Emerging AXL Inhibitors in Oncology: Chemical and Biological Advances in Targeted Cancer Therapy


Дәйексөз келтіру

Толық мәтін

Аннотация

AXL, a receptor tyrosine kinase, has emerged as a critical player in tumorigenesis, metastasis, and resistance to conventional therapies. Its aberrant activation drives cell proliferation, survival, and angiogenesis, making it an attractive target for cancer treatment. In recent years, significant progress has been made in the development of AXL inhibitors. Chemical approaches have led to the discovery of small molecules that selectively bind to and inhibit AXL, disrupting its downstream signaling pathways. These inhibitors exhibit diverse structural features, including ATP-competitive and allosteric binding modes, offering potential advantages in terms of selectivity and potency. In addition to chemical approaches, biological strategies have also been explored to target AXL. These include the use of monoclonal antibodies, which can neutralize AXL ligands or induce receptor internalization and degradation. Furthermore, gene therapy techniques have been investigated to downregulate AXL expression or disrupt its signaling pathways. Despite these advancements, challenges remain in the development of AXL inhibitors. Selectivity is a critical concern, as AXL shares homology with other receptor tyrosine kinases. Drug resistance is another obstacle, as cancer cells can develop mechanisms to evade AXL inhibition. Furthermore, to address these challenges, combination therapies are being explored, such as combining AXL inhibitors with other targeted agents or conventional treatments. In conclusion, developing AXL inhibitors represents a promising avenue for improving cancer treatment outcomes. Continued research efforts are essential to overcome the existing challenges and translate these compounds into effective clinical therapies.

Авторлар туралы

Kamal Shah

Institute of Pharmaceutical Research, GLA University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Krishan Gopal

