In vivo, In vitro, and In silico Studies of Umbelliferone and Irinotecan on MDA-MB-231 Breast Cancer Cell Line and Drosophila melanogaster Larvae
- Авторлар: Tamturk E.1, Yalcın S.2, Ercan F.3, Tuncbilek A.1
-
Мекемелер:
- Department of Biology, Faculty of Art and Sciences, Erciyes University
- Department of Medical Pharmacology, Faculty of Medicine,, Kırşehir Ahi Evran University
- Department of Plant Protection, Faculty of Agriculture, Kırşehir Ahi Evran University
- Шығарылым: Том 25, № 7 (2025)
- Беттер: 499-516
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694508
- DOI: https://doi.org/10.2174/0118715206340868241018075528
- ID: 694508
Дәйексөз келтіру
Толық мәтін
Аннотация
Aims:Deaths from cancer are still very common all over the world and continue to be the focus of scientific research. Chemotherapy is one of the primary treatments used to prevent deaths from cancer. Side effects of chemotherapeutic drugs and resistance of cells to drugs are essential problems that limit the treatment process. Drug combination therapy is regarded as a significant application that inhibits the growth of tumors and is anticipated to provide a solution for the issues encountered. The combination therapy aims at a synergistic effect that will limit drug resistance and cytotoxic effects with appropriate drug combinations. In this context, we aim to investigate the in vitro, in vivo, and in silico effects of single and combined doses of umbelliferone and irinotecan, known for their anticarcinogenic and curative effects, on MDA-MB-231 breast cancer cell lines and the model organism Drosophila melanogaster.
Background:Irinotecan is currently used as an anticarcinogenic drug. Anticarcinogenic effects of umbelliferone have also been detected. The in vivo, in vitro, and in silico impacts of single and combined doses use of these two agents are not yet available in the literature.
Objective:This study aims to determine the anticarcinogenic effects of single and combined use of umbelliferone and irinotecan at the molecular level. It also attempts to determine the binding energies of chemicals to cancerrelated proteins through docking and molecular dynamic studies.
Methods:The cytotoxic effects of individual and combinational doses of umbelliferone and irinotecan on the MDAMB- 231 cell line and D. melanogaster were calculated by XTT and probit analyses. IC50 values for the cancer cells, LC50, and LC99 values for D. melanogaster were found. Gene expression analysis was performed to determine the effects of chemical agents on miR-7, miR-11, and miR-14, and their expression levels were found. The sequences of miRNAs not found in the literature were determined, and their molecular imaging was performed. In addition, the binding energies of irinotecan and umbelliferone to Bcl-2, Bad, and Akt1 proteins, which are known to have apoptotic effects, were found by the molecular docking method. Molecular dynamics studies of Bad proteins and chemicals were also performed. The drug potential of chemicals was determined by ADME/T analysis.
Results:The cytotoxic effect on cells was calculated, and the IC50 value of umbelliferone was calculated as 158 μM, the IC50 value of irinotecan was calculated as 48,3 μM and the IC50 value was calculated as 20 μM. In the probit analysis performed to calculate the cytotoxic effects of drugs on D. melanogaster, the LC50 value of umbelliferone was 2,5 μM, and the LC99 value was 13,4 μM. The LC50 value of irinotecan was found to be 0,1 μM, and the LC99 value was 0,28 μM. It was concluded that single and combined doses of chemicals in the invasion experiment significantly affected the spread of cells. As a result of expression analysis, a significant increase in HsamiR- 7 (Homo sapiens miRNA-7), Hsa-miR-14 (Homo sapiens miRNA-14), and Hsa-miR-11(Homo sapiens miRNA-11) expression was observed in cells treated with umbelliferone irinotecan compared to the control groups.
Conclusion:In our study, it can be concluded that the cytotoxic effects of individual and combination doses of umbelliferone and irinotecan on MDA-MB-231 cells and D. melanogaster larvae are significant. In addition, the effects of umbelliferone and irinotecan on the expression level of miR-7, which is a common D. melanogaster and human miRNA, should be widely investigated. Expression analyses and docking studies of Hsa-miR-11 and Hsa-miR-14, which have been newly studied and are not in data repositories, are important for cancer research. In particular, the expression and binding energy of these miRNAs in new drug combinations and the expression level in different cancer cell lines are important for future studies. Another crucial point is that in vivo tests using different model species validate the usage of drugs at both single and mixed dosages.
Other:As a result of this study, the in vivo, in vitro, and in silico effects of single and combined doses of umbelliferone and irinotecan were determined. In future studies, it would be useful to determine the binding energies of umbelliferone and irinotecan to other cancer-related proteins and to find their interactions with different miRNAs. Additionally, studies on different model organisms are also important.
