Observation on the Therapeutic Efficacy of Camrelizumab Combined with Chemotherapy in Non-small Cell Lung Cancer and the Cutaneous Immune-related Adverse Events: A Retrospective Study
- Авторлар: Wang H.1, Xia J.2, Yu A.1, Cao M.1, Zhao Y.1, Qin X.1, Liu W.1, Han Z.1, Jiang G.1
-
Мекемелер:
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University
- Department of Dermatology,, Affiliated Hospital of Xuzhou Medical University
- Шығарылым: Том 25, № 8 (2025)
- Беттер: 574-587
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694514
- DOI: https://doi.org/10.2174/0118715206350978241105080452
- ID: 694514
Дәйексөз келтіру
Толық мәтін
Аннотация
Introduction:Immunotherapy targeting PD-1/PD-L1 shows significant benefits in lung cancer. Cutaneous immune-related adverse events (irAEs) are frequent, early-developing side effects of ICIs, and their potential role as prognostic markers in non-small cell lung cancer (NSCLC) therapy requires further exploration.
Methods:Data of patients with NSCLC treated with camrelizumab Combined with chemotherapy were collected at Xuzhou Medical University from 2019 to 2023. Cutaneous irAEs were monitored using CTCAE v5.0, and therapeutic efficacy was assessed using RECIST 1.1 criteria for ORR and PFS. Multivariable Cox regression analysis identified independent predictors of PFS, and a nomogram was constructed to predict survival outcomes.
Results:Data from 151 patients were analyzed. Significant differences in the objective response rate (ORR, P = 0.016) and progression-free survival (PFS, P < 0.0001) were detected between NSCLC patients, either with cirAEs or not. Besides, PFS was significantly different in NSCLC patients who were subgrouped by the time of first cutaneous irAEs occurrence (P = 0.011), duration of cutaneous irAEs (P = 0.002), grade of cutaneous irAEs (P = 0.002), the number of cutaneous irAEs(P = 0.021). The multivariable analysis also revealed that cirAEs were positively associated with survival outcomes (HR: 0.316, 95% CI, 0.193- 0.519, P<0.001) for PFS. The nomogram was formulated based on the results of multivariate analysis and validated using an internal bootstrap resampling approach, which showed that the nomogram exhibited a sufficient level of discrimination according to the C-index 0.80 (95% CI, 0.748-0.850).
Conclusion:The presence of cirAEs in NSCLC patients treated with camrelizumab combined with chemotherapy is indicative of better treatment efficacy and prognosis. This study supports the utility of cirAEs as biomarkers for predicting the validity of immunotherapy in NSCLC. It proposes a novel, multi-parameter prognostic model to assess patient outcomes more accurately.
Негізгі сөздер
Авторлар туралы
Hongmei Wang
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Jiali Xia
Department of Dermatology,, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Aoyang Yu
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Menghan Cao
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Yang Zhao
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Xiaobing Qin
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Wenlou Liu
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Email: info@benthamscience.net
