Current Insights into Therapeutic Potential of Terpenoids as Anticancer Agents


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Cancer is regarded as one of the main causes of death globally. Future predictions indicate that the death rate from cancer will keep rising, which may reach 11.4 million in 2030. Carcinogenesis refers to the phenomenon of transforming a normal cell into a cancer cell. Cancer is characterized by unregulated and uncontrolled cell division due to alterations at the molecular and genetic levels. Gene mutations can speed up the rate of cell division, which leads to cancer. Metastasis entails the dissemination of cancer cells from the primary site to distant regions of the body via the circulatory or lymphatic systems.

Objective:This review is mainly focusing on the anticancer properties of terpenoids. In the case of human beings, several types of cancers can be treated clinically based on the form and phase of the cancer. So, there are different types of treatment regimens available for the management of cancer, such as immunotherapy, hormonal therapy, radiation therapy, and chemotherapy.

Methods:Several problems are associated with cancer therapy, including chemoresistance, severe toxicity, relapse, and metastasis. To minimize these complications, natural products like terpenoids seem to be beneficial for the effective management of cancer.

Results:Experimental results revealed that the anticancer potential of terpenoids is due to activation of apoptosis and stimulation of cell cycle arrest. Some of the terpenoids exhibit anticancer effects by inhibiting angiogenesis and metastasis via the regulation of several signaling pathways intracellularly. Certain terpenoids have been shown to work in concert with anticancer medications (doxorubicin, cisplatin, paclitaxel, and 5-fluorouracil) to provide synergistic effects. These terpenoids have also been shown to be effective against cancer cells that are resistant to several drug therapies.

Conclusion:The current study will focus on signaling pathways and mode of action of several types of terpenoids as anticancer agents. Further, it will provide insights into the ongoing clinical trials and prospective pathways for the advancement of terpenoids as possible anti-cancer agents.

Авторлар туралы

Biswa Sahoo

School of Pharmacy and Life Sciences, Centurion University of Technology & Management

