Observation on the Therapeutic Efficacy of Camrelizumab Combined with Chemotherapy in Non-small Cell Lung Cancer and the Cutaneous Immune-related Adverse Events: A Retrospective Study


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:Immunotherapy targeting PD-1/PD-L1 shows significant benefits in lung cancer. Cutaneous immune-related adverse events (irAEs) are frequent, early-developing side effects of ICIs, and their potential role as prognostic markers in non-small cell lung cancer (NSCLC) therapy requires further exploration.

Methods:Data of patients with NSCLC treated with camrelizumab Combined with chemotherapy were collected at Xuzhou Medical University from 2019 to 2023. Cutaneous irAEs were monitored using CTCAE v5.0, and therapeutic efficacy was assessed using RECIST 1.1 criteria for ORR and PFS. Multivariable Cox regression analysis identified independent predictors of PFS, and a nomogram was constructed to predict survival outcomes.

Results:Data from 151 patients were analyzed. Significant differences in the objective response rate (ORR, P = 0.016) and progression-free survival (PFS, P < 0.0001) were detected between NSCLC patients, either with cirAEs or not. Besides, PFS was significantly different in NSCLC patients who were subgrouped by the time of first cutaneous irAEs occurrence (P = 0.011), duration of cutaneous irAEs (P = 0.002), grade of cutaneous irAEs (P = 0.002), the number of cutaneous irAEs(P = 0.021). The multivariable analysis also revealed that cirAEs were positively associated with survival outcomes (HR: 0.316, 95% CI, 0.193- 0.519, P<0.001) for PFS. The nomogram was formulated based on the results of multivariate analysis and validated using an internal bootstrap resampling approach, which showed that the nomogram exhibited a sufficient level of discrimination according to the C-index 0.80 (95% CI, 0.748-0.850).

Conclusion:The presence of cirAEs in NSCLC patients treated with camrelizumab combined with chemotherapy is indicative of better treatment efficacy and prognosis. This study supports the utility of cirAEs as biomarkers for predicting the validity of immunotherapy in NSCLC. It proposes a novel, multi-parameter prognostic model to assess patient outcomes more accurately.

Авторлар туралы

Hongmei Wang

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Jiali Xia

Department of Dermatology,, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Aoyang Yu