Zhengxiang Han
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Guan Jiang
Department of Oncology, Affiliated Hospital of Xuzhou Medical University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Siegel, R.L.; Miller, K.D.; Goding, S.A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164. doi: 10.3322/caac.21601 PMID: 32133645
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300. doi: 10.21037/tlcr.2016.06.07 PMID: 27413711
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C. ESMO Guidelines committee. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2018, 29(Suppl. 4), iv192-iv237. doi: 10.1093/annonc/mdy275
- Wood, D.E. National comprehensive cancer network (NCCN) clinical practice guidelines for lung cancer screening. Thorac. Surg. Clin., 2015, 25(2), 185-197. doi: 10.1016/j.thorsurg.2014.12.003 PMID: 25901562
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science (NY). Science, 2018, 359(6382), 1350-1355. doi: 10.1126/science.aar4060 PMID: 29567705
- Park, Y-J.; Kuen, D-S.; Chung, Y. Future prospects of immune checkpoint blockade in cancer: From response prediction to overcoming resistance. Exp. Mol. Med., 2018, 50(8), 1-13. doi: 10.1038/s12276-018-0130-1
- Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.M.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune checkpoint inhibitor–related dermatologic adverse events. J. Am. Acad. Dermatol., 2020, 83(5), 1255-1268. doi: 10.1016/j.jaad.2020.03.132 PMID: 32454097
- Sibaud, V.; Meyer, N.; Lamant, L.; Vigarios, E.; Mazieres, J.; Delord, J. P Dermatologic complications of anti-PD-1/PD-L1 immune checkpoint antibodies. Curr. Opin. Oncol., 2016, 28(4), 254-263. doi: 10.1097/CCO.0000000000000290
- Schweizer, C.; Schubert, P.; Rutzner, S.; Eckstein, M.; Haderlein, M.; Lettmaier, S. Prospective evaluation of the prognostic value of immune-related adverse events in patients with non-melanoma solid tumour treated with PD-1/PD-L1 inhibitors alone and in combination with radiotherapy. Eur. J. Cancer, 2020, 140, 55-62. doi: 10.1016/j.ejca.2020.09.001 PMID: 33045663
- Cao, T.; Zhou, X.; Wu, X.; Zou, Y. Cutaneous immune-related adverse events to immune checkpoint inhibitors: From underlying immunological mechanisms to multi-omics prediction. Front. Immunol., 2023, 14, 1207544. doi: 10.3389/fimmu.2023.1207544
- Markham, A.; Keam, S.J. Camrelizumab: First global approval. Drugs, 2019, 79(12), 1355-1361. doi: 10.1007/s40265-019-01167-0 PMID: 31313098
- Chen, Y.; Pei, Y.; Luo, J.; Huang, Z.; Yu, J.; Meng, X. Looking for the optimal PD-1/PD-L1 inhibitor in cancer treatment: A Comparison in basic structure, function, and clinical practice. Front. Immunol., 2020, 11, 1088. doi: 10.3389/fimmu.2020.01088
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; Dilling, T.J.; Dowell, J.; Gettinger, S.; Gubens, M.A.; Hegde, A.; Hennon, M.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Lin, J.; Loo, B.W., Jr; Lovly, C.M.; Martins, R.G.; Massarelli, E.; Morgensztern, D.; Ng, T.; Otterson, G.A.; Patel, S.P.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Singh, A.P.; Stevenson, J.; Tam, A.; Yanagawa, J.; Yang, S.C.; Gregory, K.M.; Hughes, M. NCCN guidelines insights: Non–small cell lung cancer, Version 2.2021. J. Natl. Compr. Canc. Netw., 2021, 19(3), 254-266. doi: 10.6004/jnccn.2021.0013 PMID: 33668021
