In vivo, In vitro, and In silico Studies of Umbelliferone and Irinotecan on MDA-MB-231 Breast Cancer Cell Line and Drosophila melanogaster Larvae


Дәйексөз келтіру

Толық мәтін

Аннотация

Aims:Deaths from cancer are still very common all over the world and continue to be the focus of scientific research. Chemotherapy is one of the primary treatments used to prevent deaths from cancer. Side effects of chemotherapeutic drugs and resistance of cells to drugs are essential problems that limit the treatment process. Drug combination therapy is regarded as a significant application that inhibits the growth of tumors and is anticipated to provide a solution for the issues encountered. The combination therapy aims at a synergistic effect that will limit drug resistance and cytotoxic effects with appropriate drug combinations. In this context, we aim to investigate the in vitro, in vivo, and in silico effects of single and combined doses of umbelliferone and irinotecan, known for their anticarcinogenic and curative effects, on MDA-MB-231 breast cancer cell lines and the model organism Drosophila melanogaster.

Background:Irinotecan is currently used as an anticarcinogenic drug. Anticarcinogenic effects of umbelliferone have also been detected. The in vivo, in vitro, and in silico impacts of single and combined doses use of these two agents are not yet available in the literature.

Objective:This study aims to determine the anticarcinogenic effects of single and combined use of umbelliferone and irinotecan at the molecular level. It also attempts to determine the binding energies of chemicals to cancerrelated proteins through docking and molecular dynamic studies.

Methods:The cytotoxic effects of individual and combinational doses of umbelliferone and irinotecan on the MDAMB- 231 cell line and D. melanogaster were calculated by XTT and probit analyses. IC50 values for the cancer cells, LC50, and LC99 values for D. melanogaster were found. Gene expression analysis was performed to determine the effects of chemical agents on miR-7, miR-11, and miR-14, and their expression levels were found. The sequences of miRNAs not found in the literature were determined, and their molecular imaging was performed. In addition, the binding energies of irinotecan and umbelliferone to Bcl-2, Bad, and Akt1 proteins, which are known to have apoptotic effects, were found by the molecular docking method. Molecular dynamics studies of Bad proteins and chemicals were also performed. The drug potential of chemicals was determined by ADME/T analysis.

Results:The cytotoxic effect on cells was calculated, and the IC50 value of umbelliferone was calculated as 158 μM, the IC50 value of irinotecan was calculated as 48,3 μM and the IC50 value was calculated as 20 μM. In the probit analysis performed to calculate the cytotoxic effects of drugs on D. melanogaster, the LC50 value of umbelliferone was 2,5 μM, and the LC99 value was 13,4 μM. The LC50 value of irinotecan was found to be 0,1 μM, and the LC99 value was 0,28 μM. It was concluded that single and combined doses of chemicals in the invasion experiment significantly affected the spread of cells. As a result of expression analysis, a significant increase in HsamiR- 7 (Homo sapiens miRNA-7), Hsa-miR-14 (Homo sapiens miRNA-14), and Hsa-miR-11(Homo sapiens miRNA-11) expression was observed in cells treated with umbelliferone irinotecan compared to the control groups.

Conclusion:In our study, it can be concluded that the cytotoxic effects of individual and combination doses of umbelliferone and irinotecan on MDA-MB-231 cells and D. melanogaster larvae are significant. In addition, the effects of umbelliferone and irinotecan on the expression level of miR-7, which is a common D. melanogaster and human miRNA, should be widely investigated. Expression analyses and docking studies of Hsa-miR-11 and Hsa-miR-14, which have been newly studied and are not in data repositories, are important for cancer research. In particular, the expression and binding energy of these miRNAs in new drug combinations and the expression level in different cancer cell lines are important for future studies. Another crucial point is that in vivo tests using different model species validate the usage of drugs at both single and mixed dosages.

Other:As a result of this study, the in vivo, in vitro, and in silico effects of single and combined doses of umbelliferone and irinotecan were determined. In future studies, it would be useful to determine the binding energies of umbelliferone and irinotecan to other cancer-related proteins and to find their interactions with different miRNAs. Additionally, studies on different model organisms are also important.