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Menghan Cao

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Yang Zhao

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Xiaobing Qin

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Wenlou Liu

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Zhengxiang Han

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Guan Jiang

Department of Oncology, Affiliated Hospital of Xuzhou Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Siegel, R.L.; Miller, K.D.; Goding, S.A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164. doi: 10.3322/caac.21601 PMID: 32133645
  2. Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300. doi: 10.21037/tlcr.2016.06.07 PMID: 27413711
  3. Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C. ESMO Guidelines committee. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2018, 29(Suppl. 4), iv192-iv237. doi: 10.1093/annonc/mdy275
  4. Wood, D.E. National comprehensive cancer network (NCCN) clinical practice guidelines for lung cancer screening. Thorac. Surg. Clin., 2015, 25(2), 185-197. doi: 10.1016/j.thorsurg.2014.12.003 PMID: 25901562
  5. Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science (NY). Science, 2018, 359(6382), 1350-1355. doi: 10.1126/science.aar4060 PMID: 29567705
  6. Park, Y-J.; Kuen, D-S.; Chung, Y. Future prospects of immune checkpoint blockade in cancer: From response prediction to overcoming resistance. Exp. Mol. Med., 2018, 50(8), 1-13. doi: 10.1038/s12276-018-0130-1
  7. Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.M.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune checkpoint inhibitor–related dermatologic adverse events. J. Am. Acad. Dermatol., 2020, 83(5), 1255-1268. doi: 10.1016/j.jaad.2020.03.132 PMID: 32454097
  8. Sibaud, V.; Meyer, N.; Lamant, L.; Vigarios, E.; Mazieres, J.; Delord, J. P Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr. Opin. Oncol., 2016, 28(4), 254-263. doi: 10.1097/CCO.0000000000000290
  9. Schweizer, C.; Schubert, P.; Rutzner, S.; Eckstein, M.; Haderlein, M.; Lettmaier, S. Prospective evaluation of the prognostic value of immune-related adverse events in patients with non-melanoma solid tumour treated with PD-1/PD-L1 inhibitors alone and in combination with radiotherapy. Eur. J. Cancer, 2020, 140, 55-62. doi: 10.1016/j.ejca.2020.09.001 PMID: 33045663
  10. Cao, T.; Zhou, X.; Wu, X.; Zou, Y. Cutaneous immune-related adverse events to immune checkpoint inhibitors: From underlying immunological mechanisms to multi-omics prediction. Front. Immunol., 2023, 14, 1207544. doi: 10.3389/fimmu.2023.1207544
  11. Markham, A.; Keam, S.J. Camrelizumab: First global approval. Drugs, 2019, 79(12), 1355-1361. doi: 10.1007/s40265-019-01167-0 PMID: 31313098
  12. Chen, Y.; Pei, Y.; Luo, J.; Huang, Z.; Yu, J.; Meng, X. Looking for the optimal PD-1/PD-L1 inhibitor in cancer treatment: A Comparison in basic structure, function, and clinical practice. Front. Immunol., 2020, 11, 1088. doi: 10.3389/fimmu.2020.01088
  13. Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; Dilling, T.J.; Dowell, J.; Gettinger, S.; Gubens, M.A.; Hegde, A.; Hennon, M.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Lin, J.; Loo, B.W., Jr; Lovly, C.M.; Martins, R.G.; Massarelli, E.; Morgensztern, D.; Ng, T.; Otterson, G.A.; Patel, S.P.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Singh, A.P.; Stevenson, J.; Tam, A.; Yanagawa, J.; Yang, S.C.; Gregory, K.M.; Hughes, M. NCCN guidelines insights: Non–small cell lung cancer, Version 2.2021. J. Natl. Compr. Canc. Netw., 2021, 19(3), 254-266. doi: 10.6004/jnccn.2021.0013 PMID: 33668021
  14. Ren, S.; Chen, J.; Xu, X.; Jiang, T.; Cheng, Y. Chen, G Camrelizumab plus Carboplatin and Paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-Sq): A Phase 3 trial. J. Thorac. Oncol., 2022, 17(4), 544-557. doi: 10.1016/j.jtho.2021.11.018