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Bimal Banik

Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University

Email: info@benthamscience.net

Shikha Sharma

Department of Pharmaceutical Science, Lords University

Email: info@benthamscience.net

Bhupendra Singh

School of Pharmacy, Graphic Era Hill University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961. doi: 10.3332/ecancer.2019.961 PMID: 31537986
  2. Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2018, 54(2), 407-419. doi: 10.3892/ijo.2018.4661 PMID: 30570109
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
  5. Kuete, V.; Omosa, L.K.; Midiwo, J.O.; Karaosmanoğlu, O.; Sivas, H. Cytotoxicity of naturally occurring phenolics and terpenoids from Kenyan flora towards human carcinoma cells. J. Ayurveda Integr. Med., 2019, 10(3), 178-184. doi: 10.1016/j.jaim.2018.04.001 PMID: 30389223
  6. Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front. Plant Sci., 2016, 7, 1667. doi: 10.3389/fpls.2016.01667 PMID: 27877185
  7. Vijay Avin, B.R.; Prabhu, T.; Ramesh, C.K.; Vigneshwaran, V.; Riaz, M.; Jayashree, K.; Prabhakar, B.T. New role of lupeol in reticence of angiogenesis, the cellular parameter of neoplastic progression in tumorigenesis models through altered gene expression. Biochem. Biophys. Res. Commun., 2014, 448(2), 139-144. doi: 10.1016/j.bbrc.2014.04.090 PMID: 24780400
  8. Subarmaniam, T.; Mahmad R, R.N.; Perumal, K.V.; Yong, Y.K.; Hadizah, S.; Othman, F.; Salem, K.; Shafie, N.H.; Hasham, R.; Yin, K.B.; Abdul Kadir, K.K.; Bahari, H.; Zakaria, Z.A. The potential chemopreventive effect of Andrographis paniculata on 1,2-dimethylhydrazine and high-fat-diet-induced colorectal cancer in sprague dawley rats. Int. J. Mol. Sci., 2023, 24(6), 5224. doi: 10.3390/ijms24065224 PMID: 36982300
  9. Agrawal, R.C.; Jain, R.; Raja, W.; Ovais, M. Anticarcinogenic effects of Solanum lycopersicum fruit extract on Swiss albino and C57 Bl mice. Asian Pac. J. Cancer Prev., 2009, 10(3), 379-382. PMID: 19640177
  10. Kumar, P.; Febriyanti, R.; Sofyan, F.; Luftimas, D.; Abdulah, R. Anticancer potential of Syzygium aromaticum L. in MCF-7 human breast cancer cell lines. Pharmacognosy Res., 2014, 6(4), 350-354. doi: 10.4103/0974-8490.138291 PMID: 25276075
  11. Mesmar, J.; Fardoun, M.M.; Abdallah, R.; Al Dhaheri, Y.; Yassine, H.M.; Iratni, R.; Badran, A.; Eid, A.H.; Baydoun, E. Ziziphus nummularia attenuates the malignant phenotype of human pancreatic cancer cells: Role of ROS. Molecules, 2021, 26(14), 4295. doi: 10.3390/molecules26144295 PMID: 34299570
  12. MacLean, M.A.; Scott, B.E.; Deziel, B.A.; Nunnelley, M.C.; Liberty, A.M.; Gottschall-Pass, K.T.; Neto, C.C.; Hurta, R.A. North American cranberry (Vaccinium macrocarpon) stimulates apoptotic pathways in DU145 human prostate cancer cells in vitro. Nutr. Cancer, 2011, 63(1), 109-120. PMID: 21161819
  13. Paunovic, D.; Rajkovic, J.; Novakovic, R.; Grujic-Milanovic, J.; Mekky, R.H.; Popa, D.; Calina, D.; Sharifi-Rad, J. The potential roles of gossypol as anticancer agent: Advances and future directions. Chin. Med., 2023, 18(1), 163. doi: 10.1186/s13020-023-00869-8 PMID: 38098026
  14. Lang, S.J.; Schmiech, M.; Hafner, S.; Paetz, C.; Steinborn, C.; Huber, R.; Gaafary, M.E.; Werner, K.; Schmidt, C.Q.; Syrovets, T.; Simmet, T. Antitumor activity of an Artemisia annua herbal preparation and identification of active ingredients. Phytomedicine, 2019, 62, 152962. doi: 10.1016/j.phymed.2019.152962 PMID: 31132755