- Ren, S.; Chen, J.; Xu, X.; Jiang, T.; Cheng, Y. Chen, G Camrelizumab plus Carboplatin and Paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-Sq): A Phase 3 trial. J. Thorac. Oncol., 2022, 17(4), 544-557. doi: 10.1016/j.jtho.2021.11.018
- Freites-Martinez, A.; Santana, N.; Arias-Santiago, S.; Viera, A. Using the common terminology criteria for adverse events (CTCAE - Version 5.0) to evaluate the severity of adverse events of anticancer therapies. Actas Dermosifiliogr (Engl Ed)., 2021, 112(1), 90-92. doi: 10.1016/j.ad.2019.05.009
- Zhang, S.; Tang, K.; Wan, G.; Nguyen, N.; Lu, C.; Ugwu-Dike, P.; Raval, N.; Seo, J.; Alexander, N.A.; Jairath, R.; Phillipps, J.; Leung, B.W.; Roster, K.; Chen, W.; Zubiri, L.; Boland, G.; Chen, S.T.; Tsao, H.; Demehri, S.; LeBoeuf, N.R.; Reynolds, K.L.; Yu, K-H.; Gusev, A.; Kwatra, S.G.; Semenov, Y.R. Cutaneous immune-related adverse events are associated with longer overall survival in advanced cancer patients on immune checkpoint inhibitors: A multi-institutional cohort study. J. Am. Acad. Dermatol., 2023, 88(5), 1024-1032. doi: 10.1016/j.jaad.2022.12.048 PMID: 36736626
- Morimoto, K.; Yamada, T.; Takumi, C.; Ogura, Y.; Takeda, T.; Onoi, K. Immune-related adverse events are associated with clinical benefit in patients with non-small-cell lung cancer treated with immunotherapy plus chemotherapy: A retrospective study. Front. Oncol., 2021, 11, 630136. doi: 10.3389/fonc.2021.630136
- Zhou, X.; Yao, Z.; Yang, H.; Liang, N.; Zhang, X.; Zhang, F. Are immune-related adverse events associated with the efficacy of immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med., 2020, 18(1), 87. doi: 10.1186/s12916-020-01549-2 PMID: 32306958
- Paderi, A.; Giorgione, R.; Giommoni, E.; Mela, M.M.; Rossi, V.; Doni, L. Association between immune related adverse events and outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. Cancers (Basel), 2021, 13(4), 860. doi: 10.3390/cancers13040860
- Zhou, C.; Chen, G.; Huang, Y.; Zhou, J.; Lin, L.; Feng, J. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): A randomised, open-label, multicentre, phase 3 trial. Lancet Respir. Med., 2021, 9(3), 305-314. doi: 10.1016/S2213-2600(20)30365-9
- Wang, R.; Shi, M.; Ji, M.; Han, Z.; Chen, L.; Liu, Y.; Lu, K.; Liu, L.; Chen, B.; Zhang, X.; Miao, L.; Shu, Y. Real world experience with camrelizumab in patients with advanced non-small cell lung cancer: A prospective multicenter cohort study (NOAH-LC-101). Transl. Lung Cancer Res., 2023, 12(4), 786-796. doi: 10.21037/tlcr-23-121 PMID: 37197631
- Wongvibulsin, S.; Pahalyants, V.; Kalinich, M.; Murphy, W.; Yu, K.H.; Wang, F.; Chen, S.T.; Reynolds, K.; Kwatra, S.G.; Semenov, Y.R. Epidemiology and risk factors for the development of cutaneous toxicities in patients treated with immune-checkpoint inhibitors: A United States population-level analysis. J. Am. Acad. Dermatol., 2022, 86(3), 563-572. doi: 10.1016/j.jaad.2021.03.094 PMID: 33819538
- Tang, K.; Seo, J.; Tiu, B.C.; Le, T.K.; Pahalyants, V.; Raval, N.S. Association of cutaneous immune-related adverse events with increased survival in patients treated with anti-programmed cell death 1 and anti-programmed cell death ligand 1 therapy. JAMA Dermatol., 2022, 158(2), 189-193. doi: 10.1001/jamadermatol.2021.5476