Авторлар туралы

Erkut Tamturk

Department of Biology, Faculty of Art and Sciences, Erciyes University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Serap Yalcın

Department of Medical Pharmacology, Faculty of Medicine,, Kırşehir Ahi Evran University

Email: info@benthamscience.net

Fahriye Ercan

Department of Plant Protection, Faculty of Agriculture, Kırşehir Ahi Evran University

Email: info@benthamscience.net

Aydın Tuncbilek

Department of Biology, Faculty of Art and Sciences, Erciyes University

Email: info@benthamscience.net

Әдебиет тізімі

  1. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev., 2004, 18(16), 1909-1925. doi: 10.1101/gad.1211604 PMID: 15314019
  2. Gao, X.; Neufeld, T.P.; Pan, D. Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and -independent pathways. Dev. Biol., 2000, 221(2), 404-418. doi: 10.1006/dbio.2000.9680 PMID: 10790335
  3. Mehlen, P.; Puisieux, A. Metastasis: A question of life or death. Nat. Rev. Cancer, 2006, 6(6), 449-458. doi: 10.1038/nrc1886 PMID: 16723991
  4. Milne, A.N.; Carneiro, F.; O’Morain, C.; Offerhaus, G.J.A. Nature meets nurture: Molecular genetics of gastric cancer. Hum. Genet., 2009, 126(5), 615-628. doi: 10.1007/s00439-009-0722-x PMID: 19657673
  5. Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72. doi: 10.1038/nrc1529 PMID: 15630416
  6. Yardley, D.A. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int. J. Breast Cancer, 2013, 2013, 1-15. doi: 10.1155/2013/137414 PMID: 23864953
  7. Greenberg, P.A.; Hortobagyi, G.N.; Smith, T.L.; Ziegler, L.D.; Frye, D.K.; Buzdar, A.U. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J. Clin. Oncol., 1996, 14(8), 2197-2205. doi: 10.1200/JCO.1996.14.8.2197 PMID: 8708708
  8. Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res., 2019, 148, 104398. doi: 10.1016/j.phrs.2019.104398 PMID: 31415916
  9. Shitara, T.; Shimada, A.; Hanada, R.; Matsunaga, T.; Kawa, K.; Mugishima, H.; Sugimoto, T.; Mimaya, J.; Manabe, A.; Tsurusawa, M.; Tsuchida, Y. Irinotecan for children with relapsed solid tumors. Pediatr. Hematol. Oncol., 2006, 23(2), 103-110. doi: 10.1080/08880010500457152 PMID: 16651238
  10. Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecan—still an important player in cancer chemotherapy: A comprehensive overview. Int. J. Mol. Sci., 2020, 21(14), 4919. doi: 10.3390/ijms21144919 PMID: 32664667
  11. Hassanein, E.H.M.; Ali, F.E.M.; Sayed, M.M.; Mahmoud, A.R.; Jaber, F.A.; Kotob, M.H.; Abd-Elhamid, T.H. Umbelliferone potentiates intestinal protective effect of Lactobacillus acidophilus against methotrexate-induced intestinal injury: Biochemical and histological study. Tissue Cell, 2023, 82, 102103. doi: 10.1016/j.tice.2023.102103 PMID: 37178526
  12. Choi, G.Y.; Kim, H.B.; Cho, J.M.; Sreelatha, I.; Lee, I.S.; Kweon, H.S.; Sul, S.; Kim, S.A.; Maeng, S.; Park, J.H. Umbelliferone ameliorates memory impairment and enhances hippocampal synaptic plasticity in scopolamine-induced rat model. Nutrients, 2023, 15(10), 2351. doi: 10.3390/nu15102351 PMID: 37242234
  13. Yu, S.M.; Hu, D.H.; Zhang, J.J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep., 2015, 12(3), 3869-3873. doi: 10.3892/mmr.2015.3797 PMID: 25997538
  14. Shen, J.Q.; Zhang, Z.X.; Shen, C.F.; Liao, J.Z. Anticarcinogenic effect of Umbelliferone in human prostate carcinoma: An in vitro study. J. Balkan Union Oncol., 2017, 22(1), 94-101. PMID: 28365941
  15. Kumar, V.; Ahmed, D.; Verma, A.; Anwar, F.; Ali, M.; Mujeeb, M. Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.) corr. an ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity. BMC Complement. Altern. Med., 2013, 13(1), 273. doi: 10.1186/1472-6882-13-273 PMID: 24138888
  16. Salam, S.; Velli, S.K.; Krishnan, P.; Selvanathan, I.; Murugan, M.; Subramaniam, N.; Thiruvengadam, D. Anti-cancer efficacy of umbelliferone against benzo (a) pyrene-induced lung carcinogenesis in Swiss albino mice. MJB, 2018, 5, 79-89.