Негізгі сөздер
Авторлар туралы
Erkut Tamturk
Department of Biology, Faculty of Art and Sciences, Erciyes University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Serap Yalcın
Department of Medical Pharmacology, Faculty of Medicine,, Kırşehir Ahi Evran University
Email: info@benthamscience.net
Fahriye Ercan
Department of Plant Protection, Faculty of Agriculture, Kırşehir Ahi Evran University
Email: info@benthamscience.net
Aydın Tuncbilek
Department of Biology, Faculty of Art and Sciences, Erciyes University
Email: info@benthamscience.net
Әдебиет тізімі
- Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev., 2004, 18(16), 1909-1925. doi: 10.1101/gad.1211604 PMID: 15314019
- Gao, X.; Neufeld, T.P.; Pan, D. Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and -independent pathways. Dev. Biol., 2000, 221(2), 404-418. doi: 10.1006/dbio.2000.9680 PMID: 10790335
- Mehlen, P.; Puisieux, A. Metastasis: A question of life or death. Nat. Rev. Cancer, 2006, 6(6), 449-458. doi: 10.1038/nrc1886 PMID: 16723991
- Milne, A.N.; Carneiro, F.; O’Morain, C.; Offerhaus, G.J.A. Nature meets nurture: Molecular genetics of gastric cancer. Hum. Genet., 2009, 126(5), 615-628. doi: 10.1007/s00439-009-0722-x PMID: 19657673
- Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72. doi: 10.1038/nrc1529 PMID: 15630416
- Yardley, D.A. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int. J. Breast Cancer, 2013, 2013, 1-15. doi: 10.1155/2013/137414 PMID: 23864953
- Greenberg, P.A.; Hortobagyi, G.N.; Smith, T.L.; Ziegler, L.D.; Frye, D.K.; Buzdar, A.U. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J. Clin. Oncol., 1996, 14(8), 2197-2205. doi: 10.1200/JCO.1996.14.8.2197 PMID: 8708708
- Bailly, C. Irinotecan: 25 years of cancer treatment. Pharmacol. Res., 2019, 148, 104398. doi: 10.1016/j.phrs.2019.104398 PMID: 31415916
- Shitara, T.; Shimada, A.; Hanada, R.; Matsunaga, T.; Kawa, K.; Mugishima, H.; Sugimoto, T.; Mimaya, J.; Manabe, A.; Tsurusawa, M.; Tsuchida, Y. Irinotecan for children with relapsed solid tumors. Pediatr. Hematol. Oncol., 2006, 23(2), 103-110. doi: 10.1080/08880010500457152 PMID: 16651238
- Kciuk, M.; Marciniak, B.; Kontek, R. Irinotecan—still an important player in cancer chemotherapy: A comprehensive overview. Int. J. Mol. Sci., 2020, 21(14), 4919. doi: 10.3390/ijms21144919 PMID: 32664667
- Hassanein, E.H.M.; Ali, F.E.M.; Sayed, M.M.; Mahmoud, A.R.; Jaber, F.A.; Kotob, M.H.; Abd-Elhamid, T.H. Umbelliferone potentiates intestinal protective effect of Lactobacillus acidophilus against methotrexate-induced intestinal injury: Biochemical and histological study. Tissue Cell, 2023, 82, 102103. doi: 10.1016/j.tice.2023.102103 PMID: 37178526
- Choi, G.Y.; Kim, H.B.; Cho, J.M.; Sreelatha, I.; Lee, I.S.; Kweon, H.S.; Sul, S.; Kim, S.A.; Maeng, S.; Park, J.H. Umbelliferone ameliorates memory impairment and enhances hippocampal synaptic plasticity in scopolamine-induced rat model. Nutrients, 2023, 15(10), 2351. doi: 10.3390/nu15102351 PMID: 37242234
- Yu, S.M.; Hu, D.H.; Zhang, J.J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep., 2015, 12(3), 3869-3873. doi: 10.3892/mmr.2015.3797 PMID: 25997538
- Shen, J.Q.; Zhang, Z.X.; Shen, C.F.; Liao, J.Z. Anticarcinogenic effect of Umbelliferone in human prostate carcinoma: An in vitro study. J. Balkan Union Oncol., 2017, 22(1), 94-101. PMID: 28365941
- Kumar, V.; Ahmed, D.; Verma, A.; Anwar, F.; Ali, M.; Mujeeb, M. Umbelliferone β-D-galactopyranoside from Aegle marmelos (L.) corr. an ethnomedicinal plant with antidiabetic, antihyperlipidemic and antioxidative activity. BMC Complement. Altern. Med., 2013, 13(1), 273. doi: 10.1186/1472-6882-13-273 PMID: 24138888
- Salam, S.; Velli, S.K.; Krishnan, P.; Selvanathan, I.; Murugan, M.; Subramaniam, N.; Thiruvengadam, D. Anti-cancer efficacy of umbelliferone against benzo (a) pyrene-induced lung carcinogenesis in Swiss albino mice. MJB, 2018, 5, 79-89.