  15. Freites-Martinez, A.; Santana, N.; Arias-Santiago, S.; Viera, A. Using the common terminology criteria for adverse events (CTCAE - Version 5.0) to evaluate the severity of adverse events of anticancer therapies. Actas Dermosifiliogr (Engl Ed)., 2021, 112(1), 90-92. doi: 10.1016/j.ad.2019.05.009
  16. Zhang, S.; Tang, K.; Wan, G.; Nguyen, N.; Lu, C.; Ugwu-Dike, P.; Raval, N.; Seo, J.; Alexander, N.A.; Jairath, R.; Phillipps, J.; Leung, B.W.; Roster, K.; Chen, W.; Zubiri, L.; Boland, G.; Chen, S.T.; Tsao, H.; Demehri, S.; LeBoeuf, N.R.; Reynolds, K.L.; Yu, K-H.; Gusev, A.; Kwatra, S.G.; Semenov, Y.R. Cutaneous immune-related adverse events are associated with longer overall survival in advanced cancer patients on immune checkpoint inhibitors: A multi-institutional cohort study. J. Am. Acad. Dermatol., 2023, 88(5), 1024-1032. doi: 10.1016/j.jaad.2022.12.048 PMID: 36736626
  17. Morimoto, K.; Yamada, T.; Takumi, C.; Ogura, Y.; Takeda, T.; Onoi, K. Immune-related adverse events are associated with clinical benefit in patients with non-small-cell lung cancer treated with immunotherapy plus chemotherapy: A retrospective study. Front. Oncol., 2021, 11, 630136. doi: 10.3389/fonc.2021.630136
  18. Zhou, X.; Yao, Z.; Yang, H.; Liang, N.; Zhang, X.; Zhang, F. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med., 2020, 18(1), 87. doi: 10.1186/s12916-020-01549-2 PMID: 32306958
  19. Paderi, A.; Giorgione, R.; Giommoni, E.; Mela, M.M.; Rossi, V.; Doni, L. Association between immune related adverse events and outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. Cancers (Basel), 2021, 13(4), 860. doi: 10.3390/cancers13040860
  20. Zhou, C.; Chen, G.; Huang, Y.; Zhou, J.; Lin, L.; Feng, J. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): A randomised, open-label, multicentre, phase 3 trial. Lancet Respir. Med., 2021, 9(3), 305-314. doi: 10.1016/S2213-2600(20)30365-9
  21. Wang, R.; Shi, M.; Ji, M.; Han, Z.; Chen, L.; Liu, Y.; Lu, K.; Liu, L.; Chen, B.; Zhang, X.; Miao, L.; Shu, Y. Real world experience with camrelizumab in patients with advanced non-small cell lung cancer: A prospective multicenter cohort study (NOAH-LC-101). Transl. Lung Cancer Res., 2023, 12(4), 786-796. doi: 10.21037/tlcr-23-121 PMID: 37197631
  22. Wongvibulsin, S.; Pahalyants, V.; Kalinich, M.; Murphy, W.; Yu, K.H.; Wang, F.; Chen, S.T.; Reynolds, K.; Kwatra, S.G.; Semenov, Y.R. Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: A United States population-level analysis. J. Am. Acad. Dermatol., 2022, 86(3), 563-572. doi: 10.1016/j.jaad.2021.03.094 PMID: 33819538
  23. Tang, K.; Seo, J.; Tiu, B.C.; Le, T.K.; Pahalyants, V.; Raval, N.S. Association of cutaneous immune-related adverse events with increased survival in patients treated with anti-programmed cell death 1 and anti-programmed cell death ligand 1 therapy. JAMA Dermatol., 2022, 158(2), 189-193. doi: 10.1001/jamadermatol.2021.5476
  24. Merli, M.; Accorinti, M.; Romagnuolo, M.; Marzano, A.; Di Zenzo, G.; Moro, F.; Antiga, E.; Maglie, R.; Cozzani, E.; Parodi, A.; Gasparini, G.; Sollena, P.; De Simone, C.; Caproni, M.; Pisano, L.; Fattore, D.; Balestri, R.; Sena, P.; Vezzoli, P.; Teoli, M.; Ardigò, M.; Vassallo, C.; Michelerio, A.; Satta, R.R.; Dika, E.; Melotti, B.; Ribero, S.; Quaglino, P. Autoimmune bullous dermatoses in cancer patients treated by immunotherapy: A literature review and Italian multicentric experience. Front. Med. (Lausanne), 2023, 10, 1208418. doi: 10.3389/fmed.2023.1208418 PMID: 37547602
  25. Song, Y.; Wu, J.; Chen, X.; Lin, T.; Cao, J.; Liu, Y. A single-Arm, multicenter, phase II study of camrelizumab in relapsed or refractory classical Hodgkin Lymphoma. Clin. Cancer Res., 2019, 25(24), 7363-7369. doi: 10.1158/1078-0432.CCR-19-1680 PMID: 31420358
  26. Huang, J.; Mo, H.; Zhang, W.; Chen, X.; Qu, D.; Wang, X.; Wu, D.; Wang, X.; Lan, B.; Yang, B.; Wang, P.; Zhang, B.; Yang, Q.; Jiao, Y.; Xu, B. Promising efficacy of SHR‐1210, A novel anti–programmed cell death 1 antibody, in patients with advanced gastric and gastroesophageal junction cancer in China. Cancer, 2019, 125(5), 742-749. doi: 10.1002/cncr.31855 PMID: 30508306