  15. Lim, C.B.; Ky, N.; Ng, H.M.; Hamza, M.S.; Yan Zhao, Curcuma wenyujin extract induces apoptosis and inhibits proliferation of human cervical cancer cells in vitro and in vivo. Integr. Cancer Ther., 2010, 9(1), 36-49. doi: 10.1177/1534735409359773 PMID: 20150221
  16. Sur, S.; Ray, R.B. Bitter melon (Momordica charantia), a nutraceutical approach for cancer prevention and therapy. Cancers (Basel), 2020, 12(8), 2064. doi: 10.3390/cancers12082064 PMID: 32726914
  17. Mehmood, T.; Muanprasat, C. Deoxyelephantopin and its isomer isodeoxyelephantopin: Anti-cancer natural products with multiple modes of action. Molecules, 2022, 27(7), 2086. doi: 10.3390/molecules27072086 PMID: 35408483
  18. Huang, M.; Lu, J.J.; Huang, M.Q.; Bao, J.L.; Chen, X.P.; Wang, Y.T. Terpenoids: Natural products for cancer therapy. Expert Opin. Investig. Drugs, 2012, 21(12), 1801-1818. doi: 10.1517/13543784.2012.727395 PMID: 23092199
  19. Chopra, B.; Dhingra, A.K.; Dhar, K.L.; Nepali, K. Emerging role of terpenoids for the treatment of cancer: A review. Mini Rev. Med. Chem., 2021, 21(16), 2300-2336. doi: 10.2174/1389557521666210112143024 PMID: 33438537
  20. Wagner, K.H.; Elmadfa, I. Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes. Ann. Nutr. Metab., 2003, 47(3-4), 95-106. doi: 10.1159/000070030 PMID: 12743459
  21. Rabi, T.; Bishayee, A. Terpenoids and breast cancer chemoprevention. Breast Cancer Res. Treat., 2009, 115(2), 223-239. doi: 10.1007/s10549-008-0118-y PMID: 18636327
  22. Gould, M.N. Cancer chemoprevention and therapy by monoterpenes. Environ. Health Perspect., 1997, 105(Suppl 4)(Suppl. 4), 977-979. doi: 10.1289/ehp.97105s4977 PMID: 9255590
  23. Salakhutdinov, N.F.; Volcho, K.P.; Yarovaya, O.I. Monoterpenes as a renewable source of biologically active compounds. Pure Appl. Chem., 2017, 89(8), 1105-1117. doi: 10.1515/pac-2017-0109
  24. Kozioł, A.; Stryjewska, A.; Librowski, T.; Sałat, K.; Gaweł, M.; Moniczewski, A.; Lochyński, S. An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini Rev. Med. Chem., 2015, 14(14), 1156-1168. doi: 10.2174/1389557514666141127145820 PMID: 25429661
  25. Iwasaki, K.; Zheng, Y.W.; Murata, S.; Ito, H.; Nakayama, K.; Kurokawa, T.; Sano, N.; Nowatari, T.; Villareal, M.O.; Nagano, Y.N.; Isoda, H.; Matsui, H.; Ohkohchi, N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J. Gastroenterol., 2016, 22(44), 9765-9774. doi: 10.3748/wjg.v22.i44.9765 PMID: 27956800
  26. Efferth, T. Cancer therapy with natural products and medicinal plants. Planta Med., 2010, 76(11), 1035-1036. doi: 10.1055/s-0030-1250062 PMID: 20665401
  27. Jaafari, A.; Tilaoui, M.; Mouse, H.A.; M’bark, L.A.; Aboufatima, R.; Chait, A.; Lepoivre, M.; Zyad, A. Comparative study of the antitumor effect of natural monoterpenes: Relationship to cell cycle analysis. Rev. Bras. Farmacogn., 2012, 22(3), 534-540. doi: 10.1590/S0102-695X2012005000021
  28. Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs, 2015, 26(8), 813-823. doi: 10.1097/CAD.0000000000000263 PMID: 26214321
  29. Araújo-Filho, H.G.; dos Santos, J.F.; Carvalho, M.T.B.; Picot, L.; Fruitier-Arnaudin, I.; Groult, H.; Quintans-Júnior, L.J.; Quintans, J.S.S. Anticancer activity of limonene: A systematic review of target signaling pathways. Phytother. Res., 2021, 35(9), 4957-4970. doi: 10.1002/ptr.7125 PMID: 33864293
  30. Chen, T.C.; da Fonseca, C.O.; Levin, D.; Schönthal, A.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers. Pharmaceutics, 2021, 13(12), 2167. doi: 10.3390/pharmaceutics13122167 PMID: 34959448
  31. Becker, V.; Hui, X.; Nalbach, L.; Ampofo, E.; Lipp, P.; Menger, M.D.; Laschke, M.W.; Gu, Y. Linalool inhibits the angiogenic activity of endothelial cells by downregulating intracellular ATP levels and activating TRPM8. Angiogenesis, 2021, 24(3), 613-630. doi: 10.1007/s10456-021-09772-y PMID: 33655414
