.S.; Jang, K.; Paik, S.S. Clinicopathological significance of dual-specificity protein phosphatase 4 expression in invasive ductal carcinoma of the breast. J. Breast Cancer, 2015, 18(1), 1-7. doi: 10.4048/jbc.2015.18.1.1 PMID: 25834604
- Gao, P.P.; Qi, X.W.; Sun, N.; Sun, Y.Y.; Zhang, Y.; Tan, X.N.; Ding, J.; Han, F.; Zhang, Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188562. doi: 10.1016/j.bbcan.2021.188562 PMID: 33964330
- Hijiya, N.; Tsukamoto, Y.; Nakada, C.; Tung Nguyen, L.; Kai, T.; Matsuura, K.; Shibata, K.; Inomata, M.; Uchida, T.; Tokunaga, A.; Amada, K.; Shirao, K.; Yamada, Y.; Mori, H.; Takeuchi, I.; Seto, M.; Aoki, M.; Takekawa, M.; Moriyama, M.; Moriyama, M. Genomic loss of DUSP4 contributes to the progression of intraepithelial neoplasm of pancreas to invasive carcinoma. Cancer Res., 2016, 76(9), 2612-2625. doi: 10.1158/0008-5472.CAN-15-1846 PMID: 26941286
- Kang, X.; Li, M.; Zhu, H.; Lu, X.; Miao, J.; Du, S.; Xia, X.; Guan, W. DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition. Oncotarget, 2017, 8(55), 94028-94039. doi: 10.18632/oncotarget.21522 PMID: 29212207
- Muhammad, K.A.; Nur, A.A.; Nurul, H.S.; Narazah, M.Y.; Siti, R.A.R. Dual-specificity phosphatase 6 (DUSP6): A review of its molecular characteristics and clinical relevance in cancer. Cancer Biol. Med., 2018, 15(1), 14-28. doi: 10.20892/j.issn.2095-3941.2017.0107 PMID: 29545965
- Zhang, Z.; Kobayashi, S.; Borczuk, A.C.; Leidner, R.S.; LaFramboise, T.; Levine, A.D.; Halmos, B. Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis, 2010, 31(4), 577-586. doi: 10.1093/carcin/bgq020 PMID: 20097731
- Ma, J.; Yu, X.; Guo, L.; Lu, S.H. DUSP6, a tumor suppressor, is involved in differentiation and apoptosis in esophageal squamous cell carcinoma. Oncol. Lett., 2013, 6(6), 1624-1630. doi: 10.3892/ol.2013.1605 PMID: 24260056
- Li, W.; Melton, D.W. Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene, 2012, 31(19), 2412-2422. doi: 10.1038/onc.2011.426 PMID: 21996734
- Zandi, Z.; Kashani, B.; Alishahi, Z.; Pourbagheri-Sigaroodi, A.; Esmaeili, F.; Ghaffari, S.H.; Bashash, D.; Momeny, M. Dual-specificity phosphatases: Therapeutic targets in cancer therapy resistance. J. Cancer Res. Clin. Oncol., 2022, 148(1), 57-70. doi: 10.1007/s00432-021-03874-2 PMID: 34981193
- Wong, V.C.L.; Chen, H.; Ko, J.M.Y.; Chan, K.W.; Chan, Y.P.; Law, S.; Chua, D.; Kwong, D.L.W.; Lung, H.L.; Srivastava, G.; Tang, J.C.O.; Tsao, S.W.; Zabarovsky, E.R.; Stanbridge, E.J.; Lung, M.L. Tumor suppressor dual‐specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial‐mesenchymal transition (EMT)‐associated phenotype. Int. J. Cancer, 2012, 130(1), 83-95. doi: 10.1002/ijc.25970 PMID: 21387288
- Zhai, X.; Han, Q.; Shan, Z.; Qu, X.; Guo, L.; Zhou, Y. Dual specificity phosphatase 6 suppresses the growth and metastasis of prostate cancer cells. Mol. Med. Rep., 2014, 10(6), 3052-3058. doi: 10.3892/mmr.2014.2575 PMID: 25241655
- Finch, A.R.; Caunt, C.J.; Perrett, R.M.; Tsaneva-Atanasova, K.; McArdle, C.A. Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: Indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell. Signal., 2012, 24(5), 1002-1011. doi: 10.1016/j.cellsig.2011.12.021 PMID: 22245064