  27. Nie, J.; Wang, C.; Liu, Y.; Yang, Q.; Mei, Q.; Dong, L. Addition of low-dose decitabine to anti-PD-1 Antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma. J. Clin. Oncol., 2019, 37(17), 1479-1489. doi: 10.1200/JCO.18.02151 PMID: 31039052
  28. Wang, F.; Qin, S.; Sun, X.; Ren, Z.; Meng, Z.; Chen, Z. Reactive cutaneous capillary endothelial proliferation in advanced hepatocellular carcinoma patients treated with camrelizumab: Data derived from a multicenter phase 2 trial. J. Hematol. Oncol., 2020, 13(1), 47. doi: 10.1186/s13045-020-00886-2 PMID: 32393323
  29. Ding, Q.; Liu, Y.; Ju, H.; Song, H.; Xiao, Y.; Liu, X. Reactive cutaneous capillary endothelial proliferation predicted the efficacy of camrelizumab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Med. Oral Patol. Oral Cir. Bucal, 2023, 28(6), e525-e9. doi: 10.4317/medoral.25919 PMID: 37330963
  30. Wu, R.; Ju, Y.; Long, T.; Su, Z.; Zhu, G.; Liu, S. Anlotinib improved the reactive cutaneous capillary endothelial proliferation induced by camrelizumab: A case report. Transl. Cancer Res., 2022, 11(8), 2940-2945. doi: 10.21037/tcr-22-426 PMID: 36093549
  31. Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med., 2020, 52(9), 1475-1485. doi: 10.1038/s12276-020-00500-y PMID: 32913278
  32. Ebeling, S.; Kowalczyk, A.; Perez-Vazquez, D.; Mattiola, I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front. Oncol., 2023, 13, 1171794-0. doi: 10.3389/fonc.2023.1171794 PMID: 37234993
  33. Burt, P.; Peine, M.; Peine, C.; Borek, Z.; Serve, S.; Floßdorf, M.; Hegazy, A.N.; Höfer, T.; Löhning, M.; Thurley, K. Dissecting the dynamic transcriptional landscape of early T helper cell differentiation into Th1, Th2, and Th1/2 hybrid cells. Front. Immunol., 2022, 13, 928018-0. doi: 10.3389/fimmu.2022.928018 PMID: 36052070
  34. Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol., 2000, 85(1), 9-18.
  35. Qin, Z.; Blankenstein, T. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity, 2000, 12(6), 677-686. PMID: 10894167
  36. Basu, A.; Ramamoorthi, G.; Albert, G.; Gallen, C.; Beyer, A.; Snyder, C.; Koski, G.; Disis, M.L.; Czerniecki, B.J.; Kodumudi, K. Differentiation and regulation of TH cells: A Balancing act for cancer immunotherapy. Front. Immunol., 2021, 12, 669474-0. doi: 10.3389/fimmu.2021.669474 PMID: 34012451
  37. Ryba-Stanisławowska, M. Unraveling Th subsets: Insights into their role in immune checkpoint inhibitor therapy. Cell Oncol. (Dordr.), 2024, 1-8. doi: 10.1007/s13402-024-00992-0 PMID: 39325360
  38. Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J.T. Helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol., 2020, 11, 2025. doi: 10.3389/fimmu.2020.02025 PMID: 32973809
  39. Frafjord, A.; Buer, L.; Hammarström, C.; Aamodt, H.; Woldbæk, P.R.; Brustugun, O.T.; Helland, Å.; Øynebråten, I.; Corthay, A. The immune landscape of human primary lung tumors is Th2 skewed. Front. Immunol., 2021, 12, 764596. doi: 10.3389/fimmu.2021.764596 PMID: 34868011
  40. Muraille, E.; Leo, O.; Moser, M. TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol., 2014, 5, 603. doi: 10.3389/fimmu.2014.00603
  41. Duraiswamy, J.; Freeman, G.J.; Coukos, G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res., 2013, 73(23), 6900-6912. doi: 10.1158/0008-5472.CAN-13-1550 PMID: 23975756
  42. Seervai, R.N.H.; Sinha, A.; Kulkarni, R.P. Mechanisms of dermatological toxicities to immune checkpoint inhibitor cancer therapies. Clin. Exp. Dermatol., 2022, 47(11), 1928-1942. doi: 10.1111/ced.15332 PMID: 35844072
  43. Yang, K.; Lu, R.; Mei, J.; Cao, K.; Zeng, T.; Hua, Y.; Huang, X.; Li, W.; Yin, Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark. Res., 2024, 12(1), 51. doi: 10.1186/s40364-024-00599-5 PMID: 38816871
