PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes


Cite item

Full Text

Abstract

Background:Prostate cancer (PC) is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide (TiO2) can improve treatment outcomes and increase the effectiveness of anticancer drugs.

Objective:This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the PC cell line by attaching them to PEGylated TiO2 nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.

Methods:Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated TiO2 system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.

Results:The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.

Conclusion:Accordingly, it was predicted that the PEGylated TiO2 nano-based carrier could be effective in PC.

About the authors

Zuhal Tuncbilek

Department of Chemistry and Chemical Technologies, Yildizeli Vocational School, Sivas Cumhuriyet University

Author for correspondence.
Email: info@benthamscience.net

Nese Cakmak

Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University

Email: info@benthamscience.net

Ayca Tas

Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University

Email: info@benthamscience.net

Durmus Ayan

Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University

Email: info@benthamscience.net

Yavuz Silig

Department of Medical Biochemistry, Faculty of Medicine, Sivas Cumhuriyet University

Email: info@benthamscience.net

References

  1. Barsouk, A.; Padala, S.A.; Vakiti, A.; Mohammed, A.; Saginala, K.; Thandra, K.C.; Rawla, P.; Barsouk, A. Epidemiology, staging and management of prostate cancer. Med. Sci. (Basel), 2020, 8(3), 28. doi: 10.3390/medsci8030028 PMID: 32698438
  2. Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 2022, 27(17), 5730. doi: 10.3390/molecules27175730 PMID: 36080493
  3. Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy; StatPearls Publishing: Treasure Island (FL), 2023.
  4. Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; Dhanjal, J.K.; Dewanjee, S.; Vallamkondu, J.; Pérez de la Lastra, J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis., 2023, 10(4), 1367-1401. doi: 10.1016/j.gendis.2022.02.007 PMID: 37397557
  5. Sundararajan, S.; Vogelzang, N. Chemotherapy in the treatment of prostate cancer-the past, the present, and the future. Am. J. Hematol. Oncol., 2014, 10(6), 14-21.
  6. Kim, J.J.; Yin, B.; Christudass, C.S.; Terada, N.; Rajagopalan, K.; Fabry, B.; Lee, D.Y.; Shiraishi, T.; Getzenberg, R.H.; Veltri, R.W.; An, S.S.; Mooney, S.M. Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. J. Cell. Biochem., 2013, 114(6), 1286-1293. doi: 10.1002/jcb.24464 PMID: 23192682
  7. Mattioli, R.; Ilari, A.; Colotti, B.; Mosca, L.; Fazi, F.; Colotti, G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol. Aspects Med., 2023, 93, 101205. doi: 10.1016/j.mam.2023.101205 PMID: 37515939
  8. van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J., 2021, 288(21), 6095-6111. doi: 10.1111/febs.15583 PMID: 33022843
  9. Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
  10. Ahmed, B.; El-Sherbini, E.S.; El-sayed, G.; Eladl, M.; Akiyoshi Taniguchi, A. Applications of titanium dioxide nanoparticles in nanomedicine. Mansoura Veter. Med. J., 2021, 22(3), 111-116. doi: 10.21608/mvmj.2021.196036