- Merli, M.; Accorinti, M.; Romagnuolo, M.; Marzano, A.; Di Zenzo, G.; Moro, F.; Antiga, E.; Maglie, R.; Cozzani, E.; Parodi, A.; Gasparini, G.; Sollena, P.; De Simone, C.; Caproni, M.; Pisano, L.; Fattore, D.; Balestri, R.; Sena, P.; Vezzoli, P.; Teoli, M.; Ardigò, M.; Vassallo, C.; Michelerio, A.; Satta, R.R.; Dika, E.; Melotti, B.; Ribero, S.; Quaglino, P. Autoimmune bullous dermatoses in cancer patients treated by immunotherapy: A literature review and Italian multicentric experience. Front. Med. (Lausanne), 2023, 10, 1208418. doi: 10.3389/fmed.2023.1208418 PMID: 37547602
- Song, Y.; Wu, J.; Chen, X.; Lin, T.; Cao, J.; Liu, Y. A single-Arm, multicenter, phase II study of camrelizumab in relapsed or refractory classical Hodgkin Lymphoma. Clin. Cancer Res., 2019, 25(24), 7363-7369. doi: 10.1158/1078-0432.CCR-19-1680 PMID: 31420358
- Huang, J.; Mo, H.; Zhang, W.; Chen, X.; Qu, D.; Wang, X.; Wu, D.; Wang, X.; Lan, B.; Yang, B.; Wang, P.; Zhang, B.; Yang, Q.; Jiao, Y.; Xu, B. Promising efficacy of SHR‐1210, A novel anti–programmed cell death 1 antibody, in patients with advanced gastric and gastroesophageal junction cancer in China. Cancer, 2019, 125(5), 742-749. doi: 10.1002/cncr.31855 PMID: 30508306
- Nie, J.; Wang, C.; Liu, Y.; Yang, Q.; Mei, Q.; Dong, L. Addition of low-dose decitabine to anti-PD-1 Antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma. J. Clin. Oncol., 2019, 37(17), 1479-1489. doi: 10.1200/JCO.18.02151 PMID: 31039052
- Wang, F.; Qin, S.; Sun, X.; Ren, Z.; Meng, Z.; Chen, Z. Reactive cutaneous capillary endothelial proliferation in advanced hepatocellular carcinoma patients treated with camrelizumab: Data derived from a multicenter phase 2 trial. J. Hematol. Oncol., 2020, 13(1), 47. doi: 10.1186/s13045-020-00886-2 PMID: 32393323
- Ding, Q.; Liu, Y.; Ju, H.; Song, H.; Xiao, Y.; Liu, X. Reactive cutaneous capillary endothelial proliferation predicted the efficacy of camrelizumab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Med. Oral Patol. Oral Cir. Bucal, 2023, 28(6), e525-e9. doi: 10.4317/medoral.25919 PMID: 37330963
- Wu, R.; Ju, Y.; Long, T.; Su, Z.; Zhu, G.; Liu, S. Anlotinib improved the reactive cutaneous capillary endothelial proliferation induced by camrelizumab: A case report. Transl. Cancer Res., 2022, 11(8), 2940-2945. doi: 10.21037/tcr-22-426 PMID: 36093549
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med., 2020, 52(9), 1475-1485. doi: 10.1038/s12276-020-00500-y PMID: 32913278
- Ebeling, S.; Kowalczyk, A.; Perez-Vazquez, D.; Mattiola, I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front. Oncol., 2023, 13, 1171794-0. doi: 10.3389/fonc.2023.1171794 PMID: 37234993
- Burt, P.; Peine, M.; Peine, C.; Borek, Z.; Serve, S.; Floßdorf, M.; Hegazy, A.N.; Höfer, T.; Löhning, M.; Thurley, K. Dissecting the dynamic transcriptional landscape of early T helper cell differentiation into Th1, Th2, and Th1/2 hybrid cells. Front. Immunol., 2022, 13, 928018-0. doi: 10.3389/fimmu.2022.928018 PMID: 36052070
- Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol., 2000, 85(1), 9-18.