  44. Garo, L.P.; Gopal, M. Role of cytokines in tumor immunity and immune tolerance to cancer. In: Cancer Immunology: A Translational Medicine Context; Springer International Publishing: Cham, 2020; pp. 205-233.
  45. Bretscher, P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: Classical observations must not be ignored. Front. Immunol., 2019, 10, 1234. doi: 10.3389/fimmu.2019.01234
  46. Dulos, J.; Carven, G.J.; van Boxtel, S.J.; Evers, S.; Driessen-Engels, L.J.A.; Hobo, W.; Gorecka, M.A.; de Haan, A.F.J.; Mulders, P.; Punt, C.J.A.; Jacobs, J.F.M.; Schalken, J.A.; Oosterwijk, E.; van Eenennaam, H.; Boots, A.M. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J. Immunother., 2012, 35(2), 169-178. doi: 10.1097/CJI.0b013e318247a4e7 PMID: 22306905
  47. Larsabal, M.; Marti, A.; Jacquemin, C.; Rambert, J.; Thiolat, D.; Dousset, L.; Taieb, A.; Dutriaux, C.; Prey, S.; Boniface, K.; Seneschal, J. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death–1 therapies are clinically and biologically distinct from vitiligo. J. Am. Acad. Dermatol., 2017, 76(5), 863-870. doi: 10.1016/j.jaad.2016.10.044 PMID: 28094061
  48. Teraoka, S.; Fujimoto, D.; Morimoto, T.; Kawachi, H.; Ito, M.; Sato, Y.; Nagata, K.; Nakagawa, A.; Otsuka, K.; Uehara, K.; Imai, Y.; Ishida, K.; Fukuoka, J.; Tomii, K. Early immune-related adverse events and association with outcome in advanced non–small cell lung cancer patients treated with Nivolumab: A prospective cohort study. J. Thorac. Oncol., 2017, 12(12), 1798-1805. doi: 10.1016/j.jtho.2017.08.022 PMID: 28939128
  49. Zhang, Y.C.; Zhu, T.C.; Nie, R.C.; Lu, L.H.; Xiang, Z.C.; Xie, D.; Luo, R-Z.; Cai, M-Y. Association between early immune-related adverse events and survival in patients treated with PD-1/PD-L1 inhibitors. J. Clin. Med., 2023, 12(3), 736. doi: 10.3390/jcm12030736
  50. Aso, M.; Toi, Y.; Sugisaka, J.; Aiba, T.; Kawana, S.; Saito, R.; Ogasawara, T.; Tsurumi, K.; Ono, K.; Shimizu, H.; Domeki, Y.; Terayama, K.; Kawashima, Y.; Nakamura, A.; Yamanda, S.; Kimura, Y.; Honda, Y.; Sugawara, S. Association between skin reaction and clinical benefit in patients treated with anti-programmed cell death 1 monotherapy for advanced non-small cell lung cancer. Oncologist, 2020, 25(3), e536-e544. doi: 10.1634/theoncologist.2019-0550 PMID: 32162801
  51. Fujimoto, D.; Yoshioka, H.; Kataoka, Y.; Morimoto, T.; Kim, Y.H.; Tomii, K. Efficacy and safety of nivolumab in previously treated patients with non-small cell lung cancer: A multicenter retrospective cohort study. Lung cancer (Amsterdam, Netherlands). Lung Cancer, 2018, 119, 14-20. doi: 10.1016/j.lungcan.2018.02.017 PMID: 29656747
  52. Sung, M.; Zer, A.; Walia, P.; Khoja, L.; Maganti, M.; Labbe, C.; Shepherd, F.A.; Bradbury, P.A.; Liu, G.; Leighl, N.B. Correlation of immune-related adverse events and response from immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. J. Thorac. Dis., 2020, 12(5), 2706-2712. doi: 10.21037/jtd.2020.04.30 PMID: 32642178
  53. Li, Y.; Zhang, Y.; Jia, X.; Jiang, P.; Mao, Z.; Liang, T.; Du, Y.; Zhang, J.; Zhang, G.; Niu, G.; Guo, H. Effect of immune-related adverse events and pneumonitis on prognosis in advanced non–small cell lung cancer: A comprehensive systematic review and meta-analysis. Clin. Lung Cancer, 2021, 22(6), e889-e900. doi: 10.1016/j.cllc.2021.05.004 PMID: 34183265
  54. Guezour, N.; Soussi, G.; Brosseau, S.; Abbar, B.; Naltet, C.; Vauchier, C.; Poté, N.; Hachon, L.; Namour, C.; Khalil, A.; Trédaniel, J.; Zalcman, G.; Gounant, V. Grade 3–4 immune-related adverse events induced by immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC) patients are correlated with better outcome: A real-life observational study. Cancers (Basel), 2022, 14(16), 3878. doi: 10.3390/cancers14163878 PMID: 36010872
  55. Wang, W.; Gu, X.; Wang, L.; Pu, X.; Feng, H.; Xu, C.; Lou, G.; Shao, L.; Xu, Y.; Wang, Q.; Wang, S.; Gao, W.; Zhang, Y.; Song, Z. The prognostic impact of mild and severe immune-related adverse events in non-small cell lung cancer treated with immune checkpoint inhibitors: A multicenter retrospective study. Cancer Immunol. Immunother., 2022, 71(7), 1693-1703. doi: 10.1007/s00262-021-03115-y PMID: 34817639