  11. Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomedicine, 2020, 15, 3447-3470. doi: 10.2147/IJN.S249441 PMID: 32523343
  12. Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51. doi: 10.1016/j.addr.2015.09.012 PMID: 26456916
  13. Cohen, P. The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci., 2000, 25(12), 596-601. doi: 10.1016/S0968-0004(00)01712-6 PMID: 11116185
  14. Cheng, H.C.; Qi, R.Z.; Paudel, H.; Zhu, H.J. Regulation and function of protein kinases and phosphatases. Enzyme Res., 2011, 2011, 1-3. doi: 10.4061/2011/794089 PMID: 22195276
  15. Martellucci, S.; Clementi, L.; Sabetta, S.; Mattei, V.; Botta, L.; Angelucci, A. Src family kinases as therapeutic targets in advanced solid tumors: What we have learned so far. Cancers (Basel), 2020, 12(6), 1448. doi: 10.3390/cancers12061448 PMID: 32498343
  16. Turdo, A.; D’Accardo, C.; Glaviano, A.; Porcelli, G.; Colarossi, C.; Colarossi, L.; Mare, M.; Faldetta, N.; Modica, C.; Pistone, G.; Bongiorno, M.R.; Todaro, M.; Stassi, G. Targeting phosphatases and kinases: How to checkmate cancer. Front. Cell Dev. Biol., 2021, 9, 690306. doi: 10.3389/fcell.2021.690306 PMID: 34778245
  17. Ventura, J.J.; Nebreda, Á.R. Protein kinases and phosphatases as therapeutic targets in cancer. Clin. Transl. Oncol., 2006, 8(3), 153-160. doi: 10.1007/s12094-006-0005-0 PMID: 16648114
  18. Alonso, A.; Pulido, R. The extended human PTP ome: A growing tyrosine phosphatase family. FEBS J., 2016, 283(8), 1404-1429. doi: 10.1111/febs.13600 PMID: 26573778
  19. Bhore, N.; Wang, B.J.; Chen, Y.W.; Liao, Y.F. Critical roles of dual-specificity phosphatases in neuronal proteostasis and neurological diseases. Int. J. Mol. Sci., 2017, 18(9), 1963. doi: 10.3390/ijms18091963 PMID: 28902166
  20. Patterson, K.I.; Brummer, T.; O’brien, P.M.; Daly, R.J. Dual-specificity phosphatases: Critical regulators with diverse cellular targets. Biochem. J., 2009, 418(3), 475-489. doi: 10.1042/BJ20082234 PMID: 19228121
  21. Subbannayya, Y.; Pinto, S.M.; Bösl, K.; Prasad, T.S.K.; Kandasamy, R.K. Dynamics of dual specificity phosphatases and their interplay with protein kinases in immune signaling. Int. J. Mol. Sci., 2019, 20(9), 2086. doi: 10.3390/ijms20092086 PMID: 31035605
  22. Chen, H.F.; Chuang, H.C.; Tan, T.H. Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. Int. J. Mol. Sci., 2019, 20(11), 2668. doi: 10.3390/ijms20112668 PMID: 31151270
  23. Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev., 2011, 75(1), 50-83. doi: 10.1128/MMBR.00031-10 PMID: 21372320
  24. Rodríguez-Berriguete, G.; Fraile, B.; Martínez-Onsurbe, P.; Olmedilla, G.; Paniagua, R.; Royuela, M. MAP Kinases and Prostate Cancer. J. Signal Transduct., 2012, 2012(1), 169170. PMID: 22046506
  25. Arnoldussen, Y.J.; Saatcioglu, F. Dual specificity phosphatases in prostate cancer. Mol. Cell. Endocrinol., 2009, 309(1-2), 1-7. doi: 10.1016/j.mce.2009.05.019 PMID: 19501628
  26. Low, H.B.; Zhang, Y. Regulatory Roles of MAPK Phosphatases in Cancer. Immune Netw., 2016, 16(2), 85-98. doi: 10.4110/in.2016.16.2.85 PMID: 27162525
