MG132-mediated Suppression of the Ubiquitin-proteasome Pathway Enhances the Sensitivity of Endometrial Cancer Cells to Cisplatin
- Авторы: Zhang Z.1, Ding Y.2
-
Учреждения:
- Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University
- Department of Gynaecology, Affiliated Maternity and Child Health Care Hospital of Nantong University
- Выпуск: Том 25, № 4 (2025)
- Страницы: 281-291
- Раздел: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694490
- DOI: https://doi.org/10.2174/0118715206343550240919055701
- ID: 694490
Цитировать
Полный текст
Аннотация
Result:MG132 exposure significantly reduced cell viability in a dose-dependent manner. It augmented cisplatin- induced proliferation inhibition and enhanced apoptosis, correlating with caspase-3 activation and ROS upregulation. Molecular analysis revealed a profound inhibition of the ubiquitin-proteasome system. MG132 also significantly increased the expression of cisplatin-induced pro-inflammatory cytokines, suggesting a transition from chronic to acute inflammation.
Background:Tumor cell resistance to cisplatin is a common challenge in endometrial cancer chemotherapy, stemming from various mechanisms. Targeted therapies using proteasome inhibitors, such as MG132, have been investigated to enhance cisplatin sensitivity, potentially offering a novel treatment approach.
Objective:The aim of this study was to investigate the effects of MG132 on cisplatin sensitivity in the human endometrial cancer (EC) cell line RL95-2, focusing on cell proliferation, apoptosis, and cell signaling.
Methods:Human endometrial cancer RL95-2 cells were exposed to MG132, and cell viability was assessed in a dose-dependent manner. The study evaluated the effect of MG132 on cisplatin-induced proliferation inhibition and apoptosis, correlating with caspase-3 activation and reactive oxygen species (ROS) upregulation. Additionally, we examined the inhibition of the ubiquitin-proteasome system and the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and IL-13 during MG132 and cisplatin co-administration.
Results:Human endometrial cancer RL95-2 cells were exposed to MG132, and cell viability was assessed in a dose-dependent manner. The study evaluated the effect of MG132 on cisplatin-induced proliferation inhibition and apoptosis, correlating with caspase-3 activation and reactive oxygen species (ROS) upregulation. Additionally, we examined the inhibition of the ubiquitin-proteasome system and the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and IL-13 during MG132 and cisplatin co-administration.
Conclusion:MG132 enhances the therapeutic efficacy of cisplatin in human EC cells by suppressing the ubiquitin- proteasome pathway, reducing cell viability, enhancing apoptosis, and shifting the inflammatory response. These findings highlighted the potential of MG132 as an adjuvant in endometrial cancer chemotherapy. Further research is needed to explore detailed mechanisms and clinical applications of this combination therapy.
Ключевые слова
Об авторах
Zhanhu Zhang
Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Health Care Hospital of Nantong University
Email: info@benthamscience.net
Yiqian Ding