  32. Arunasree, K.M. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine, 2010, 17(8-9), 581-588. doi: 10.1016/j.phymed.2009.12.008 PMID: 20096548
  33. Pattanayak, M.; K Seth, P.; Smita, S.; K Gupta, S. Geraniol and limonene interaction with 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase for their role as cancer chemopreventive agents. J. Proteomics Bioinform., 2009, 2(11), 466-474. doi: 10.4172/jpb.1000107
  34. Crowell, P.L. Prevention and therapy of cancer by dietary monoterpenes. J. Nutr., 1999, 129(3), 775S-778S. doi: 10.1093/jn/129.3.775S PMID: 10082788
  35. Li, Q.; Wang, X.; Yang, Z.; Wang, B.; Li, S. Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology, 2009, 77(6), 335-341. doi: 10.1159/000264627 PMID: 19955836
  36. Wang, Z.; Li, Q.; Xia, L.; Li, X.; Sun, C.; Wang, Q.; Cai, X.; Yang, G. Borneol promotes apoptosis of Human Glioma Cells through regulating HIF-1a expression via mTORC1/eIF4E pathway. J. Cancer, 2020, 11(16), 4810-4822. doi: 10.7150/jca.45304 PMID: 32626528
  37. Elbe, H.; Yigitturk, G.; Cavusoglu, T.; Uyanikgil, Y.; Ozturk, F. Apoptotic effects of thymol, a novel monoterpene phenol, on different types of cancer. Bratisl. Lek Listy, 2020, 121(2), 122-128. PMID: 32115964
  38. Lee, J.H.; Lee, K.; Lee, D.H.; Shin, S.Y.; Yong, Y.; Lee, Y.H. Anti-invasive effect of β-myrcene, a component of the essential oil from Pinus koraiensis cones, in metastatic MDA-MB-231 human breast cancer cells. J. Korean Soc. Appl. Biol. Chem., 2015, 58(4), 563-569. doi: 10.1007/s13765-015-0081-3
  39. Zhi, H.; Cui, J.; Yang, H.; Zhang, Y.; Zhu, M. Research progress of geraniol in tumor therapy. Proceed. Anticancer Res., 2021, 5(1), 26-30. doi: 10.26689/par.v5i1.1882
  40. Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor activity of monoterpenes found in essential oils. Sci. World, J., 2014, 2014, 1-35. doi: 10.1155/2014/953451 PMID: 25401162
  41. Russo, R.; Ciociaro, A.; Berliocchi, L.; Cassiano, M.G.V.; Rombolà, L.; Ragusa, S.; Bagetta, G.; Blandini, F.; Corasaniti, M.T. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells. Fitoterapia, 2013, 89, 48-57. doi: 10.1016/j.fitote.2013.05.014 PMID: 23707744
  42. Moayedi, Y.; Greenberg, S.A.; Jenkins, B.A.; Marshall, K.L.; Dimitrov, L.V.; Nelson, A.M.; Owens, D.M.; Lumpkin, E.A. Camphor white oil induces tumor regression through cytotoxic T cell‐dependent mechanisms. Mol. Carcinog., 2019, 58(5), 722-734. doi: 10.1002/mc.22965 PMID: 30582219
  43. Hassan, S.B.; Gali-Muhtasib, H.; Göransson, H.; Larsson, R. Alpha terpineol: A potential anticancer agent which acts through suppressing NF-kappaB signalling. Anticancer Res., 2010, 30(6), 1911-1919. PMID: 20651334
  44. Kumar, R.; Singh, H.; Mazumder, A.; Salahuddin.; Yadav, R.K.; Chauhan, B.; Abdulah, M.M. Camphor and menthol as anticancer agents: Synthesis, structure-activity relationship and interaction with cancer cell lines. Anticancer. Agents Med. Chem., 2023, 23(6), 614-623. doi: 10.2174/1871520622666220810153735 PMID: 35950244
  45. Chen, J.; Li, L.; Su, J.; Li, B.; Chen, T.; Ling, F.; Zhang, X. Enhancing effect of natural borneol on the cellular uptake of demethoxycurcumin and their combined induction of G2/M arrest in HepG2 cells via ROS generation. J. Funct. Foods, 2015, 17, 103-114. doi: 10.1016/j.jff.2015.05.013