  27. Bolukbasi, S.S.; Cakmak, N.K.; Tas, A.; Ozmen, E.; Cevik, E.; Gumus, E.; Silig, Y. The cytotoxic effects of titanium oxide nanoparticle on MDA-MB–231 AND MCF–7 cells. Int. J. Sci. Technol. Res., 2018, 4(8), 44476.
  28. Tas, A.; Cakmak, N.; Gumus, E.; Atabey, M.; Silig, Y. Chemotherapeutic effects of doxorubicin loaded Peg coated TiO2 nanocarriers on breast cancer cell lines. Ann. Med. Res., 2019, 26(0), 1. doi: 10.5455/annalsmedres.2019.02.078
  29. Du, Y.; Ren, W.; Li, Y.; Zhang, Q.; Zeng, L.; Chi, C.; Wu, A.; Tian, J. The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(8), 1518-1528. doi: 10.1039/C4TB01781A PMID: 32262424
  30. Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27. doi: 10.1016/j.neo.2022.01.001 PMID: 35078134
  31. Tas, A.; Çakmak, N.K.; Silig, Y. Development of TiO2-PEG-PTX nanoparticle based drug systems and investigation of anticancer activity on SH-SY5Y. Asian J. Sci. Technol., 2018, 9(12), 9079-9082.
  32. Li, J.; Fu, A.; Zhang, L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci., 2019, 11(2), 320-328. doi: 10.1007/s12539-019-00327-w PMID: 30877639
  33. Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–ligand molecular docking. Biophys. Rev., 2014, 6(1), 75-87. doi: 10.1007/s12551-013-0130-2 PMID: 28509958
  34. Uniyal, A.; Mahapatra, M.K.; Tiwari, V.; Sandhir, R.; Kumar, R. Targeting SARS-CoV-2 main protease: Structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors. J. Biomol. Struct. Dyn., 2022, 40(8), 3609-3625. doi: 10.1080/07391102.2020.1848636 PMID: 33226303
  35. Seven, D.; Yavuz, E.; Kilic, E.; Baltaci, E.; Karaman, E.; Ulutin, T.; Buyru, N. DLEC1 is not silenced solely by promoter methylation in head and neck squamous cell carcinoma. Gene, 2015, 563(1), 83-86. doi: 10.1016/j.gene.2015.03.004 PMID: 25746324
  36. Li, S.; Tollefsbol, T.O. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods, 2021, 187, 28-43. doi: 10.1016/j.ymeth.2020.10.002 PMID: 33039572
  37. Shen, J.; Zhang, Y.; Yu, H.; Shen, B.; Liang, Y.; Jin, R.; Liu, X.; Shi, L.; Cai, X. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med., 2016, 5(8), 2061-2068. doi: 10.1002/cam4.772 PMID: 27227569
  38. Seternes, O.M.; Kidger, A.M.; Keyse, S.M. Dual-specificity MAP kinase phosphatases in health and disease. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(1), 124-143. doi: 10.1016/j.bbamcr.2018.09.002 PMID: 30401534
  39. Kang, Y.S.; Seok, H.J.; Jeong, E.J.; Kim, Y.; Yun, S.J.; Min, J.K.; Kim, S.J.; Kim, J.S. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells. Biochem. Biophys. Res. Commun., 2016, 478(1), 403-409. doi: 10.1016/j.bbrc.2016.07.035 PMID: 27422607
  40. Fang, J.; Ye, Z.; Gu, F.; Yan, M.; Lin, Q.; Lin, J.; Wang, Z.; Xu, Y.; Wang, Y. DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncol. Lett., 2018, 16(2), 1869-1875. doi: 10.3892/ol.2018.8822 PMID: 30008878
  41. Small, G.W.; Shi, Y.Y.; Higgins, L.S.; Orlowski, R.Z. Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res., 2007, 67(9), 4459-4466. doi: 10.1158/0008-5472.CAN-06-2644 PMID: 17483361
  42. Lin, S.C.; Chien, C.W.; Lee, J.C.; Yeh, Y.C.; Hsu, K.F.; Lai, Y.Y.; Lin, S.C.; Tsai, S.J. Suppression of dual-specificity phosphatase–2 by hypoxia increases chemoresistance and malignancy in human cancer cells. J. Clin. Invest., 2011, 121(5), 1905-1916. doi: 10.1172/JCI44362 PMID: 21490398