Department of Gynaecology, Affiliated Maternity and Child Health Care Hospital of Nantong University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Xie, W.; Liu, N.; Wang, X.; Wei, L.; Xie, W.; Sheng, X. Wilms’ tumor 1-associated protein contributes to chemo-resistance to cisplatin through the Wnt/β-catenin pathway in endometrial cancer. Front. Oncol., 2021, 11, 598344. doi: 10.3389/fonc.2021.598344 PMID: 33680959
- Qiang, W.; Sui, F.; Ma, J.; Li, X.; Ren, X.; Shao, Y.; Liu, J.; Guan, H.; Shi, B.; Hou, P. Proteasome inhibitor MG132 induces thyroid cancer cell apoptosis by modulating the activity of transcription factor FOXO3a. Endocrine, 2017, 56(1), 98-108. doi: 10.1007/s12020-017-1256-y PMID: 28220348
- Lee, H.K.; Park, S.H.; Nam, M.J. Proteasome inhibitor MG132 induces apoptosis in human osteosarcoma U2OS cells. Hum. Exp. Toxicol., 2021, 40(11), 1985-1997. doi: 10.1177/09603271211017972 PMID: 34002651
- Zheng, Z.; Wang, X.; Chen, D. Proteasome inhibitor MG132 enhances the sensitivity of human OSCC cells to cisplatin via a ROS/DNA damage/p53 axis. Exp. Ther. Med., 2023, 25(5), 224. doi: 10.3892/etm.2023.11924 PMID: 37123203
- Sun, F.; Zhang, Y.; Xu, L.; Li, S.; Chen, X.; Zhang, L.; Wu, Y.; Li, J. Proteasome inhibitor MG132 enhances cisplatin-induced apoptosis in osteosarcoma cells and inhibits tumor growth. Oncol. Res., 2018, 26(4), 655-664. doi: 10.3727/096504017X15119525209765 PMID: 29191257
- Park, J.; Cho, J.; Song, E.J. Ubiquitin–proteasome system (UPS) as a target for anticancer treatment. Arch. Pharm. Res., 2020, 43(11), 1144-1161. doi: 10.1007/s12272-020-01281-8 PMID: 33165832
- Sahasrabuddhe, A.A.; Elenitoba-Johnson, K.S.J. Role of the ubiquitin proteasome system in hematologic malignancies. Immunol. Rev., 2015, 263(1), 224-239. doi: 10.1111/imr.12236 PMID: 25510280
- Li, Y.; Li, S.; Wu, H. Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells, 2022, 11(5), 851. doi: 10.3390/cells11050851 PMID: 35269473
- Wu, H.Q.; Baker, D.; Ovaa, H. Small molecules that target the ubiquitin system. Biochem. Soc. Trans., 2020, 48(2), 479-497. doi: 10.1042/BST20190535 PMID: 32196552
- Sharma, A.; Khan, H.; Singh, T.; Grewal, A.; Najda, A.; Kawecka-Radomska, M.; Kamel, M.; Altyar, A.; Abdel-Daim, M. Pharmacological modulation of ubiquitin-proteasome pathways in oncogenic signaling. Int. J. Mol. Sci., 2021, 22(21), 11971. doi: 10.3390/ijms222111971 PMID: 34769401
- Morgan, J.J.; Crawford, L.J. The ubiquitin proteasome system in genome stability and cancer. Cancers (Basel), 2021, 13(9), 2235. doi: 10.3390/cancers13092235 PMID: 34066546
- Bu, Z.; Yang, J.; Zhang, Y.; Luo, T.; Fang, C.; Liang, X.; Peng, Q.; Wang, D.; Lin, N.; Zhang, K.; Tang, W. Sequential ubiquitination and phosphorylation epigenetics reshaping by MG132‐loaded Fe‐MOF disarms treatment resistance to repulse metastatic colorectal cancer. Adv. Sci. (Weinh.), 2023, 10(23), 2301638. doi: 10.1002/advs.202301638 PMID: 37303273
- Behl, T.; Chadha, S.; Sachdeva, M.; Kumar, A.; Hafeez, A.; Mehta, V.; Bungau, S. Ubiquitination in rheumatoid arthritis. Life Sci., 2020, 261, 118459. doi: 10.1016/j.lfs.2020.118459 PMID: 32961230
- Liu, F.; Gao, X.; Yu, H.; Yuan, D.; Zhang, J.; He, Y.; Yue, L. Effects of expression of exogenous cyclin G1 on proliferation of human endometrial carcinoma cells. Chin. J. Physiol., 2013, 56(2), 83-89. doi: 10.4077/CJP.2013.BAA079 PMID: 23589924