  46. Sisto, F.; Carradori, S.; Guglielmi, P.; Traversi, C.B.; Spano, M.; Sobolev, A.P.; Secci, D.; Di Marcantonio, M.C.; Haloci, E.; Grande, R.; Mincione, G. Synthesis and biological evaluation of carvacrol-based derivatives as dual inhibitors of H. pylori strains and AGS cell proliferation. Pharmaceuticals (Basel), 2020, 13(11), 405. doi: 10.3390/ph13110405 PMID: 33228095
  47. Sisto, F.; Carradori, S.; Guglielmi, P.; Spano, M.; Secci, D.; Granese, A.; Sobolev, A.P.; Grande, R.; Campestre, C.; Di Marcantonio, M.C.; Mincione, G. Synthesis and evaluation of thymol-based synthetic derivatives as dual-action inhibitors against different strains of H. pylori and AGS cell line. Molecules, 2021, 26(7), 1829. doi: 10.3390/molecules26071829 PMID: 33805064
  48. Almajali, B.; Al-Jamal, H.A.N.; Taib, W.R.W.; Ismail, I.; Johan, M.F.; Doolaanea, A.A.; Ibrahim, W.N. Thymoquinone, as a novel therapeutic candidate of cancers. Pharmaceuticals (Basel), 2021, 14(4), 369. doi: 10.3390/ph14040369 PMID: 33923474
  49. Pincigher, L.; Valenti, F.; Bergamini, C.; Prata, C.; Fato, R.; Amorati, R.; Jin, Z.; Farruggia, G.; Fiorentini, D.; Calonghi, N.; Zalambani, C. Myrcene: A natural compound showing anticancer activity in hela cells. Molecules, 2023, 28(18), 6728. doi: 10.3390/molecules28186728 PMID: 37764505
  50. Yu, X.; Lin, H.; Wang, Y.; Lv, W.; Zhang, S.; Qian, Y.; Deng, X.; Feng, N.; Yu, H.; Qian, B. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets Ther., 2018, 11, 1833-1847. doi: 10.2147/OTT.S155716 PMID: 29670359
  51. Yeruva, L.; Pierre, K.J.; Elegbede, A.; Wang, R.C.; Carper, S.W. Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett., 2007, 257(2), 216-226. doi: 10.1016/j.canlet.2007.07.020 PMID: 17888568
  52. Rahaman, A.; Chaudhuri, A.; Sarkar, A.; Chakraborty, S.; Bhattacharjee, S.; Mandal, D.P. Eucalyptol targets PI3K/Akt/mTOR pathway to inhibit skin cancer metastasis. Carcinogenesis, 2022, 43(6), 571-583. doi: 10.1093/carcin/bgac020 PMID: 35165685
  53. Calcabrini, A.; Stringaro, A.; Toccacieli, L.; Meschini, S.; Marra, M.; Colone, M.; Arancia, G.; Molinari, A.; Salvatore, G.; Mondello, F. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J. Invest. Dermatol., 2004, 122(2), 349-360. doi: 10.1046/j.0022-202X.2004.22236.x PMID: 15009716
  54. Nordin, N.; Yeap, S.K.; Rahman, H.S.; Zamberi, N.R.; Mohamad, N.E.; Abu, N.; Masarudin, M.J.; Abdullah, R.; Alitheen, N.B. Antitumor and anti-metastatic effects of citral-loaded nanostructured lipid carrier in 4T1-induced breast cancer mouse model. Molecules, 2020, 25(11), 2670. doi: 10.3390/molecules25112670 PMID: 32526880
  55. Patel, P.B.; Thakkar, V.R. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines. Nutr. Cancer, 2014, 66(3), 453-462. doi: 10.1080/01635581.2014.884230 PMID: 24611509
  56. Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharmacol. Sci., 2015, 127(3), 332-338. doi: 10.1016/j.jphs.2015.01.008 PMID: 25837931
  57. Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar, J.A.; L D Jayaweera, S.; A Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; Cho, W.C.; Sharifi-Rad, J. Therapeutic Potential of α- and β-Pinene: A miracle gift of nature. Biomolecules, 2019, 9(11), 738. doi: 10.3390/biom9110738 PMID: 31739596
  58. Cho, M.; So, I.; Chun, J.N.; Jeon, J.H. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review). Int. J. Oncol., 2016, 48(5), 1772-1782. doi: 10.3892/ijo.2016.3427 PMID: 26983575
  59. Chang, M.Y.; Shieh, D.E.; Chen, C.C.; Yeh, C.S.; Dong, H.P. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs. Int. J. Mol. Sci., 2015, 16(12), 28169-28179. doi: 10.3390/ijms161226089 PMID: 26703569
  60. Modzelewska, A.; Sur, S.; Kumar, S.; Khan, S. Sesquiterpenes: Natural products that decrease cancer growth. Curr. Med. Chem. Anticancer Agents, 2005, 5(5), 477-499. doi: 10.2174/1568011054866973 PMID: 16178774