  43. Dong, W.; Li, N.; Pei, X.; Wu, X. Differential expression of DUSP2 in left- and right-sided colon cancer is associated with poor prognosis in colorectal cancer. Oncol. Lett., 2018, 15(4), 4207-4214. doi: 10.3892/ol.2018.7881 PMID: 29541187
  44. Wu, J.; Jin, Y.J.; Calaf, G.M.; Huang, W-L.; Yin, Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene, 2007, 26(45), 6526-6535. doi: 10.1038/sj.onc.1210484 PMID: 17471234
  45. Lawan, A.; Al-Harthi, S.; Cadalbert, L.; McCluskey, A.G.; Shweash, M.; Grassia, G.; Grant, A.; Boyd, M.; Currie, S.; Plevin, R. Deletion of the dual specific phosphatase-4 (DUSP-4) gene reveals an essential non-redundant role for MAP kinase phosphatase-2 (MKP-2) in proliferation and cell survival. J. Biol. Chem., 2011, 286(15), 12933-12943. doi: 10.1074/jbc.M110.181370 PMID: 21317287
  46. Yip-Schneider, M.T.; Lin, A.; Marshall, M.S. Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochem. Biophys. Res. Commun., 2001, 280(4), 992-997. doi: 10.1006/bbrc.2001.4243 PMID: 11162624
  47. Yokoyama, A.; Karasaki, H.; Urushibara, N.; Nomoto, K.; Imai, Y.; Nakamura, K.; Mizuno, Y.; Ogawa, K.; Kikuchi, K. The characteristic gene expressions of MAPK phosphatases 1 and 2 in hepatocarcinogenesis, rat ascites hepatoma cells, and regenerating rat liver. Biochem. Biophys. Res. Commun., 1997, 239(3), 746-751. doi: 10.1006/bbrc.1997.7547 PMID: 9367840
  48. Hasegawa, T.; Enomoto, A.; Kato, T.; Kawai, K.; Miyamoto, R.; Jijiwa, M.; Ichihara, M.; Ishida, M.; Asai, N.; Murakumo, Y.; Ohara, K.; Niwa, Y.; Goto, H.; Takahashi, M. Roles of induced expression of MAPK phosphatase-2 in tumor development in RET-MEN2A transgenic mice. Oncogene, 2008, 27(43), 5684-5695. doi: 10.1038/onc.2008.182 PMID: 18542059
  49. Keyse, S.M. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev., 2008, 27(2), 253-261. doi: 10.1007/s10555-008-9123-1 PMID: 18330678
  50. Gröschl, B.; Bettstetter, M.; Giedl, C.; Woenckhaus, M.; Edmonston, T.; Hofstädter, F.; Dietmaier, W. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation. Int. J. Cancer, 2013, 132(7), 1537-1546. doi: 10.1002/ijc.27834 PMID: 22965873
  51. Balko, J.M.; Cook, R.S.; Vaught, D.B.; Kuba, M.G.; Miller, T.W.; Bhola, N.E.; Sanders, M.E.; Granja-Ingram, N.M.; Smith, J.J.; Meszoely, I.M.; Salter, J.; Dowsett, M.; Stemke-Hale, K.; González-Angulo, A.M.; Mills, G.B.; Pinto, J.A.; Gómez, H.L.; Arteaga, C.L. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat. Med., 2012, 18(7), 1052-1059. doi: 10.1038/nm.2795 PMID: 22683778
  52. Chen, M.; Zhang, J.; Berger, A.H.; Diolombi, M.S.; Ng, C.; Fung, J.; Bronson, R.T.; Castillo-Martin, M.; Thin, T.H.; Cordon-Cardo, C.; Plevin, R.; Pandolfi, P.P. Compound haploinsufficiency of Dok2 and DUSP4 promotes lung tumorigenesis. J. Clin. Invest., 2018, 129(1), 215-222. doi: 10.1172/JCI99699 PMID: 30475228
  53. Kim, H.; Jang, S.M.; Ahn, H.; Sim, J.; Yi, K.; Chung, Y.; Han, H.; Rehman, A.; Chung, M.S.; Jang, K.; Paik, S.S. Clinicopathological significance of dual-specificity protein phosphatase 4 expression in invasive ductal carcinoma of the breast. J. Breast Cancer, 2015, 18(1), 1-7. doi: 10.4048/jbc.2015.18.1.1 PMID: 25834604