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Shivendra Kumar

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Sunam Saha

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Jänne, P.A.; Yang, J.C.H.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699. doi: 10.1056/NEJMoa1411817 PMID: 25923549
  2. Subbiah, V.; Meyer, C.; Zinner, R.; Meric-Bernstam, F.; Zahurak, M.L.; O’Connor, A.; Roszik, J.; Shaw, K.; Ludwig, J.A.; Kurzrock, R.; Azad, N.A. Phase Ib/II study of the safety and efficacy of combination therapy with multikinase VEGF inhibitor pazopanib and mek inhibitor trametinib in advanced soft tissue sarcoma. Clin. Cancer Res., 2017, 23(15), 4027-4034. doi: 10.1158/1078-0432.CCR-17-0272 PMID: 28377484
  3. Gay, C.M.; Balaji, K.; Byers, L.A. Giving AXL the axe: Targeting AXL in human malignancy. Br. J. Cancer, 2017, 116(4), 415-423. doi: 10.1038/bjc.2016.428 PMID: 28072762
  4. Feneyrolles, C.; Spenlinhauer, A.; Guiet, L.; Fauvel, B.; Daydé-Cazals, B.; Warnault, P.; Chevé, G.; Yasri, A. Axl kinase as a key target for oncology: Focus on small molecule inhibitors. Mol. Cancer Ther., 2014, 13(9), 2141-2148. doi: 10.1158/1535-7163.MCT-13-1083 PMID: 25139999
  5. Barata, P.C.; Rini, B.I. Treatment of renal cell carcinoma: Current status and future directions. CA Cancer J. Clin., 2017, 67(6), 507-524. doi: 10.3322/caac.21411 PMID: 28961310
  6. Liu, E.; Hjelle, B.; Bishop, J.M. Transforming genes in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA, 1988, 85(6), 1952-1956. doi: 10.1073/pnas.85.6.1952 PMID: 3279421
  7. Graham, D.K.; DeRyckere, D.; Davies, K.D.; Earp, H.S. The TAM family: Phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer, 2014, 14(12), 769-785. doi: 10.1038/nrc3847 PMID: 25568918
  8. Groffen, J.; Stephenson, J.; Heisterkamp, N.; Deklein, A.; Bartram, C.; Grosveld, G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell, 1984, 36(1), 93-99. doi: 10.1016/0092-8674(84)90077-1 PMID: 6319012
  9. Deininger, M.W.N.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356. doi: 10.1182/blood.V96.10.3343
  10. Steelman, L.S.; Pohnert, S.C.; Shelton, J.G. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukaemia, 2004, 18, 189-218. doi: 10.1038/sj.leu.2403241
  11. Bosurgi, L.; Bernink, J.H.; Delgado Cuevas, V.; Gagliani, N.; Joannas, L.; Schmid, E.T.; Booth, C.J.; Ghosh, S.; Rothlin, C.V. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(32), 13091-13096. doi: 10.1073/pnas.1302507110 PMID: 23878224
  12. Schmidt, T.; Ben-Batalla, I.; Schultze, A.; Loges, S. Macrophage–tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell. Mol. Life Sci., 2012, 69(9), 1391-1414. doi: 10.1007/s00018-011-0863-7 PMID: 22076650
  13. McDermott, U.; Settleman, J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J. Clin. Oncol., 2009, 27(33), 5650-5659. doi: 10.1200/JCO.2009.22.9054 PMID: 19858389
  14. Carragher, N.O.; Unciti-Broceta, A.; Cameron, D.A. Advancing cancer drug discovery towards more agile development of targeted combination therapies. Future Med. Chem., 2012, 4(1), 87-105. doi: 10.4155/fmc.11.169 PMID: 22168166
  15. Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726. doi: 10.1038/nrc3599 PMID: 24060863
  16. Rosell, R.; Teixidó, C.; Huang, A. AXL mediates resistance toPI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and oesophageal squamous cell carcinomas. Cancer Cell, 2015, 27, 533-546. doi: 10.1016/j.ccell.2015.03.010
  17. Sherwood, L.M.; Parris, E.E.; Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186. doi: 10.1056/NEJM197111182852108 PMID: 4938153
  18. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-6. doi: 10.1016/S0065-230X(00)79001-4 PMID: 10818676
  19. Cherrington, J.M.; Strawn, L.M.; Shawver, L.K. New paradigms for the treatment of cancer: The role of anti-angiogenesis agents. Adv. Cancer Res., 2000, 79, 1-38. doi: 10.1016/S0065-230X(00)79001-4 PMID: 10818676
  20. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
  21. Faivre, S.; Djelloul, S.; Raymond, E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin. Oncol., 2006, 33(4), 407-420. doi: 10.1053/j.seminoncol.2006.04.005 PMID: 16890796
  22. Kris, M.G.; Natale, R.B.; Herbst, R.S.; Lynch, T.J., Jr; Prager, D.; Belani, C.P.; Schiller, J.H.; Kelly, K.; Spiridonidis, H.; Sandler, A.; Albain, K.S.; Cella, D.; Wolf, M.K.; Averbuch, S.D.; Ochs, J.J.; Kay, A.C. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA, 2003, 290(16), 2149-2158. doi: 10.1001/jama.290.16.2149 PMID: 14570950
  23. Pérez-Soler, R. Phase II clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clin. Lung Cancer, 2004, 6(Suppl. 1), S20-S23. doi: 10.3816/CLC.2004.s.010 PMID: 15638953
  24. Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500. doi: 10.1126/science.1099314 PMID: 15118125
  25. Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7(3), 169-181. doi: 10.1038/nrc2088 PMID: 17318210
  26. Sharma, S.V.; Gajowniczek, P.; Way, I.P.; Lee, D.Y.; Jiang, J.; Yuza, Y.; Classon, M.; Haber, D.A.; Settleman, J. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell, 2006, 10(5), 425-435. doi: 10.1016/j.ccr.2006.09.014 PMID: 17097564