  61. Cai, Y.; Gao, K.; Peng, B.; Xu, Z.; Peng, J.; Li, J.; Chen, X.; Zeng, S.; Hu, K.; Yan, Y. Alantolactone: A natural plant extract as a potential therapeutic agent for cancer. Front. Pharmacol., 2021, 12, 781033. doi: 10.3389/fphar.2021.781033 PMID: 34899346
  62. Lee, S.H.; Cho, Y.C.; Lim, J.S. Costunolide, a sesquiterpene lactone, suppresses skin cancer via induction of apoptosis and blockage of cell proliferation. Int. J. Mol. Sci., 2021, 22(4), 2075. doi: 10.3390/ijms22042075 PMID: 33669832
  63. Kaleem, S.; Siddiqui, S.; Siddiqui, H.H.; Badruddeen.; Hussain, A.; Arshad, M.; Akhtar, J.; Rizvi, A. Eupalitin induces apoptosis in prostate carcinoma cells through ROS generation and increase of caspase‐3 activity. Cell Biol. Int., 2016, 40(2), 196-203. doi: 10.1002/cbin.10552 PMID: 26493029
  64. Sztiller-Sikorska, M.; Czyz, M. Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel), 2020, 13(8), 194. doi: 10.3390/ph13080194 PMID: 32823992
  65. El-Najjar, N.; Dakdouki, S.; Darwiche, N.; El-Sabban, M.; Saliba, N.; Gali-Muhtasib, H. Anti-colon cancer effects of Salograviolide A isolated from Centaurea ainetensis. Oncol. Rep., 2008, 19(4), 897-904. doi: 10.3892/or.19.4.897 PMID: 18357373
  66. Efferth, T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. Phytomedicine, 2017, 37, 58-61. doi: 10.1016/j.phymed.2017.11.003 PMID: 29174651
  67. Nguyen, N.H.; Nguyen, M.T.; Little, P.J.; Do, A.T.; Tran, P.T.; Vo, X.N.; Do, B.H. Vernolide-A and vernodaline: Sesquiterpene lactones with cytotoxicity against cancer. J. Environ. Pathol. Toxicol. Oncol., 2020, 39(4), 299-308. doi: 10.1615/JEnvironPatholToxicolOncol.2020034066 PMID: 33389902
  68. Pratheeshkumar, P.; Kuttan, G. Vernolide-A, a sesquiterpene lactone from Vernonia cinerea, induces apoptosis in B16F-10 melanoma cells by modulating p53 and caspase-3 gene expressions and regulating NF-κB-mediated bcl-2 activation. Drug Chem. Toxicol., 2011, 34(3), 261-270. doi: 10.3109/01480545.2010.520017 PMID: 21649480
  69. Liu, J.; Zhang, Y.; Qu, J.; Xu, L.; Hou, K.; Zhang, J.; Qu, X.; Liu, Y. β-Elemene-induced autophagy protects human gastric cancer cells from undergoing apoptosis. BMC Cancer, 2011, 11(1), 183. doi: 10.1186/1471-2407-11-183 PMID: 21595977
  70. Nasim, S.; Crooks, P.A. Antileukemic activity of aminoparthenolide analogs. Bioorg. Med. Chem. Lett., 2008, 18(14), 3870-3873. doi: 10.1016/j.bmcl.2008.06.050 PMID: 18590961
  71. Liu, J.W.; Cai, M.X.; Xin, Y.; Wu, Q.S.; Ma, J.; Yang, P.; Xie, H.Y.; Huang, D.S. Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J. Exp. Clin. Cancer Res., 2010, 29(1), 108. doi: 10.1186/1756-9966-29-108 PMID: 20698986
  72. Prieto, J.M.; Silveira, D. Natural cytotoxic diterpenoids, a potential source of drug leads for melanoma therapy. Curr. Pharm. Des., 2019, 24(36), 4237-4250. doi: 10.2174/1381612825666190111143648 PMID: 30636590
  73. Islam, M.T. Diterpenes and their derivatives as potential anticancer agents. Phytother. Res., 2017, 31(5), 691-712. doi: 10.1002/ptr.5800 PMID: 28370843
  74. Tatipamula, V.B.; Thonangi, C.V.; Dakal, T.C.; Vedula, G.S.; Dhabhai, B.; Polimati, H.; Akula, A.; Nguyen, H.T. Potential anti-hepatocellular carcinoma properties and mechanisms of action of clerodane diterpenes isolated from Polyalthia longifolia seeds. Sci. Rep., 2022, 12(1), 9267. doi: 10.1038/s41598-022-13383-y PMID: 35661799
  75. Gao, C.; Yan, X.; Wang, B.; Yu, L.; Han, J.; Li, D.; Zheng, Q. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis. Sci. Rep., 2016, 6(1), 36114. doi: 10.1038/srep36114 PMID: 27796318