- Qin, Z.; Blankenstein, T. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity, 2000, 12(6), 677-686. PMID: 10894167
- Basu, A.; Ramamoorthi, G.; Albert, G.; Gallen, C.; Beyer, A.; Snyder, C.; Koski, G.; Disis, M.L.; Czerniecki, B.J.; Kodumudi, K. Differentiation and regulation of TH cells: A Balancing act for cancer immunotherapy. Front. Immunol., 2021, 12, 669474-0. doi: 10.3389/fimmu.2021.669474 PMID: 34012451
- Ryba-Stanisławowska, M. Unraveling Th subsets: Insights into their role in immune checkpoint inhibitor therapy. Cell Oncol. (Dordr.), 2024, 1-8. doi: 10.1007/s13402-024-00992-0 PMID: 39325360
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J.T. Helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol., 2020, 11, 2025. doi: 10.3389/fimmu.2020.02025 PMID: 32973809
- Frafjord, A.; Buer, L.; Hammarström, C.; Aamodt, H.; Woldbæk, P.R.; Brustugun, O.T.; Helland, Å.; Øynebråten, I.; Corthay, A. The immune landscape of human primary lung tumors is Th2 skewed. Front. Immunol., 2021, 12, 764596. doi: 10.3389/fimmu.2021.764596 PMID: 34868011
- Muraille, E.; Leo, O.; Moser, M. TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol., 2014, 5, 603. doi: 10.3389/fimmu.2014.00603
- Duraiswamy, J.; Freeman, G.J.; Coukos, G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res., 2013, 73(23), 6900-6912. doi: 10.1158/0008-5472.CAN-13-1550 PMID: 23975756
- Seervai, R.N.H.; Sinha, A.; Kulkarni, R.P. Mechanisms of dermatological toxicities to immune checkpoint inhibitor cancer therapies. Clin. Exp. Dermatol., 2022, 47(11), 1928-1942. doi: 10.1111/ced.15332 PMID: 35844072
- Yang, K.; Lu, R.; Mei, J.; Cao, K.; Zeng, T.; Hua, Y.; Huang, X.; Li, W.; Yin, Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark. Res., 2024, 12(1), 51. doi: 10.1186/s40364-024-00599-5 PMID: 38816871
- Garo, L.P.; Gopal, M. Role of cytokines in tumor immunity and immune tolerance to cancer. In: Cancer Immunology: A Translational Medicine Context; Springer International Publishing: Cham, 2020; pp. 205-233.
- Bretscher, P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: Classical observations must not be ignored. Front. Immunol., 2019, 10, 1234. doi: 10.3389/fimmu.2019.01234
- Dulos, J.; Carven, G.J.; van Boxtel, S.J.; Evers, S.; Driessen-Engels, L.J.A.; Hobo, W.; Gorecka, M.A.; de Haan, A.F.J.; Mulders, P.; Punt, C.J.A.; Jacobs, J.F.M.; Schalken, J.A.; Oosterwijk, E.; van Eenennaam, H.; Boots, A.M. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J. Immunother., 2012, 35(2), 169-178. doi: 10.1097/CJI.0b013e318247a4e7 PMID: 22306905
- Larsabal, M.; Marti, A.; Jacquemin, C.; Rambert, J.; Thiolat, D.; Dousset, L.; Taieb, A.; Dutriaux, C.; Prey, S.; Boniface, K.; Seneschal, J. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death–1 therapies are clinically and biologically distinct from vitiligo. J. Am. Acad. Dermatol., 2017, 76(5), 863-870. doi: 10.1016/j.jaad.2016.10.044 PMID: 28094061
- Teraoka, S.; Fujimoto, D.; Morimoto, T.; Kawachi, H.; Ito, M.; Sato, Y.; Nagata, K.; Nakagawa, A.; Otsuka, K.; Uehara, K.; Imai, Y.; Ishida, K.; Fukuoka, J.; Tomii, K. Early immune-related adverse events and association with outcome in advanced non–small cell lung cancer patients treated with Nivolumab: A prospective cohort study. J. Thorac. Oncol., 2017, 12(12), 1798-1805. doi: 10.1016/j.jtho.2017.08.022 PMID: 28939128
