Emerging AXL Inhibitors in Oncology: Chemical and Biological Advances in Targeted Cancer Therapy
- Авторлар: Shah K.1, Gopal K.1, Kumar S.1, Saha S.1
-
Мекемелер:
- Institute of Pharmaceutical Research, GLA University
- Шығарылым: Том 25, № 7 (2025)
- Беттер: 460-467
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694505
- DOI: https://doi.org/10.2174/0118715206351185241209053053
- ID: 694505
Дәйексөз келтіру
Толық мәтін
Аннотация
AXL, a receptor tyrosine kinase, has emerged as a critical player in tumorigenesis, metastasis, and resistance to conventional therapies. Its aberrant activation drives cell proliferation, survival, and angiogenesis, making it an attractive target for cancer treatment. In recent years, significant progress has been made in the development of AXL inhibitors. Chemical approaches have led to the discovery of small molecules that selectively bind to and inhibit AXL, disrupting its downstream signaling pathways. These inhibitors exhibit diverse structural features, including ATP-competitive and allosteric binding modes, offering potential advantages in terms of selectivity and potency. In addition to chemical approaches, biological strategies have also been explored to target AXL. These include the use of monoclonal antibodies, which can neutralize AXL ligands or induce receptor internalization and degradation. Furthermore, gene therapy techniques have been investigated to downregulate AXL expression or disrupt its signaling pathways. Despite these advancements, challenges remain in the development of AXL inhibitors. Selectivity is a critical concern, as AXL shares homology with other receptor tyrosine kinases. Drug resistance is another obstacle, as cancer cells can develop mechanisms to evade AXL inhibition. Furthermore, to address these challenges, combination therapies are being explored, such as combining AXL inhibitors with other targeted agents or conventional treatments. In conclusion, developing AXL inhibitors represents a promising avenue for improving cancer treatment outcomes. Continued research efforts are essential to overcome the existing challenges and translate these compounds into effective clinical therapies.
Негізгі сөздер
Авторлар туралы
Kamal Shah
Institute of Pharmaceutical Research, GLA University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Krishan Gopal
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Shivendra Kumar
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Sunam Saha
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Әдебиет тізімі
- Jänne, P.A.; Yang, J.C.H.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699. doi: 10.1056/NEJMoa1411817 PMID: 25923549
- Subbiah, V.; Meyer, C.; Zinner, R.; Meric-Bernstam, F.; Zahurak, M.L.; O’Connor, A.; Roszik, J.; Shaw, K.; Ludwig, J.A.; Kurzrock, R.; Azad, N.A. Phase Ib/II study of the safety and efficacy of combination therapy with multikinase VEGF inhibitor pazopanib and mek inhibitor trametinib in advanced soft tissue sarcoma. Clin. Cancer Res., 2017, 23(15), 4027-4034. doi: 10.1158/1078-0432.CCR-17-0272 PMID: 28377484
- Gay, C.M.; Balaji, K.; Byers, L.A. Giving AXL the axe: Targeting AXL in human malignancy. Br. J. Cancer, 2017, 116(4), 415-423. doi: 10.1038/bjc.2016.428 PMID: 28072762
- Feneyrolles, C.; Spenlinhauer, A.; Guiet, L.; Fauvel, B.; Daydé-Cazals, B.; Warnault, P.; Chevé, G.; Yasri, A. Axl kinase as a key target for oncology: Focus on small molecule inhibitors. Mol. Cancer Ther., 2014, 13(9), 2141-2148. doi: 10.1158/1535-7163.MCT-13-1083 PMID: 25139999
- Barata, P.C.; Rini, B.I. Treatment of renal cell carcinoma: Current status and future directions. CA Cancer J. Clin., 2017, 67(6), 507-524. doi: 10.3322/caac.21411 PMID: 28961310
- Liu, E.; Hjelle, B.; Bishop, J.M. Transforming genes in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA, 1988, 85(6), 1952-1956. doi: 10.1073/pnas.85.6.1952 PMID: 3279421
- Graham, D.K.; DeRyckere, D.; Davies, K.D.; Earp, H.S. The TAM family: Phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer, 2014, 14(12), 769-785. doi: 10.1038/nrc3847 PMID: 25568918