  76. Wang, Y.; Ma, X.; Yan, S.; Shen, S.; Zhu, H.; Gu, Y.; Wang, H.; Qin, G.; Yu, Q. 17-hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells. Cancer Res., 2009, 69(18), 7302-7310. doi: 10.1158/0008-5472.CAN-09-0462 PMID: 19706767
  77. Xie, R.; Xia, G.; Zhu, J.; Lin, P.; Fan, X.; Zi, J. Daphnane-type diterpenoids from Euphorbia fischeriana Steud and their cytotoxic activities. Fitoterapia, 2021, 149, 104810. doi: 10.1016/j.fitote.2020.104810 PMID: 33359422
  78. Li, L.; Shukla, S.; Lee, A.; Garfield, S.H.; Maloney, D.J.; Ambudkar, S.V.; Yuspa, S.H. The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer Res., 2010, 70(11), 4509-4519. doi: 10.1158/0008-5472.CAN-09-4303 PMID: 20460505
  79. Zhang, J.; Wang, Y.; Zhou, Y.; He, Q.Y. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway. Oncotarget, 2017, 8(53), 91223-91237. doi: 10.18632/oncotarget.20077 PMID: 29207638
  80. Rajagopal, S.; Kumar, R.A.; Deevi, D.S.; Satyanarayana, C.; Rajagopalan, R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J. Exp. Ther. Oncol., 2003, 3(3), 147-158. doi: 10.1046/j.1359-4117.2003.01090.x PMID: 14641821
  81. Meng, C.; Zhu, H.; Song, H.; Wang, Z.; Huang, G.; Li, D.; Ma, Z.; Ma, J.; Qin, Q.; Sun, X.; Ma, J. Targets and molecular mechanisms of triptolide in cancer therapy. Chin. J. Cancer Res., 2014, 26(5), 622-626. PMID: 25400429
  82. Fu, L.; Han, B.; Zhou, Y.; Ren, J.; Cao, W.; Patel, G.; Kai, G.; Zhang, J. The anticancer properties of tanshinones and the pharmacological effects of their active ingredients. Front Pharmacol., 2020, 11, 193. doi: 10.3389/fphar.2020.00193
  83. Qin, J.; Tang, J.; Jiao, L.; Ji, J.; Chen, W.D.; Feng, G.K.; Gao, Y.H.; Zhu, X.F.; Deng, R. A diterpenoid compound, excisanin A, inhibits the invasive behavior of breast cancer cells by modulating the integrin β1/FAK/PI3K/AKT/β-catenin signaling. Life Sci., 2013, 93(18-19), 655-663. doi: 10.1016/j.lfs.2013.09.002 PMID: 24044886
  84. Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci., 2011, 16(1), 980-996. doi: 10.2741/3730 PMID: 21196213
  85. Pitchai, D.; Roy, A.; Ignatius, C. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line. J. Adv. Pharm. Technol. Res., 2014, 5(4), 179-184. doi: 10.4103/2231-4040.143037 PMID: 25364696
  86. Lee, S.O.; Kim, J.S.; Lee, M.S.; Lee, H.J. Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells. BMC Cancer, 2016, 16(1), 701. doi: 10.1186/s12885-016-2730-2 PMID: 27581969
  87. Zhu, B.; Wei, Y. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway. Cancer Med., 2019, 2019, 1-14. PMID: 31957323
  88. Fulda, S. Betulinic acid for cancer treatment and prevention. Int. J. Mol. Sci., 2008, 9(6), 1096-1107. doi: 10.3390/ijms9061096 PMID: 19325847
  89. Niu, G.; Sun, L.; Pei, Y.; Wang, D. Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway. Anticancer. Agents Med. Chem., 2018, 18(4), 583-590. doi: 10.2174/1871520617666171020124916 PMID: 29065844
  90. Alghasham, A.A. Cucurbitacins - a promising target for cancer therapy. Int. J. Health Sci. (Qassim), 2013, 7(1), 77-89. doi: 10.12816/0006025 PMID: 23559908
  91. Chopra, B.; Dhingra, A.; Dhar, K.L.; Prasad, M.D.N. Role of terpenoids as anticancer compounds: An insight into prevention and treatment. Key Heterocyclic Cores for Smart Anticancer Drug Design Part I, 2022, 1, 57-104. doi: 10.2174/9789815040074122010005
  92. Ono, M.; Takeshima, M.; Nakano, S. Mechanism of the anticancer effect of lycopene (tetraterpenoids). Enzymes, 2015, 37, 139-166. doi: 10.1016/bs.enz.2015.06.002 PMID: 26298459