- Papa, L.; Gomes, E.; Rockwell, P. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis, 2007, 12(8), 1389-1405. doi: 10.1007/s10495-007-0069-5 PMID: 17415663
- Llobet, D.; Eritja, N.; Encinas, M.; Sorolla, A.; Yeramian, A.; Schoenenberger, J.A.; Llombart-Cussac, A.; Marti, R.M.; Matias-Guiu, X.; Dolcet, X. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anticancer Drugs, 2008, 19(2), 115-124. doi: 10.1097/CAD.0b013e3282f24031 PMID: 18176107
- Ma, J.; Yu, L.; Tian, J.; Mu, Y.; Lv, Z.; Zou, J.; Li, J.; Wang, H.; Xu, W. MG132 reverse the malignant characteristics of hypopharyngeal cancer. Mol. Med. Rep., 2014, 9(6), 2587-2591. doi: 10.3892/mmr.2014.2103 PMID: 24691740
- Han, Y.H.; Moon, H.J.; You, B.R.; Park, W.H. The attenuation of MG132, a proteasome inhibitor, induced A549 lung cancer cell death by p38 inhibitor in ROS-independent manner. Oncol. Res., 2009, 18(7), 315-322. doi: 10.3727/096504010X12626118079949 PMID: 20377132
- Park; Moon, H.J.; You, B.R.; Park, W.H. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol. Rep., 2009, 22(1), 215-221. doi: 10.3892/or_00000427 PMID: 19513526
- Matsuo, Y.; Sawai, H.; Ochi, N.; Yasuda, A.; Sakamoto, M.; Takahashi, H.; Funahashi, H.; Takeyama, H.; Guha, S. Proteasome inhibitor MG132 inhibits angiogenesis in pancreatic cancer by blocking NF-kappaB activity. Dig. Dis. Sci., 2010, 55(4), 1167-1176. doi: 10.1007/s10620-009-0814-4 PMID: 19399612
- Park, W.H.; Kim, S.H. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol. Rep., 2012, 27(4), 1284-1291. doi: 10.3892/or.2012.1642 PMID: 22266922
- Zhu, W.; Liu, J.; Nie, J.; Sheng, W.; Cao, H.; Shen, W.; Dong, A.; Zhou, J.; Jiao, Y.; Zhang, S.; Cao, J. MG132 enhances the radiosensitivity of lung cancer cells in vitro and in vivo. Oncol. Rep., 2015, 34(4), 2083-2089. doi: 10.3892/or.2015.4169 PMID: 26238156
- Zhang, Y.; Yang, B.; Zhao, J.; Li, X.; Zhang, L.; Zhai, Z. Proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132) enhances therapeutic effect of paclitaxel on breast cancer by inhibiting nuclear factor (NF)-κB signaling. Med. Sci. Monit., 2018, 24, 294-304. doi: 10.12659/MSM.908139 PMID: 29332931
- Chen, J.J.; Huang, W.C.; Chen, C.C. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Mol. Biol. Cell, 2005, 16(12), 5579-5591. doi: 10.1091/mbc.e05-08-0778 PMID: 16195339
- Chen, H.; Ren, X.; Wang, W.; Zhang, Y.; Chen, S.; Zhang, B.; Wang, L. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells. Biomed. Pharmacother., 2014, 68(6), 709-713. doi: 10.1016/j.biopha.2014.07.011 PMID: 25092240
- Tsakiri, E.N.; Trougakos, I.P. The amazing ubiquitin-proteasome system: structural components and implication in aging. Int. Rev. Cell Mol. Biol., 2015, 314, 171-237. doi: 10.1016/bs.ircmb.2014.09.002 PMID: 25619718
- Kurozumi, N.; Tsujioka, T.; Ouchida, M.; Sakakibara, K.; Nakahara, T.; Suemori, S.; Takeuchi, M.; Kitanaka, A.; Shibakura, M.; Tohyama, K. VLX1570 induces apoptosis through the generation of ROS and induction of ER stress on leukemia cell lines. Cancer Sci., 2021, 112(8), 3302-3313. doi: 10.1111/cas.14982 PMID: 34032336
- Zhang, W.; Che, Q.; Tan, H.; Qi, X.; Li, J.; Li, D.; Gu, Q.; Zhu, T.; Liu, M. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin–proteasome system. Sci. Rep., 2017, 7(1), 42180. doi: 10.1038/srep42180 PMID: 28176847