  56. Choi, J.; Lee, S.Y. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors. Immune Netw., 2020, 20(1), e9. doi: 10.4110/in.2020.20.e9 PMID: 32158597
  57. Sternschuss, M.; Peled, N.; Allen, A.M.; Dudnik, E.; Rotem, O.; Kurman, N.; Gal, O.; Reches, H.; Zer, A. Can Ipilimumab restore immune response in advanced NSCLC after progression on anti‐ PD ‐1/PD‐L1 agents? Thorac. Cancer, 2020, 11(8), 2331-2334. doi: 10.1111/1759-7714.13502 PMID: 32548905
  58. Hasan, A.O.; Diem, S.; Markert, E.; Jochum, W.; Kerl, K.; French, L.E.; Speiser, D.E.; Früh, M.; Flatz, L. Characterization of nivolumab-associated skin reactions in patients with metastatic non-small cell lung cancer. OncoImmunology, 2016, 5(11), e1231292. doi: 10.1080/2162402X.2016.1231292 PMID: 27999741
  59. Wang, Y.; Yang, M.; Tao, M.; Liu, P.; Kong, C.; Li, H.; Chen, Y.; Yin, X.; Yan, X. Corticosteroid administration for cancer-related indications is an unfavorable prognostic factor in solid cancer patients receiving immune checkpoint inhibitor treatment. Int. Immunopharmacol., 2021, 99, 108031. doi: 10.1016/j.intimp.2021.108031 PMID: 34358857
  60. Iranzo, P.; Callejo, A.; Assaf, J.D.; Molina, G.; Lopez, D.E.; Garcia-Illescas, D.; Pardo, N.; Navarro, A.; Martinez-Marti, A.; Cedres, S.; Carbonell, C.; Frigola, J.; Amat, R.; Felip, E. Overview of checkpoint inhibitors mechanism of action: Role of immune-related adverse events and their treatment on progression of underlying cancer. Front. Med. (Lausanne), 2022, 9, 875974. doi: 10.3389/fmed.2022.875974 PMID: 35707528
  61. Nadelmann, E.R.; Yeh, J.E.; Chen, S.T. Management of cutaneous immune-related adverse events in patients with cancer treated with immune checkpoint inhibitors. JAMA Oncol., 2022, 8(1), 130-138. doi: 10.1001/jamaoncol.2021.4318 PMID: 34709352
  62. Phillips, G.S.; Wu, J.; Hellmann, M.D.; Postow, M.A.; Rizvi, N.A.; Freites-Martinez, A.; Chan, D.; Dusza, S.; Motzer, R.J.; Rosenberg, J.E.; Callahan, M.K.; Chapman, P.B.; Geskin, L.; Lopez, A.T.; Reed, V.A.; Fabbrocini, G.; Annunziata, M.C.; Kukoyi, O.; Pabani, A.; Yang, C.H.; Chung, W.H.; Markova, A.; Lacouture, M.E. Treatment outcomes of immune-related cutaneous adverse events. J. Clin. Oncol., 2019, 37(30), 2746-2758. doi: 10.1200/JCO.18.02141 PMID: 31216228
  63. Goodman, R.S.; Johnson, D.B.; Balko, J.M. Corticosteroids and cancer immunotherapy. Clin. Cancer Res., 2023, 29(14), 2580-2587. doi: 10.1158/1078-0432.CCR-22-3181 PMID: 36648402
  64. Huang, D.D.R.; Liao, B.C.; Hsu, W.H.; Yang, C.Y.; Lin, Y.T.; Wu, S.G.; Tsai, T-H.; Chen, K-Y.; Ho, C-C.; Liao, W-Y.; Shih, J-Y.; Yu, C-J.; Yang, J.C-H.; Cheng, A-L.; Shen, Y-C. Effects of early short-course corticosteroids on immune-related adverse events in non-small cell lung cancer patients receiving immune checkpoint inhibitors. Oncology, 2024, 102(4), 318-326. doi: 10.1159/000534350 PMID: 37778345
  65. Nelli, F.; Virtuoso, A.; Berrios, J.R.G.; Giannarelli, D.; Fabbri, A.; Marrucci, E.; Ruggeri, E.M. Impact of previous corticosteroid exposure on outcomes of patients receiving immune checkpoint inhibitors for advanced non-small cell lung cancer: A retrospective observational study. Cancer Chemother. Pharmacol., 2022, 89(4), 529-537. doi: 10.1007/s00280-022-04416-4 PMID: 35301584
  66. Drakaki, A.; Dhillon, P.K.; Wakelee, H.; Chui, S.Y.; Shim, J.; Kent, M.; Degaonkar, V.; Hoang, T.; McNally, V.; Luhn, P.; Gutzmer, R. Association of baseline systemic corticosteroid use with overall survival and time to next treatment in patients receiving immune checkpoint inhibitor therapy in real-world US oncology practice for advanced non-small cell lung cancer, melanoma, or urothelial carcinoma. OncoImmunology, 2020, 9(1), 1824645. doi: 10.1080/2162402X.2020.1824645 PMID: 33101774

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025