  93. Sun, S.Q.; Zhao, Y.X.; Li, S.Y.; Qiang, J.W.; Ji, Y.Z. Anti-tumor effects of astaxanthin by inhibition of the expression of STAT3 in prostate cancer. Mar. Drugs, 2020, 18(8), 415. doi: 10.3390/md18080415 PMID: 32784629
  94. Gong, X.; Smith, J.; Swanson, H.; Rubin, L. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ros-mediated mechanisms. Molecules, 2018, 23(4), 905. doi: 10.3390/molecules23040905 PMID: 29662002
  95. Zhang, Y.; Yang, J.; Na, X.; Zhao, A. Association between β-carotene supplementation and risk of cancer: A meta-analysis of randomized controlled trials. Nutr. Rev., 2023, 81(9), 1118-1130. doi: 10.1093/nutrit/nuac110 PMID: 36715090
  96. Kapała, A.; Szlendak, M.; Motacka, E. The anti-cancer activity of lycopene: A systematic review of human and animal studies. Nutrients, 2022, 14(23), 5152. doi: 10.3390/nu14235152 PMID: 36501182
  97. Sheng, Y.N.; Luo, Y.H.; Liu, S.B.; Xu, W.T.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Wang, C.Y.; Jin, C.H. Zeaxanthin induces apoptosis via ROS-regulated MAPK and AKT signaling pathway in human gastric cancer cells. OncoTargets Ther., 2020, 13, 10995-11006. doi: 10.2147/OTT.S272514 PMID: 33149614
  98. Tanaka, T.; Morishita, Y.; Suzui, M.; Kojima, T.; Okumura, A.; Mori, H. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis, 1994, 15(1), 15-19. doi: 10.1093/carcin/15.1.15 PMID: 8293542
  99. Thirumalaivasan, N.; Venkatesan, P.; Lai, P.S.; Wu, S.P. In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles. ACS Appl. Bio Mater., 2019, 2(9), 3886-3896. doi: 10.1021/acsabm.9b00481 PMID: 35021323
  100. Thoppil, R.J.; Bishayee, A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J. Hepatol., 2011, 3(9), 228-249. doi: 10.4254/wjh.v3.i9.228 PMID: 21969877
  101. Rajapandi, S.; Nangan, S.; Natesan, T.; Kumar, A.; Dharman, G.; Pandeeswaran, M.; Verma, D.; Ubaidullah, M.; Pandit, B.; Dhaliwal, N.; Sehgal, S.S.; Rangappan, R.; Kousalya, G.N. Ziziphus mauritiana-derived nitrogen-doped biogenic carbon dots: Eco-friendly catalysts for dye degradation and antibacterial applications. Chemosphere, 2023, 338, 139584. doi: 10.1016/j.chemosphere.2023.139584 PMID: 37478987
  102. Singh, J.; Luqman, S.; Meena, A. Carvacrol as a prospective regulator of cancer targets/signalling pathways. Curr. Mol. Pharmacol., 2023, 16(5), 542-558. PMID: 35792130
  103. Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact., 2018, 283, 97-106. doi: 10.1016/j.cbi.2018.02.007 PMID: 29427589
  104. Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother., 2020, 124, 109821. doi: 10.1016/j.biopha.2020.109821 PMID: 31962285
  105. Venkatesan, P.; Thirumalaivasan, N.; Yu, H.P.; Lai, P.S.; Wu, S.P. Redox stimuli delivery vehicle based on transferrin-capped MSNPs for targeted drug delivery in cancer therapy. ACS Appl. Bio Mater., 2019, 2(4), 1623-1633. doi: 10.1021/acsabm.9b00036 PMID: 35026896
  106. Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10(10), 1614. doi: 10.3389/fphar.2019.01614 PMID: 32116665
  107. Kamran, S.; Sinniah, A.; Abdulghani, M.A.M.; Alshawsh, M.A. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review. Cancers (Basel), 2022, 14(5), 1100. doi: 10.3390/cancers14051100 PMID: 35267408
  108. Irving, G.R.B.; Iwuji, C.O.O.; Morgan, B.; Berry, D.P.; Steward, W.P.; Thomas, A.; Brown, K.; Howells, L.M. Combining curcumin (C3-complex, Sabinsa) with standard care FOLFOX chemotherapy in patients with inoperable colorectal cancer (CUFOX): Study protocol for a randomised control trial. Trials, 2015, 16(1), 110. doi: 10.1186/s13063-015-0641-1 PMID: 25872567

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025