- Gadhave, K.; Kumar, P.; Kapuganti, S.; Uversky, V.; Giri, R. Unstructured biology of proteins from ubiquitin-proteasome system: Roles in cancer and neurodegenerative diseases. Biomolecules, 2020, 10(5), 796. doi: 10.3390/biom10050796 PMID: 32455657
- Lipchick, B.C.; Fink, E.E.; Nikiforov, M.A. Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacol. Res., 2016, 105, 210-215. doi: 10.1016/j.phrs.2016.01.029 PMID: 26827824
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med., 2020, 52(2), 192-203. doi: 10.1038/s12276-020-0384-2 PMID: 32060354
- Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer. Agents Med. Chem., 2022, 22(2), 215-222. doi: 10.2174/1871520621666210608095512 PMID: 34102991
- Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci., 2021, 112(10), 3945-3952. doi: 10.1111/cas.15068 PMID: 34286881
- He, M.; Wang, M.; Xu, T.; Zhang, M.; Dai, H.; Wang, C.; Ding, D.; Zhong, Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J. Control. Release, 2023, 356, 623-648. doi: 10.1016/j.jconrel.2023.02.040 PMID: 36868519
- Siomek, A.; Tujakowski, J.; Gackowski, D.; Rozalski, R.; Foksinski, M.; Dziaman, T.; Roszkowski, K.; Olinski, R. Severe oxidatively damaged DNA after cisplatin treatment of cancer patients. Int. J. Cancer, 2006, 119(9), 2228-2230. doi: 10.1002/ijc.22088 PMID: 16804900
- Arihara, Y.; Takada, K.; Kamihara, Y.; Hayasaka, N.; Nakamura, H.; Murase, K.; Ikeda, H.; Iyama, S.; Sato, T.; Miyanishi, K.; Kobune, M.; Kato, J. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma. Oncotarget, 2017, 8(39), 65889-65899. doi: 10.18632/oncotarget.19508 PMID: 29029480
- Nakamura, H.; Takada, K.; Arihara, Y.; Hayasaka, N.; Murase, K.; Iyama, S.; Kobune, M.; Miyanishi, K.; Kato, J. Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer. Cancer Gene Ther., 2019, 26(9-10), 313-322. doi: 10.1038/s41417-018-0056-8 PMID: 30401882
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol., 2019, 25, 101084. doi: 10.1016/j.redox.2018.101084 PMID: 30612957
- He, L.; Nan, M.H.; Oh, H.C.; Kim, Y.H.; Jang, J.H.; Erikson, R.L.; Ahn, J.S.; Kim, B.Y. Asperlin induces G2/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells. Biochem. Biophys. Res. Commun., 2011, 409(3), 489-493. doi: 10.1016/j.bbrc.2011.05.032 PMID: 21600879
- Paniagua Soriano, G.; De Bruin, G.; Overkleeft, H.S.; Florea, B.I. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors. Antioxid. Redox Signal., 2014, 21(17), 2419-2443. doi: 10.1089/ars.2013.5794 PMID: 24437477
- Cui, W.; Bai, Y.; Luo, P.; Miao, L.; Cai, L. Preventive and therapeutic effects of MG132 by activating Nrf2-ARE signaling pathway on oxidative stress-induced cardiovascular and renal injury. Oxid. Med. Cell. Longev., 2013, 2013(1), 1-10. doi: 10.1155/2013/306073 PMID: 23533688
- Georgiou-Siafis, S.K.; Tsiftsoglou, A.S. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells. Biochem. Pharmacol., 2020, 175, 113900. doi: 10.1016/j.bcp.2020.113900 PMID: 32156661
- Alva, N.; Panisello-Roselló, A.; Flores, M.; Roselló-Catafau, J.; Carbonell, T. Ubiquitin-proteasome system and oxidative stress in liver transplantation. World J. Gastroenterol., 2018, 24(31), 3521-3530. doi: 10.3748/wjg.v24.i31.3521 PMID: 30131658
- Park, S.; Park, J.A.; Yoo, H.; Park, H.B.; Lee, Y. Proteasome inhibitor-induced cleavage of HSP90 is mediated by ROS generation and caspase 10-activation in human leukemic cells. Redox Biol., 2017, 13, 470-476. doi: 10.1016/j.redox.2017.07.010 PMID: 28715732