- Groffen, J.; Stephenson, J.; Heisterkamp, N.; Deklein, A.; Bartram, C.; Grosveld, G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell, 1984, 36(1), 93-99. doi: 10.1016/0092-8674(84)90077-1 PMID: 6319012
- Deininger, M.W.N.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356. doi: 10.1182/blood.V96.10.3343
- Steelman, L.S.; Pohnert, S.C.; Shelton, J.G. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukaemia, 2004, 18, 189-218. doi: 10.1038/sj.leu.2403241
- Bosurgi, L.; Bernink, J.H.; Delgado Cuevas, V.; Gagliani, N.; Joannas, L.; Schmid, E.T.; Booth, C.J.; Ghosh, S.; Rothlin, C.V. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(32), 13091-13096. doi: 10.1073/pnas.1302507110 PMID: 23878224
- Schmidt, T.; Ben-Batalla, I.; Schultze, A.; Loges, S. Macrophage–tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell. Mol. Life Sci., 2012, 69(9), 1391-1414. doi: 10.1007/s00018-011-0863-7 PMID: 22076650
- McDermott, U.; Settleman, J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J. Clin. Oncol., 2009, 27(33), 5650-5659. doi: 10.1200/JCO.2009.22.9054 PMID: 19858389
- Carragher, N.O.; Unciti-Broceta, A.; Cameron, D.A. Advancing cancer drug discovery towards more agile development of targeted combination therapies. Future Med. Chem., 2012, 4(1), 87-105. doi: 10.4155/fmc.11.169 PMID: 22168166
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726. doi: 10.1038/nrc3599 PMID: 24060863
- Rosell, R.; Teixidó, C.; Huang, A. AXL mediates resistance toPI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and oesophageal squamous cell carcinomas. Cancer Cell, 2015, 27, 533-546. doi: 10.1016/j.ccell.2015.03.010
- Sherwood, L.M.; Parris, E.E.; Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186. doi: 10.1056/NEJM197111182852108 PMID: 4938153
- Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-6. doi: 10.1016/S0065-230X(00)79001-4 PMID: 10818676
- Cherrington, J.M.; Strawn, L.M.; Shawver, L.K. New paradigms for the treatment of cancer: The role of anti-angiogenesis agents. Adv. Cancer Res., 2000, 79, 1-38. doi: 10.1016/S0065-230X(00)79001-4 PMID: 10818676
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
- Faivre, S.; Djelloul, S.; Raymond, E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin. Oncol., 2006, 33(4), 407-420. doi: 10.1053/j.seminoncol.2006.04.005 PMID: 16890796
- Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J., Jr; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; Albain, K.S.; Cella, D.; Wolf, M.K.; Averbuch, S.D.; Ochs, J.J.; Kay, A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA, 2003, 290(16), 2149-2158. doi: 10.1001/jama.290.16.2149 PMID: 14570950
- Pérez-Soler, R. Phase II clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clin. Lung Cancer, 2004, 6(Suppl. 1), S20-S23. doi: 10.3816/CLC.2004.s.010 PMID: 15638953
- Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500. doi: 10.1126/science.1099314 PMID: 15118125
- Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181. doi: 10.1038/nrc2088 PMID: 17318210
- Sharma, S.V.; Gajowniczek, P.; Way, I.P.; Lee, D.Y.; Jiang, J.; Yuza, Y.; Classon, M.; Haber, D.A.; Settleman, J. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell, 2006, 10(5), 425-435. doi: 10.1016/j.ccr.2006.09.014 PMID: 17097564
- International Agency for Research on Cancer. GLOBOCAN: kidney cancer estimated. Available from: https://gco.iarc.who.int/en (accessed on 18-11-2024).
- Gupta, K.; Miller, J.D.; Li, J.Z.; Russell, M.W.; Charbonneau, C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): A literature review. Cancer Treat. Rev., 2008, 34(3), 193-205. doi: 10.1016/j.ctrv.2007.12.001 PMID: 18313224
- Janzen, N.K.; Kim, H.L.; Figlin, R.A.; Belldegrun, A.S. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol. Clin. North Am., 2003, 30(4), 843-852. doi: 10.1016/S0094-0143(03)00056-9 PMID: 14680319
- Kroeger, N.; Choueiri, T.K.; Lee, J.L.; Bjarnason, G.A.; Knox, J.J.; MacKenzie, M.J.; Wood, L.; Srinivas, S.; Vaishamayan, U.N.; Rha, S.Y.; Pal, S.K.; Yuasa, T.; Donskov, F.; Agarwal, N.; Tan, M.H.; Bamias, A.; Kollmannsberger, C.K.; North, S.A.; Rini, B.I.; Heng, D.Y.C. Survival outcome and treatment response of patients with late relapse from renal cell carcinoma in the era of targeted therapy. Eur. Urol., 2014, 65(6), 1086-1092. doi: 10.1016/j.eururo.2013.07.031 PMID: 23916693
- Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Frank, I.; Kwon, E.D.; Weaver, A.L.; Parker, A.S.; Zincke, H. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma. Cancer, 2003, 97(7), 1663-1671. doi: 10.1002/cncr.11234 PMID: 12655523
- Bernabé, R.; Patrao, A.; Carter, L.; Blackhall, F.; Dean, E. Selumetinib in the treatment of non-small-cell lung cancer. Future Oncol., 2016, 12(22), 2545-2560. doi: 10.2217/fon-2016-0132 PMID: 27467210
- Heigener, D.F.; Gandara, D.R.; Reck, M. Targeting of MEK in lung cancer therapeutics. Lancet Respir. Med., 2015, 3(4), 319-327. doi: 10.1016/S2213-2600(15)00026-0 PMID: 25801412
- Vilmar, A.C.; Santoni-Rugiu, E.; Sørensen, J.B. Class III β-tubulin in advanced NSCLC of adenocarcinoma subtype predicts superior outcome in a randomized trial. Clin. Cancer Res., 2011, 17(15), 5205-5214. doi: 10.1158/1078-0432.CCR-11-0658 PMID: 21690572
- Morgensztern, D.; Campo, M.J.; Dahlberg, S.E.; Doebele, R.C.; Garon, E.; Gerber, D.E.; Goldberg, S.B.; Hammerman, P.S.; Heist, R.S.; Hensing, T.; Horn, L.; Ramalingam, S.S.; Rudin, C.M.; Salgia, R.; Sequist, L.V.; Shaw, A.T.; Simon, G.R.; Somaiah, N.; Spigel, D.R.; Wrangle, J.; Johnson, D.; Herbst, R.S.; Bunn, P.; Govindan, R. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J. Thorac. Oncol., 2015, 10(S1), S1-S63. doi: 10.1097/JTO.0000000000000405 PMID: 25535693
- Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310. doi: 10.1038/sj.onc.1210422 PMID: 17496923
- Liu, Y.; Yang, Y.; Ye, Y.C.; Shi, Q.F.; Chai, K.; Tashiro, S.; Onodera, S.; Ikejima, T. Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J. Pharmacol. Sci., 2012, 118(4), 423-432. doi: 10.1254/jphs.11181FP PMID: 22466960
- Chiba, M.; Togashi, Y.; Tomida, S.; Mizuuchi, H.; Nakamura, Y.; Banno, E.; Hayashi, H.; Terashima, M.; De Velasco, M.A.; Sakai, K.; Fujita, Y.; Mitsudomi, T.; Nishio, K. MEK inhibitors against MET-amplified non-small cell lung cancer. Int. J. Oncol., 2016, 49(6), 2236-2244. doi: 10.3892/ijo.2016.3736 PMID: 27748834
- Waters, A.M.; Khatib, T.O.; Papke, B.; Goodwin, C.M.; Hobbs, G.A.; Diehl, J.N.; Yang, R.; Edwards, A.C.; Walsh, K.H.; Sulahian, R.; McFarland, J.M.; Kapner, K.S.; Gilbert, T.S.K.; Stalnecker, C.A.; Javaid, S.; Barkovskaya, A.; Grover, K.R.; Hibshman, P.S.; Blake, D.R.; Schaefer, A.; Nowak, K.M.; Klomp, J.E.; Hayes, T.K.; Kassner, M.; Tang, N.; Tanaseichuk, O.; Chen, K.; Zhou, Y.; Kalkat, M.; Herring, L.E.; Graves, L.M.; Penn, L.Z.; Yin, H.H.; Aguirre, A.J.; Hahn, W.C.; Cox, A.D.; Der, C.J. Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Rep., 2021, 35(13), 109291. doi: 10.1016/j.celrep.2021.109291 PMID: 34192548
- Heinrich, M.C.; Corless, C.L.; Duensing, A.; McGreevey, L.; Chen, C.J.; Joseph, N.; Singer, S.; Griffith, D.J.; Haley, A.; Town, A.; Demetri, G.D.; Fletcher, C.D.M.; Fletcher, J.A. PDGFRA activating mutations in gastrointestinal stromal tumors. Science, 2003, 299(5607), 708-710. doi: 10.1126/science.1079666 PMID: 12522257
- Corless, C.L.; McGreevey, L.; Haley, A.; Town, A.; Heinrich, M.C. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am. J. Pathol., 2002, 160(5), 1567-1572. doi: 10.1016/S0002-9440(10)61103-0 PMID: 12000708
- Qiao, G.B.; Wu, Y.L.; Yang, X.N.; Zhong, W.Z.; Xie, D.; Guan, X.Y.; Fischer, D.; Kolberg, H.C.; Kruger, S.; Stuerzbecher, H-W. High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br. J. Cancer, 2005, 93(1), 137-143. doi: 10.1038/sj.bjc.6602665 PMID: 15956972
- Hansen, L.T.; Lundin, C.; Spang-Thomsen, M.; Petersen, L.N.; Helleday, T. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. Int. J. Cancer, 2003, 105(4), 472-479. doi: 10.1002/ijc.11106 PMID: 12712436
- Henning, W.; Stürzbecher, H.W. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology, 2003, 193(1-2), 91-109. doi: 10.1016/S0300-483X(03)00291-9 PMID: 14599770
- ICH harmonised tripartite guideline nonclinical evaluation for anticancer pharmaceuticals. 2009. Available from: https://database.ich.org/sites/default/files/S9_Guideline.pdf (accessed on 18-11-2024).
Қосымша файлдар