  54. Gao, P.P.; Qi, X.W.; Sun, N.; Sun, Y.Y.; Zhang, Y.; Tan, X.N.; Ding, J.; Han, F.; Zhang, Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188562. doi: 10.1016/j.bbcan.2021.188562 PMID: 33964330
  55. Hijiya, N.; Tsukamoto, Y.; Nakada, C.; Tung Nguyen, L.; Kai, T.; Matsuura, K.; Shibata, K.; Inomata, M.; Uchida, T.; Tokunaga, A.; Amada, K.; Shirao, K.; Yamada, Y.; Mori, H.; Takeuchi, I.; Seto, M.; Aoki, M.; Takekawa, M.; Moriyama, M.; Moriyama, M. Genomic loss of DUSP4 contributes to the progression of intraepithelial neoplasm of pancreas to invasive carcinoma. Cancer Res., 2016, 76(9), 2612-2625. doi: 10.1158/0008-5472.CAN-15-1846 PMID: 26941286
  56. Kang, X.; Li, M.; Zhu, H.; Lu, X.; Miao, J.; Du, S.; Xia, X.; Guan, W. DUSP4 promotes doxorubicin resistance in gastric cancer through epithelial-mesenchymal transition. Oncotarget, 2017, 8(55), 94028-94039. doi: 10.18632/oncotarget.21522 PMID: 29212207
  57. Muhammad, K.A.; Nur, A.A.; Nurul, H.S.; Narazah, M.Y.; Siti, R.A.R. Dual-specificity phosphatase 6 (DUSP6): A review of its molecular characteristics and clinical relevance in cancer. Cancer Biol. Med., 2018, 15(1), 14-28. doi: 10.20892/j.issn.2095-3941.2017.0107 PMID: 29545965
  58. Zhang, Z.; Kobayashi, S.; Borczuk, A.C.; Leidner, R.S.; LaFramboise, T.; Levine, A.D.; Halmos, B. Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis, 2010, 31(4), 577-586. doi: 10.1093/carcin/bgq020 PMID: 20097731
  59. Ma, J.; Yu, X.; Guo, L.; Lu, S.H. DUSP6, a tumor suppressor, is involved in differentiation and apoptosis in esophageal squamous cell carcinoma. Oncol. Lett., 2013, 6(6), 1624-1630. doi: 10.3892/ol.2013.1605 PMID: 24260056
  60. Li, W.; Melton, D.W. Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene, 2012, 31(19), 2412-2422. doi: 10.1038/onc.2011.426 PMID: 21996734
  61. Zandi, Z.; Kashani, B.; Alishahi, Z.; Pourbagheri-Sigaroodi, A.; Esmaeili, F.; Ghaffari, S.H.; Bashash, D.; Momeny, M. Dual-specificity phosphatases: Therapeutic targets in cancer therapy resistance. J. Cancer Res. Clin. Oncol., 2022, 148(1), 57-70. doi: 10.1007/s00432-021-03874-2 PMID: 34981193
  62. Wong, V.C.L.; Chen, H.; Ko, J.M.Y.; Chan, K.W.; Chan, Y.P.; Law, S.; Chua, D.; Kwong, D.L.W.; Lung, H.L.; Srivastava, G.; Tang, J.C.O.; Tsao, S.W.; Zabarovsky, E.R.; Stanbridge, E.J.; Lung, M.L. Tumor suppressor dual‐specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial‐mesenchymal transition (EMT)‐associated phenotype. Int. J. Cancer, 2012, 130(1), 83-95. doi: 10.1002/ijc.25970 PMID: 21387288
  63. Zhai, X.; Han, Q.; Shan, Z.; Qu, X.; Guo, L.; Zhou, Y. Dual specificity phosphatase 6 suppresses the growth and metastasis of prostate cancer cells. Mol. Med. Rep., 2014, 10(6), 3052-3058. doi: 10.3892/mmr.2014.2575 PMID: 25241655
  64. Finch, A.R.; Caunt, C.J.; Perrett, R.M.; Tsaneva-Atanasova, K.; McArdle, C.A. Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: Indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell. Signal., 2012, 24(5), 1002-1011. doi: 10.1016/j.cellsig.2011.12.021 PMID: 22245064
  65. Zhang, Y.; Blattman, J.N.; Kennedy, N.J.; Duong, J.; Nguyen, T.; Wang, Y.; Davis, R.J.; Greenberg, P.D.; Flavell, R.A.; Dong, C. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature, 2004, 430(7001), 793-797. doi: 10.1038/nature02764 PMID: 15306813