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992. doi: 10.1016/j.bbamcr.2016.09.012 PMID: 27646922
- Kodroń, A.; Mussulini, B.H.; Pilecka, I.; Chacińska, A. The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol. Res., 2021, 163, 105248. doi: 10.1016/j.phrs.2020.105248 PMID: 33065283
- Lehmann, G.; Udasin, R.G.; Ciechanover, A. On the linkage between the ubiquitin-proteasome system and the mitochondria. Biochem. Biophys. Res. Commun., 2016, 473(1), 80-86. doi: 10.1016/j.bbrc.2016.03.055 PMID: 26996128
- Bragoszewski, P.; Turek, M.; Chacinska, A. Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system. Open Biol., 2017, 7(4), 170007. doi: 10.1098/rsob.170007 PMID: 28446709
- Haberecht-Müller, S.; Krüger, E.; Fielitz, J. Out of control: The role of the ubiquitin proteasome system in skeletal muscle during inflammation. Biomolecules, 2021, 11(9), 1327. doi: 10.3390/biom11091327 PMID: 34572540
- Cockram, P.E.; Kist, M.; Prakash, S.; Chen, S.H.; Wertz, I.E.; Vucic, D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ., 2021, 28(2), 591-605. doi: 10.1038/s41418-020-00708-5 PMID: 33432113
- Ikeda, F. Diverse ubiquitin codes in the regulation of inflammatory signaling. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2020, 96(9), 431-439. doi: 10.2183/pjab.96.032 PMID: 33177297
- Çetin, G.; Klafack, S.; Studencka-Turski, M.; Krüger, E.; Ebstein, F. The ubiquitin–proteasome system in immune cells. Biomolecules, 2021, 11(1), 60. doi: 10.3390/biom11010060 PMID: 33466553
- Ali, K.; Saleh, Z.; Jalal, J. Effect of local propolis irrigation in experimental periodontitis in rats on inflammatory markers (IL-1β and TNF-α) and oxidative stress. Indian J. Dent. Res., 2020, 31(6), 893-898. doi: 10.4103/ijdr.IJDR_909_19 PMID: 33753660
- Roohi, E.; Jaafari, N.; Hashemian, F. On inflammatory hypothesis of depression: what is the role of IL-6 in the middle of the chaos? J. Neuroinflammation, 2021, 18(1), 45. doi: 10.1186/s12974-021-02100-7 PMID: 33593388
- He, X.; Ma, Q.; Fan, Y.; Zhao, B.; Wang, W.; Zhu, F.; Ma, X.; Zhou, L. The role of cytokines in predicting the efficacy of acute stage treatment in patients with schizophrenia. Neuropsychiatr. Dis. Treat., 2020, 16, 191-199. doi: 10.2147/NDT.S218483 PMID: 32021213
- Nur Husna, S.M.; Md Shukri, N.; Mohd Ashari, N.S.; Wong, K.K. IL-4/IL-13 axis as therapeutic targets in allergic rhinitis and asthma. PeerJ, 2022, 10, e13444. doi: 10.7717/peerj.13444 PMID: 35663523
- Onuma, K.; Kanda, Y.; Suzuki Ikeda, S.; Sakaki, R.; Nonomura, T.; Kobayashi, M.; Osaki, M.; Shikanai, M.; Kobayashi, H.; Okada, F. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) prevents inflammation-related carcinogenesis in mice, through inhibition of inflammatory cell infiltration. Nutrients, 2015, 7(12), 10237-10250. doi: 10.3390/nu7125531 PMID: 26670250
- Shah, S.C.; Itzkowitz, S.H. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology, 2022, 162(3), 715-730. doi: 10.1053/j.gastro.2021.10.035
- Refolo, M.G.; Messa, C.; Guerra, V.; Carr, B.I.; D’Alessandro, R. Inflammatory mechanisms of HCC development. Cancers (Basel), 2020, 12(3), 641. doi: 10.3390/cancers12030641 PMID: 32164265