- Irinotecan. 2023. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/Irinotecan (accessed on 28-9-2024).
- Umbelliferone. 2023. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/Umbelliferone (accessed on 28-9-2024).
- Mazimba, O. Umbelliferone: Sources, chemistry and bioactivities review. Bulletin Faculty Pharm., 2017, 55, 223-232.
- Parhoodeh, P.; Rahmani, M.; Hashim, N.M.; Sukari, M.A.; Cheng Lian, G.E. Lignans and other constituents from aerial parts of Haplophyllum villosum. Molecules, 2011, 16(3), 2268-2273. doi: 10.3390/molecules16032268 PMID: 21383663
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone – An antioxidant isolated from Acacia nilotica (L.). Willd. Ex. Del. Food Chem., 2010, 120(3), 825-830. doi: 10.1016/j.foodchem.2009.11.022
- Rodriguez, L.G.; Wu, X.; Guan, J.L. Wound-healing assay. Methods Mol. Biol., 2005, 294, 023-030. doi: 10.1385/1-59259-860-9:023 PMID: 15576902
- Shaw, L.M. Tumor cell invasion assays. Methods Mol. Biol., 2005, 294, 097-106. doi: 10.1385/1-59259-860-9:097 PMID: 15576908
- Atli, E.; Tamtürk, E. Investigation of developmental and reproductive effects of resveratrol in Drosophila melanogaster. Toxicol. Res. (Camb.), 2022, 11(1), 101-107. doi: 10.1093/toxres/tfab123 PMID: 35237415
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162. doi: 10.1093/nar/gky1141 PMID: 30423142
- Sarzynska, J.; Popenda, M.; Antczak, M.; Szachniuk, M. RNA tertiary structure prediction using RNACOMPOSER in CASP15. Proteins, 2023, 91(12), 1790-1799. doi: 10.1002/prot.26578 PMID: 37615316
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
- Mooers, B.H.M. Shortcuts for faster image creation in PyMOL. Protein Sci., 2020, 29(1), 268-276. doi: 10.1002/pro.3781
- Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Docking with swissdock. Methods Mol. Biol., 2019, 2053, 189-202. doi: 10.1007/978-1-4939-9752-7_12 PMID: 31452106
- Murail, S.; de Vries, S.J.; Rey, J.; Moroy, G.; Tufféry, P. SeamDock: An interactive and collaborative online docking resource to assist small compound molecular docking. Front. Mol. Biosci., 2021, 8, 716466. doi: 10.3389/fmolb.2021.716466 PMID: 34604303
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Yalçınkaya, S.; Yalçın Azarkan, S.; Karahan Çakmakçı, A.G. Determination of the effect of L. plantarum AB6-25, L. plantarum MK55 and S. boulardii T8-3C microorganisms on colon, cervix, and breast cancer cell lines: Molecular docking, and molecular dynamics study. J. Mol. Struct., 2022, 1261, 132939. doi: 10.1016/j.molstruc.2022.132939
- Bekker, H.; Berendsen, H.J.C.; Dijkstra, E.J.; Achterop, S.; Vondrumen, R.V.; Vanderspoel, D. Gromacs-a parallel computer for molecular-dynamics simulations. In: 4th international conference on computational physics; World Scientific Publishing, 1993; pp. 252-256.