  27. International Agency for Research on Cancer. GLOBOCAN: kidney cancer estimated. Available from: https://gco.iarc.who.int/en (accessed on 18-11-2024).
  28. Gupta, K.; Miller, J.D.; Li, J.Z.; Russell, M.W.; Charbonneau, C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): A literature review. Cancer Treat. Rev., 2008, 34(3), 193-205. doi: 10.1016/j.ctrv.2007.12.001 PMID: 18313224
  29. Janzen, N.K.; Kim, H.L.; Figlin, R.A.; Belldegrun, A.S. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol. Clin. North Am., 2003, 30(4), 843-852. doi: 10.1016/S0094-0143(03)00056-9 PMID: 14680319
  30. Kroeger, N.; Choueiri, T.K.; Lee, J.L.; Bjarnason, G.A.; Knox, J.J.; MacKenzie, M.J.; Wood, L.; Srinivas, S.; Vaishamayan, U.N.; Rha, S.Y.; Pal, S.K.; Yuasa, T.; Donskov, F.; Agarwal, N.; Tan, M.H.; Bamias, A.; Kollmannsberger, C.K.; North, S.A.; Rini, B.I.; Heng, D.Y.C. Survival outcome and treatment response of patients with late relapse from renal cell carcinoma in the era of targeted therapy. Eur. Urol., 2014, 65(6), 1086-1092. doi: 10.1016/j.eururo.2013.07.031 PMID: 23916693
  31. Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Frank, I.; Kwon, E.D.; Weaver, A.L.; Parker, A.S.; Zincke, H. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma. Cancer, 2003, 97(7), 1663-1671. doi: 10.1002/cncr.11234 PMID: 12655523
  32. Bernabé, R.; Patrao, A.; Carter, L.; Blackhall, F.; Dean, E. Selumetinib in the treatment of non-small-cell lung cancer. Future Oncol., 2016, 12(22), 2545-2560. doi: 10.2217/fon-2016-0132 PMID: 27467210
  33. Heigener, D.F.; Gandara, D.R.; Reck, M. Targeting of MEK in lung cancer therapeutics. Lancet Respir. Med., 2015, 3(4), 319-327. doi: 10.1016/S2213-2600(15)00026-0 PMID: 25801412
  34. Vilmar, A.C.; Santoni-Rugiu, E.; Sørensen, J.B. Class III β-tubulin in advanced NSCLC of adenocarcinoma subtype predicts superior outcome in a randomized trial. Clin. Cancer Res., 2011, 17(15), 5205-5214. doi: 10.1158/1078-0432.CCR-11-0658 PMID: 21690572
  35. Morgensztern, D.; Campo, M.J.; Dahlberg, S.E.; Doebele, R.C.; Garon, E.; Gerber, D.E.; Goldberg, S.B.; Hammerman, P.S.; Heist, R.S.; Hensing, T.; Horn, L.; Ramalingam, S.S.; Rudin, C.M.; Salgia, R.; Sequist, L.V.; Shaw, A.T.; Simon, G.R.; Somaiah, N.; Spigel, D.R.; Wrangle, J.; Johnson, D.; Herbst, R.S.; Bunn, P.; Govindan, R. Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J. Thorac. Oncol., 2015, 10(S1), S1-S63. doi: 10.1097/JTO.0000000000000405 PMID: 25535693
  36. Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310. doi: 10.1038/sj.onc.1210422 PMID: 17496923
  37. Liu, Y.; Yang, Y.; Ye, Y.C.; Shi, Q.F.; Chai, K.; Tashiro, S.; Onodera, S.; Ikejima, T. Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J. Pharmacol. Sci., 2012, 118(4), 423-432. doi: 10.1254/jphs.11181FP PMID: 22466960
  38. Chiba, M.; Togashi, Y.; Tomida, S.; Mizuuchi, H.; Nakamura, Y.; Banno, E.; Hayashi, H.; Terashima, M.; De Velasco, M.A.; Sakai, K.; Fujita, Y.; Mitsudomi, T.; Nishio, K. MEK inhibitors against MET-amplified non-small cell lung cancer. Int. J. Oncol., 2016, 49(6), 2236-2244. doi: 10.3892/ijo.2016.3736 PMID: 27748834
  39. Waters, A.M.; Khatib, T.O.; Papke, B.; Goodwin, C.M.; Hobbs, G.A.; Diehl, J.N.; Yang, R.; Edwards, A.C.; Walsh, K.H.; Sulahian, R.; McFarland, J.M.; Kapner, K.S.; Gilbert, T.S.K.; Stalnecker, C.A.; Javaid, S.; Barkovskaya, A.; Grover, K.R.; Hibshman, P.S.; Blake, D.R.; Schaefer, A.; Nowak, K.M.; Klomp, J.E.; Hayes, T.K.; Kassner, M.; Tang, N.; Tanaseichuk, O.; Chen, K.; Zhou, Y.; Kalkat, M.; Herring, L.E.; Graves, L.M.; Penn, L.Z.; Yin, H.H.; Aguirre, A.J.; Hahn, W.C.; Cox, A.D.; Der, C.J. Targeting p130Cas- and microtubule-dependent MYC regulation sensitizes pancreatic cancer to ERK MAPK inhibition. Cell Rep., 2021, 35(13), 109291. doi: 10.1016/j.celrep.2021.109291 PMID: 34192548
  40. Heinrich, M.C.; Corless, C.L.; Duensing, A.; McGreevey, L.; Chen, C.J.; Joseph, N.; Singer, S.; Griffith, D.J.; Haley, A.; Town, A.; Demetri, G.D.; Fletcher, C.D.M.; Fletcher, J.A. PDGFRA activating mutations in gastrointestinal stromal tumors. Science, 2003, 299(5607), 708-710. doi: 10.1126/science.1079666 PMID: 12522257
  41. Corless, C.L.; McGreevey, L.; Haley, A.; Town, A.; Heinrich, M.C. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am. J. Pathol., 2002, 160(5), 1567-1572. doi: 10.1016/S0002-9440(10)61103-0 PMID: 12000708
  42. Qiao, G.B.; Wu, Y.L.; Yang, X.N.; Zhong, W.Z.; Xie, D.; Guan, X.Y.; Fischer, D.; Kolberg, H.C.; Kruger, S.; Stuerzbecher, H-W. High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br. J. Cancer, 2005, 93(1), 137-143. doi: 10.1038/sj.bjc.6602665 PMID: 15956972
  43. Hansen, L.T.; Lundin, C.; Spang-Thomsen, M.; Petersen, L.N.; Helleday, T. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. Int. J. Cancer, 2003, 105(4), 472-479. doi: 10.1002/ijc.11106 PMID: 12712436
  44. Henning, W.; Stürzbecher, H.W. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology, 2003, 193(1-2), 91-109. doi: 10.1016/S0300-483X(03)00291-9 PMID: 14599770
  45. ICH harmonised tripartite guideline nonclinical evaluation for anticancer pharmaceuticals. 2009. Available from: https://database.ich.org/sites/default/files/S9_Guideline.pdf (accessed on 18-11-2024).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025