- Zhang, Y.C.; Zhu, T.C.; Nie, R.C.; Lu, L.H.; Xiang, Z.C.; Xie, D.; Luo, R-Z.; Cai, M-Y. Association between early immune-related adverse events and survival in patients treated with PD-1/PD-L1 inhibitors. J. Clin. Med., 2023, 12(3), 736. doi: 10.3390/jcm12030736
- Aso, M.; Toi, Y.; Sugisaka, J.; Aiba, T.; Kawana, S.; Saito, R.; Ogasawara, T.; Tsurumi, K.; Ono, K.; Shimizu, H.; Domeki, Y.; Terayama, K.; Kawashima, Y.; Nakamura, A.; Yamanda, S.; Kimura, Y.; Honda, Y.; Sugawara, S. Association between skin reaction and clinical benefit in patients treated with anti-programmed cell death 1 monotherapy for advanced non-small cell lung cancer. Oncologist, 2020, 25(3), e536-e544. doi: 10.1634/theoncologist.2019-0550 PMID: 32162801
- Fujimoto, D.; Yoshioka, H.; Kataoka, Y.; Morimoto, T.; Kim, Y.H.; Tomii, K. Efficacy and safety of nivolumab in previously treated patients with non-small cell lung cancer: A multicenter retrospective cohort study. Lung cancer (Amsterdam, Netherlands). Lung Cancer, 2018, 119, 14-20. doi: 10.1016/j.lungcan.2018.02.017 PMID: 29656747
- Sung, M.; Zer, A.; Walia, P.; Khoja, L.; Maganti, M.; Labbe, C.; Shepherd, F.A.; Bradbury, P.A.; Liu, G.; Leighl, N.B. Correlation of immune-related adverse events and response from immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. J. Thorac. Dis., 2020, 12(5), 2706-2712. doi: 10.21037/jtd.2020.04.30 PMID: 32642178
- Li, Y.; Zhang, Y.; Jia, X.; Jiang, P.; Mao, Z.; Liang, T.; Du, Y.; Zhang, J.; Zhang, G.; Niu, G.; Guo, H. Effect of immune-related adverse events and pneumonitis on prognosis in advanced non–small cell lung cancer: A comprehensive systematic review and meta-analysis. Clin. Lung Cancer, 2021, 22(6), e889-e900. doi: 10.1016/j.cllc.2021.05.004 PMID: 34183265
- Guezour, N.; Soussi, G.; Brosseau, S.; Abbar, B.; Naltet, C.; Vauchier, C.; Poté, N.; Hachon, L.; Namour, C.; Khalil, A.; Trédaniel, J.; Zalcman, G.; Gounant, V. Grade 3–4 immune-related adverse events induced by immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC) patients are correlated with better outcome: A real-life observational study. Cancers (Basel), 2022, 14(16), 3878. doi: 10.3390/cancers14163878 PMID: 36010872
- Wang, W.; Gu, X.; Wang, L.; Pu, X.; Feng, H.; Xu, C.; Lou, G.; Shao, L.; Xu, Y.; Wang, Q.; Wang, S.; Gao, W.; Zhang, Y.; Song, Z. The prognostic impact of mild and severe immune-related adverse events in non-small cell lung cancer treated with immune checkpoint inhibitors: A multicenter retrospective study. Cancer Immunol. Immunother., 2022, 71(7), 1693-1703. doi: 10.1007/s00262-021-03115-y PMID: 34817639
- Choi, J.; Lee, S.Y. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors. Immune Netw., 2020, 20(1), e9. doi: 10.4110/in.2020.20.e9 PMID: 32158597
- Sternschuss, M.; Peled, N.; Allen, A.M.; Dudnik, E.; Rotem, O.; Kurman, N.; Gal, O.; Reches, H.; Zer, A. Can Ipilimumab restore immune response in advanced NSCLC after progression on anti‐ PD ‐1/PD‐L1 agents? Thorac. Cancer, 2020, 11(8), 2331-2334. doi: 10.1111/1759-7714.13502 PMID: 32548905