  17. Irinotecan. 2023. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/Irinotecan (accessed on 28-9-2024).
  18. Umbelliferone. 2023. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/Umbelliferone (accessed on 28-9-2024).
  19. Mazimba, O. Umbelliferone: Sources, chemistry and bioactivities review. Bulletin Faculty Pharm., 2017, 55, 223-232.
  20. Parhoodeh, P.; Rahmani, M.; Hashim, N.M.; Sukari, M.A.; Cheng Lian, G.E. Lignans and other constituents from aerial parts of Haplophyllum villosum. Molecules, 2011, 16(3), 2268-2273. doi: 10.3390/molecules16032268 PMID: 21383663
  21. Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone – An antioxidant isolated from Acacia nilotica (L.). Willd. Ex. Del. Food Chem., 2010, 120(3), 825-830. doi: 10.1016/j.foodchem.2009.11.022
  22. Rodriguez, L.G.; Wu, X.; Guan, J.L. Wound-healing assay. Methods Mol. Biol., 2005, 294, 023-030. doi: 10.1385/1-59259-860-9:023 PMID: 15576902
  23. Shaw, L.M. Tumor cell invasion assays. Methods Mol. Biol., 2005, 294, 097-106. doi: 10.1385/1-59259-860-9:097 PMID: 15576908
  24. Atli, E.; Tamtürk, E. Investigation of developmental and reproductive effects of resveratrol in Drosophila melanogaster. Toxicol. Res. (Camb.), 2022, 11(1), 101-107. doi: 10.1093/toxres/tfab123 PMID: 35237415
  25. Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162. doi: 10.1093/nar/gky1141 PMID: 30423142
  26. Sarzynska, J.; Popenda, M.; Antczak, M.; Szachniuk, M. RNA tertiary structure prediction using RNACOMPOSER in CASP15. Proteins, 2023, 91(12), 1790-1799. doi: 10.1002/prot.26578 PMID: 37615316
  27. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
  28. Mooers, B.H.M. Shortcuts for faster image creation in PyMOL. Protein Sci., 2020, 29(1), 268-276. doi: 10.1002/pro.3781
  29. Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Docking with swissdock. Methods Mol. Biol., 2019, 2053, 189-202. doi: 10.1007/978-1-4939-9752-7_12 PMID: 31452106
  30. Murail, S.; de Vries, S.J.; Rey, J.; Moroy, G.; Tufféry, P. SeamDock: An interactive and collaborative online docking resource to assist small compound molecular docking. Front. Mol. Biosci., 2021, 8, 716466. doi: 10.3389/fmolb.2021.716466 PMID: 34604303
  31. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  32. Yalçınkaya, S.; Yalçın Azarkan, S.; Karahan Çakmakçı, A.G. Determination of the effect of L. plantarum AB6-25, L. plantarum MK55 and S. boulardii T8-3C microorganisms on colon, cervix, and breast cancer cell lines: Molecular docking, and molecular dynamics study. J. Mol. Struct., 2022, 1261, 132939. doi: 10.1016/j.molstruc.2022.132939
  33. Bekker, H.; Berendsen, H.J.C.; Dijkstra, E.J.; Achterop, S.; Vondrumen, R.V.; Vanderspoel, D. Gromacs-a parallel computer for molecular-dynamics simulations. In: 4th international conference on computational physics; World Scientific Publishing, 1993; pp. 252-256.
  34. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
  35. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958. doi: 10.1002/prot.22711 PMID: 20408171
  36. Bjelkmar, P.; Larsson, P.; Cuendet, M.A.; Hess, B.; Lindahl, E. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput., 2010, 6(2), 459-466. doi: 10.1021/ct900549r PMID: 26617301
  37. Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676. doi: 10.1002/jcc.20090 PMID: 15264259
  38. Franke, T.F.; Tartof, K.D.; Tsichlis, P.N. The SH2-like Akt homology (AH) domain of c-akt is present in multiple copies in the genome of vertebrate and invertebrate eucaryotes. Cloning and characterization of the Drosophila melanogaster c-akt homolog Dakt1. Oncogene, 1994, 9(1), 141-148. PMID: 8302573
  39. Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Neto, T.M.B.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 2023, 39(1), btac793. doi: 10.1093/bioinformatics/btac793 PMID: 36484697