- Zhang, Y.; Blattman, J.N.; Kennedy, N.J.; Duong, J.; Nguyen, T.; Wang, Y.; Davis, R.J.; Greenberg, P.D.; Flavell, R.A.; Dong, C. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature, 2004, 430(7001), 793-797. doi: 10.1038/nature02764 PMID: 15306813
- Jiménez-Martínez, M.; Stamatakis, K.; Fresno, M. The dual-specificity phosphatase 10 (DUSP10): Its role in cancer, inflammation, and immunity. Int. J. Mol. Sci., 2019, 20(7), 1626. doi: 10.3390/ijms20071626 PMID: 30939861
- Goldman, M.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; Haussler, D. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. Biorxiv, 2018. doi: 10.1101/326470
- Ríos, P.; Nunes-Xavier, C.E.; Tabernero, L.; Köhn, M.; Pulido, R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid. Redox Signal., 2014, 20(14), 2251-2273. doi: 10.1089/ars.2013.5709 PMID: 24206177
- Lin, H.C.; Su, S.L.; Lin, W.C.; Lin, A.H.; Yang, Y.C.; Lii, C.K.; Chen, H.W. Andrographolide inhibits hypoxia‐induced hypoxia‐inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP‐5 pathways in EA.hy926 cells. Environ. Toxicol., 2018, 33(3), 269-279. doi: 10.1002/tox.22514 PMID: 29165873
- Agbektas, T.; Zontul, C.; Ozturk, A.; Huseynzada, A.; Ganbarova, R.; Hasanova, U.; Cinar, G.; Tas, A.; Kaya, S.; Chtita, S.; Silig, Y. Effect of azomethine group containing compounds on gene profiles in Wnt and MAPK signal patterns in lung cancer cell line: In silico and in vitro analyses. J. Mol. Struct., 2023, 1275, 134619. doi: 10.1016/j.molstruc.2022.134619
- Zhou, F.; Zeng, L.; Chen, X.; Zhou, F.; Zhang, Z.; Yuan, Y.; Wang, H.; Yao, H.; Tian, J.; Liu, X.; Zhao, J.; Huang, X.; Pu, J.; Cho, W.C.; Cao, J.; Jiang, X. DUSP10 upregulation is a poor prognosticator and promotes cell proliferation and migration in glioma. Front. Oncol., 2023, 12, 1050756. doi: 10.3389/fonc.2022.1050756 PMID: 36713584
- Png, C.W.; Weerasooriya, M.; Guo, J.; James, S.J.; Poh, H.M.; Osato, M.; Flavell, R.A.; Dong, C.; Yang, H.; Zhang, Y. DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis. Oncogene, 2016, 35(2), 206-217. doi: 10.1038/onc.2015.74 PMID: 25772234
- Lucci, M.A.; Orlandi, R.; Triulzi, T.; Tagliabue, E.; Balsari, A.; Villa-Moruzzi, E. Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Anal. Cell. Pathol. (Amst.), 2010, 32(5-6), 361-372. doi: 10.1155/2010/386484 PMID: 20413845
- Arora, D.; Köthe, S.; van den Eijnden, M.; van Huijsduijnen, R.H.; Heidel, F.; Fischer, T.; Scholl, S.; Tölle, B.; Böhmer, S.A.; Lennartsson, J.; Isken, F.; Müller-Tidow, C.; Böhmer, F.D. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression. Cell Commun. Signal., 2012, 10(1), 19. doi: 10.1186/1478-811X-10-19 PMID: 22784513
- Xiao, F.; Zhu, H.; Guo, Y.; Zhang, Z.; Sun, G.; Huang, K.; Guo, H.; Hu, G. DUSP10 is a novel immune-related biomarker connected with survival and cellular proliferation in lower-grade glioma. Aging (Albany NY), 2023, 15(12), 5673-5697. doi: 10.18632/aging.204821 PMID: 37387540
- Wei, X.; Png, C.W.; Weerasooriya, M.; Li, H.; Zhu, C.; Chen, G.; Xu, C.; Zhang, Y.; Xu, X. Tumor promoting function of DUSP10 in non-small cell lung cancer is associated with tumor-promoting cytokines. Immune Netw., 2023, 23(4), e34. doi: 10.4110/in.2023.23.e34
Supplementary files