- Hasan, A.O.; Diem, S.; Markert, E.; Jochum, W.; Kerl, K.; French, L.E.; Speiser, D.E.; Früh, M.; Flatz, L. Characterization of nivolumab-associated skin reactions in patients with metastatic non-small cell lung cancer. OncoImmunology, 2016, 5(11), e1231292. doi: 10.1080/2162402X.2016.1231292 PMID: 27999741
- Wang, Y.; Yang, M.; Tao, M.; Liu, P.; Kong, C.; Li, H.; Chen, Y.; Yin, X.; Yan, X. Corticosteroid administration for cancer-related indications is an unfavorable prognostic factor in solid cancer patients receiving immune checkpoint inhibitor treatment. Int. Immunopharmacol., 2021, 99, 108031. doi: 10.1016/j.intimp.2021.108031 PMID: 34358857
- Iranzo, P.; Callejo, A.; Assaf, J.D.; Molina, G.; Lopez, D.E.; Garcia-Illescas, D.; Pardo, N.; Navarro, A.; Martinez-Marti, A.; Cedres, S.; Carbonell, C.; Frigola, J.; Amat, R.; Felip, E. Overview of checkpoint inhibitors mechanism of action: Role of immune-related adverse events and their treatment on progression of underlying cancer. Front. Med. (Lausanne), 2022, 9, 875974. doi: 10.3389/fmed.2022.875974 PMID: 35707528
- Nadelmann, E.R.; Yeh, J.E.; Chen, S.T. Management of cutaneous immune-related adverse events in patients with cancer treated with immune checkpoint inhibitors. JAMA Oncol., 2022, 8(1), 130-138. doi: 10.1001/jamaoncol.2021.4318 PMID: 34709352
- Phillips, G.S.; Wu, J.; Hellmann, M.D.; Postow, M.A.; Rizvi, N.A.; Freites-Martinez, A.; Chan, D.; Dusza, S.; Motzer, R.J.; Rosenberg, J.E.; Callahan, M.K.; Chapman, P.B.; Geskin, L.; Lopez, A.T.; Reed, V.A.; Fabbrocini, G.; Annunziata, M.C.; Kukoyi, O.; Pabani, A.; Yang, C.H.; Chung, W.H.; Markova, A.; Lacouture, M.E. Treatment outcomes of immune-related cutaneous adverse events. J. Clin. Oncol., 2019, 37(30), 2746-2758. doi: 10.1200/JCO.18.02141 PMID: 31216228
- Goodman, R.S.; Johnson, D.B.; Balko, J.M. Corticosteroids and cancer immunotherapy. Clin. Cancer Res., 2023, 29(14), 2580-2587. doi: 10.1158/1078-0432.CCR-22-3181 PMID: 36648402
- Huang, D.D.R.; Liao, B.C.; Hsu, W.H.; Yang, C.Y.; Lin, Y.T.; Wu, S.G.; Tsai, T-H.; Chen, K-Y.; Ho, C-C.; Liao, W-Y.; Shih, J-Y.; Yu, C-J.; Yang, J.C-H.; Cheng, A-L.; Shen, Y-C. Effects of early short-course corticosteroids on immune-related adverse events in non-small cell lung cancer patients receiving immune checkpoint inhibitors. Oncology, 2024, 102(4), 318-326. doi: 10.1159/000534350 PMID: 37778345
- Nelli, F.; Virtuoso, A.; Berrios, J.R.G.; Giannarelli, D.; Fabbri, A.; Marrucci, E.; Ruggeri, E.M. Impact of previous corticosteroid exposure on outcomes of patients receiving immune checkpoint inhibitors for advanced non-small cell lung cancer: A retrospective observational study. Cancer Chemother. Pharmacol., 2022, 89(4), 529-537. doi: 10.1007/s00280-022-04416-4 PMID: 35301584
- Drakaki, A.; Dhillon, P.K.; Wakelee, H.; Chui, S.Y.; Shim, J.; Kent, M.; Degaonkar, V.; Hoang, T.; McNally, V.; Luhn, P.; Gutzmer, R. Association of baseline systemic corticosteroid use with overall survival and time to next treatment in patients receiving immune checkpoint inhibitor therapy in real-world US oncology practice for advanced non-small cell lung cancer, melanoma, or urothelial carcinoma. OncoImmunology, 2020, 9(1), 1824645. doi: 10.1080/2162402X.2020.1824645 PMID: 33101774
Қосымша файлдар