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958. doi: 10.1002/prot.22711 PMID: 20408171
- Bjelkmar, P.; Larsson, P.; Cuendet, M.A.; Hess, B.; Lindahl, E. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput., 2010, 6(2), 459-466. doi: 10.1021/ct900549r PMID: 26617301
- Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676. doi: 10.1002/jcc.20090 PMID: 15264259
- Franke, T.F.; Tartof, K.D.; Tsichlis, P.N. The SH2-like Akt homology (AH) domain of c-akt is present in multiple copies in the genome of vertebrate and invertebrate eucaryotes. Cloning and characterization of the Drosophila melanogaster c-akt homolog Dakt1. Oncogene, 1994, 9(1), 141-148. PMID: 8302573
- Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Neto, T.M.B.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 2023, 39(1), btac793. doi: 10.1093/bioinformatics/btac793 PMID: 36484697
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623. doi: 10.1021/jm020017n PMID: 12036371
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68. doi: 10.1021/cc9800071 PMID: 10746014
- Wu, M.; Gao, F.; Li, X.; Guo, J.; Wang, T.; Zhang, F. Study on the solubilization effect of 7-ethyl-10-hydroxycamptothecin based on molecular docking and molecular dynamics simulation. J. Mol. Model., 2023, 29(2), 58. doi: 10.1007/s00894-023-05455-1 PMID: 36715793
- Read, R.D. Drosophila melanogaster as a model system for human brain cancers. Glia, 2011, 59(9), 1364-1376. doi: 10.1002/glia.21148 PMID: 21538561
- Weinkove, D.; Neufeld, T.P.; Twardzik, T.; Waterfield, M.D.; Leevers, S.J. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class IA phosphoinositide 3-kinase and its adaptor. Curr. Biol., 1999, 9(18), 1019-1029. doi: 10.1016/S0960-9822(99)80450-3 PMID: 10508611
- Montagne, J.; Stewart, M.J.; Stocker, H.; Hafen, E.; Kozma, S.C.; Thomas, G. Drosophila S6 kinase: a regulator of cell size. Science, 1999, 285(5436), 2126-2129. doi: 10.1126/science.285.5436.2126 PMID: 10497130
- Gateff, E.; Schneiderman, H.A. Developmental studies of a new mutant of Drosophila melanogaster: Lethal malignant brain tumor (l (2)gl 4). Am. Zool., 1967, 7, 760.
- Truscott, M.; Islam, A.B.M.M.K.; López-Bigas, N.; Frolov, M.V. mir-11 limits the proapoptotic function of its host gene, dE2f1. Genes Dev., 2011, 25(17), 1820-1834. doi: 10.1101/gad.16947411 PMID: 21856777
- Xu, P.; Vernooy, S.Y.; Guo, M.; Hay, B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol., 2003, 13(9), 790-795. doi: 10.1016/S0960-9822(03)00250-1 PMID: 12725740
- Pinsky, I.; Labeit, S.; Labeit, D.; Ivashchenko, A. Characteristics of miRNA binding sites in mRNAS of human and mouse titin gene. Int. J. Biol. Chem., 2017, 10(1), 25-34. doi: 10.26577/2218-7979-2017-10-1-25-34
- Hsiao, Y.C.; Yeh, M.H.; Chen, Y.J.; Liu, J.F.; Tang, C.H.; Huang, W.C. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6. Oncotarget, 2015, 6(35), 37965-37978. doi: 10.18632/oncotarget.5700 PMID: 26513016
- Kalinowski, F.C.; Brown, R.A.M.; Ganda, C.; Giles, K.M.; Epis, M.R.; Horsham, J.; Leedman, P.J. microRNA-7: A tumor suppressor miRNA with therapeutic potential. Int. J. Biochem. Cell Biol., 2014, 54, 312-317. doi: 10.1016/j.biocel.2014.05.040 PMID: 24907395
- Morales-Martínez, M.; Vega, M.I. Role of MicroRNA-7 (MiR-7) in cancer physiopathology. Int. J. Mol. Sci., 2022, 23(16), 9091. doi: 10.3390/ijms23169091 PMID: 36012357
- Correa-Medina, M.; Bravo-Egana, V.; Rosero, S.; Ricordi, C.; Edlund, H.; Diez, J.; Pastori, R.L. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr. Patterns, 2009, 9(4), 193-199. doi: 10.1016/j.gep.2008.12.003 PMID: 19135553
- Hong, T.; Ding, J.; Li, W. miR-7 reverses breast cancer resistance to chemotherapy by targeting MRP1 and BCL2. OncoTargets Ther., 2019, 12, 11097-11105. doi: 10.2147/OTT.S213780 PMID: 31908478
- Primavera, E.; Palazzotti, D.; Barreca, M.L.; Astolfi, A. Computer-aided identification of kinase-targeted small molecules for cancer: A review on AKT protein. Pharmaceuticals (Basel), 2023, 16(7), 993. doi: 10.3390/ph16070993 PMID: 37513905
- Rothenberg, M.L. Irinotecan (CPT-11): Recent developments and future directions--colorectal cancer and beyond. Oncologist, 2001, 6(1), 66-80. doi: 10.1634/theoncologist.6-1-66 PMID: 11161230
- Mirzoyan, Z.; Sollazzo, M.; Allocca, M.; Valenza, A.M.; Grifoni, D.; Bellosta, P. Drosophila melanogaster: A model organism to study cancer. Front. Genet., 2019, 10, 51. doi: 10.3389/fgene.2019.00051 PMID: 30881374
Қосымша файлдар