- Lai, H.; Liu, Y.; Wu, J.; Cai, J.; Jie, H.; Xu, Y.; Deng, S. Targeting cancer-related inflammation with non-steroidal anti-inflammatory drugs: Perspectives in pharmacogenomics. Front. Pharmacol., 2022, 13, 1078766. doi: 10.3389/fphar.2022.1078766 PMID: 36545311
- Liggett, J.L.; Zhang, X.; Eling, T.E.; Baek, S.J. Anti-tumor activity of non-steroidal anti-inflammatory drugs: Cyclooxygenase-independent targets. Cancer Lett., 2014, 346(2), 217-224. doi: 10.1016/j.canlet.2014.01.021 PMID: 24486220
- Hajdu, S.I. Pathfinders in oncology from the beginning of the 19th century to the inauguration of the first cancer hospital in the United States. Cancer, 2018, 124(2), 230-241. doi: 10.1002/cncr.31135 PMID: 29149477
- David, H. Rudolf Virchow and modern aspects of tumor pathology. Pathol. Res. Pract., 1988, 183(3), 356-364. doi: 10.1016/S0344-0338(88)80138-9 PMID: 3047716
- Denk, D.; Greten, F.R. Inflammation: the incubator of the tumor microenvironment. Trends Cancer, 2022, 8(11), 901-914. doi: 10.1016/j.trecan.2022.07.002 PMID: 35907753
- Michels, N.; van Aart, C.; Morisse, J.; Mullee, A.; Huybrechts, I. Chronic inflammation towards cancer incidence: A systematic review and meta-analysis of epidemiological studies. Crit. Rev. Oncol. Hematol., 2021, 157, 103177. doi: 10.1016/j.critrevonc.2020.103177 PMID: 33264718
- Tan, Z.; Xue, H.; Sun, Y.; Zhang, C.; Song, Y.; Qi, Y. The role of tumor inflammatory microenvironment in lung cancer. Front. Pharmacol., 2021, 12, 688625. doi: 10.3389/fphar.2021.688625 PMID: 34079469
- Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-induced tumorigenesis and metastasis. Int. J. Mol. Sci., 2021, 22(11), 5421. doi: 10.3390/ijms22115421 PMID: 34063828
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther., 2021, 6(1), 263. doi: 10.1038/s41392-021-00658-5 PMID: 34248142
- Liu, X.; Yin, L.; Shen, S.; Hou, Y. Inflammation and cancer: paradoxical roles in tumorigenesis and implications in immunotherapies. Genes Dis., 2023, 10(1), 151-164. doi: 10.1016/j.gendis.2021.09.006 PMID: 37013041
- Piotrowski, I.; Kulcenty, K.; Suchorska, W. Interplay between inflammation and cancer. Rep. Pract. Oncol. Radiother., 2020, 25(3), 422-427. doi: 10.1016/j.rpor.2020.04.004 PMID: 32372882
- Korniluk, A.; Koper, O.; Kemona, H.; Dymicka-Piekarska, V. From inflammation to cancer. Ir J Med Sci., 2017, 186(1), 57-62. doi: 10.1007/s11845-016-1464-0
- Rudmann, D.G. On-target and off-target-based toxicologic effects. Toxicol. Pathol., 2013, 41(2), 310-314. doi: 10.1177/0192623312464311 PMID: 23085982
- Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.; Chait, A.R.; Galluzzo, Z.C.; Tucker, C.; Sheltzer, J.M. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med., 2019, 11(509), eaaw8412. doi: 10.1126/scitranslmed.aaw8412 PMID: 31511426
- Ma, N.; Chen, X.; Johnston, L.J.; Ma, X. Gut microbiota‐stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. iMeta, 2022, 1(4), e54. doi: 10.1002/imt2.54 PMID: 38867904
- Strikoudis, A.; Guillamot, M.; Aifantis, I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep., 2014, 15(4), 365-382. doi: 10.1002/embr.201338373 PMID: 24652853
- Rodriguez-Fernandez, I.A.; Qi, Y.; Jasper, H. Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction. Nat. Commun., 2019, 10(1), 1050. doi: 10.1038/s41467-019-08982-9 PMID: 30837466
Дополнительные файлы