  40. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
  41. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623. doi: 10.1021/jm020017n PMID: 12036371
  42. Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68. doi: 10.1021/cc9800071 PMID: 10746014
  43. Wu, M.; Gao, F.; Li, X.; Guo, J.; Wang, T.; Zhang, F. Study on the solubilization effect of 7-ethyl-10-hydroxycamptothecin based on molecular docking and molecular dynamics simulation. J. Mol. Model., 2023, 29(2), 58. doi: 10.1007/s00894-023-05455-1 PMID: 36715793
  44. Read, R.D. Drosophila melanogaster as a model system for human brain cancers. Glia, 2011, 59(9), 1364-1376. doi: 10.1002/glia.21148 PMID: 21538561
  45. Weinkove, D.; Neufeld, T.P.; Twardzik, T.; Waterfield, M.D.; Leevers, S.J. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class IA phosphoinositide 3-kinase and its adaptor. Curr. Biol., 1999, 9(18), 1019-1029. doi: 10.1016/S0960-9822(99)80450-3 PMID: 10508611
  46. Montagne, J.; Stewart, M.J.; Stocker, H.; Hafen, E.; Kozma, S.C.; Thomas, G. Drosophila S6 kinase: a regulator of cell size. Science, 1999, 285(5436), 2126-2129. doi: 10.1126/science.285.5436.2126 PMID: 10497130
  47. Gateff, E.; Schneiderman, H.A. Developmental studies of a new mutant of Drosophila melanogaster: Lethal malignant brain tumor (l (2)gl 4). Am. Zool., 1967, 7, 760.
  48. Truscott, M.; Islam, A.B.M.M.K.; López-Bigas, N.; Frolov, M.V. mir-11 limits the proapoptotic function of its host gene, dE2f1. Genes Dev., 2011, 25(17), 1820-1834. doi: 10.1101/gad.16947411 PMID: 21856777
  49. Xu, P.; Vernooy, S.Y.; Guo, M.; Hay, B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol., 2003, 13(9), 790-795. doi: 10.1016/S0960-9822(03)00250-1 PMID: 12725740
  50. Pinsky, I.; Labeit, S.; Labeit, D.; Ivashchenko, A. Characteristics of miRNA binding sites in mRNAS of human and mouse titin gene. Int. J. Biol. Chem., 2017, 10(1), 25-34. doi: 10.26577/2218-7979-2017-10-1-25-34
  51. Hsiao, Y.C.; Yeh, M.H.; Chen, Y.J.; Liu, J.F.; Tang, C.H.; Huang, W.C. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6. Oncotarget, 2015, 6(35), 37965-37978. doi: 10.18632/oncotarget.5700 PMID: 26513016
  52. Kalinowski, F.C.; Brown, R.A.M.; Ganda, C.; Giles, K.M.; Epis, M.R.; Horsham, J.; Leedman, P.J. microRNA-7: A tumor suppressor miRNA with therapeutic potential. Int. J. Biochem. Cell Biol., 2014, 54, 312-317. doi: 10.1016/j.biocel.2014.05.040 PMID: 24907395
  53. Morales-Martínez, M.; Vega, M.I. Role of MicroRNA-7 (MiR-7) in cancer physiopathology. Int. J. Mol. Sci., 2022, 23(16), 9091. doi: 10.3390/ijms23169091 PMID: 36012357
  54. Correa-Medina, M.; Bravo-Egana, V.; Rosero, S.; Ricordi, C.; Edlund, H.; Diez, J.; Pastori, R.L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns, 2009, 9(4), 193-199. doi: 10.1016/j.gep.2008.12.003 PMID: 19135553
  55. Hong, T.; Ding, J.; Li, W. miR-7 reverses breast cancer resistance to chemotherapy by targeting MRP1 and BCL2. OncoTargets Ther., 2019, 12, 11097-11105. doi: 10.2147/OTT.S213780 PMID: 31908478
  56. Primavera, E.; Palazzotti, D.; Barreca, M.L.; Astolfi, A. Computer-aided identification of kinase-targeted small molecules for cancer: A review on AKT protein. Pharmaceuticals (Basel), 2023, 16(7), 993. doi: 10.3390/ph16070993 PMID: 37513905
  57. Rothenberg, M.L. Irinotecan (CPT-11): Recent developments and future directions--colorectal cancer and beyond. Oncologist, 2001, 6(1), 66-80. doi: 10.1634/theoncologist.6-1-66 PMID: 11161230
  58. Mirzoyan, Z.; Sollazzo, M.; Allocca, M.; Valenza, A.M.; Grifoni, D.; Bellosta, P. Drosophila melanogaster: A model organism to study cancer. Front. Genet., 2019, 10, 51. doi: 10.3389/fgene.2019.00051 PMID: 30881374

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025