  66. Jiménez-Martínez, M.; Stamatakis, K.; Fresno, M. The dual-specificity phosphatase 10 (DUSP10): Its role in cancer, inflammation, and immunity. Int. J. Mol. Sci., 2019, 20(7), 1626. doi: 10.3390/ijms20071626 PMID: 30939861
  67. Goldman, M.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; Haussler, D. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. Biorxiv, 2018. doi: 10.1101/326470
  68. Ríos, P.; Nunes-Xavier, C.E.; Tabernero, L.; Köhn, M.; Pulido, R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid. Redox Signal., 2014, 20(14), 2251-2273. doi: 10.1089/ars.2013.5709 PMID: 24206177
  69. Lin, H.C.; Su, S.L.; Lin, W.C.; Lin, A.H.; Yang, Y.C.; Lii, C.K.; Chen, H.W. Andrographolide inhibits hypoxia‐induced hypoxia‐inducible factor 1α and endothelin 1 expression through the heme oxygenase 1/CO/cGMP/MKP‐5 pathways in EA.hy926 cells. Environ. Toxicol., 2018, 33(3), 269-279. doi: 10.1002/tox.22514 PMID: 29165873
  70. Agbektas, T.; Zontul, C.; Ozturk, A.; Huseynzada, A.; Ganbarova, R.; Hasanova, U.; Cinar, G.; Tas, A.; Kaya, S.; Chtita, S.; Silig, Y. Effect of azomethine group containing compounds on gene profiles in Wnt and MAPK signal patterns in lung cancer cell line: In silico and in vitro analyses. J. Mol. Struct., 2023, 1275, 134619. doi: 10.1016/j.molstruc.2022.134619
  71. Zhou, F.; Zeng, L.; Chen, X.; Zhou, F.; Zhang, Z.; Yuan, Y.; Wang, H.; Yao, H.; Tian, J.; Liu, X.; Zhao, J.; Huang, X.; Pu, J.; Cho, W.C.; Cao, J.; Jiang, X. DUSP10 upregulation is a poor prognosticator and promotes cell proliferation and migration in glioma. Front. Oncol., 2023, 12, 1050756. doi: 10.3389/fonc.2022.1050756 PMID: 36713584
  72. Png, C.W.; Weerasooriya, M.; Guo, J.; James, S.J.; Poh, H.M.; Osato, M.; Flavell, R.A.; Dong, C.; Yang, H.; Zhang, Y. DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis. Oncogene, 2016, 35(2), 206-217. doi: 10.1038/onc.2015.74 PMID: 25772234
  73. Lucci, M.A.; Orlandi, R.; Triulzi, T.; Tagliabue, E.; Balsari, A.; Villa-Moruzzi, E. Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Anal. Cell. Pathol. (Amst.), 2010, 32(5-6), 361-372. doi: 10.1155/2010/386484 PMID: 20413845
  74. Arora, D.; Köthe, S.; van den Eijnden, M.; van Huijsduijnen, R.H.; Heidel, F.; Fischer, T.; Scholl, S.; Tölle, B.; Böhmer, S.A.; Lennartsson, J.; Isken, F.; Müller-Tidow, C.; Böhmer, F.D. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression. Cell Commun. Signal., 2012, 10(1), 19. doi: 10.1186/1478-811X-10-19 PMID: 22784513
  75. Xiao, F.; Zhu, H.; Guo, Y.; Zhang, Z.; Sun, G.; Huang, K.; Guo, H.; Hu, G. DUSP10 is a novel immune-related biomarker connected with survival and cellular proliferation in lower-grade glioma. Aging (Albany NY), 2023, 15(12), 5673-5697. doi: 10.18632/aging.204821 PMID: 37387540
  76. Wei, X.; Png, C.W.; Weerasooriya, M.; Li, H.; Zhu, C.; Chen, G.; Xu, C.; Zhang, Y.; Xu, X. Tumor promoting function of DUSP10 in non-small cell lung cancer is associated with tumor-promoting cytokines. Immune Netw., 2023, 23(4), e34. doi: 10.4110/in.2023.23.e34

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Bentham Science Publishers