Processed Products of Aconitum soongaricum Stapf. Inhibit the Growth of Ovarian Cancer Cells In vivo via Regulating the PI3K/AKT Signal Pathway
- 作者: Li X.1, Tang X.2, Chen L.3, Cao X.1, Ailimujiang R.1, Li Q.3, Zhao F.3
-
隶属关系:
- , Pharmacy Department of Fourth Clinical Medical College of Xinjiang Medical University
- , Laboratory Department of the Sixth Affiliated Hospital of Xinjiang Medical University
- , Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University
- 期: 卷 25, 编号 9 (2025)
- 页面: 630-642
- 栏目: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694519
- DOI: https://doi.org/10.2174/0118715206344374241219065154
- ID: 694519
如何引用文章
全文:
详细
Introduction/Objective:The alkaloids of songorine, aconitine, and benzoylaconitine, as the processed products of Aconitum soongaricum Stapf., can significantly inhibit the migration and invasion of ovarian cancer cells in vitro. Herein, we studied the in vivo role and mechanism of these natural products in processed A. soongaricum Stapf.
Methods:A xenograft tumor model was constructed. Tumor volumes and weights were calculated. HE staining assessed the histopathological changes of tumors. Inflammatory factors were detected using ELISA. Gene and protein expressions of E-cadherin, N-cadherin, PIK3CA, and AKT1 proteins were measured using RT-qPCR and immunohistochemistry. Protein expressions of E-cadherin, N-cadherin, PIK3CA, AKT1, p-PIK3CA, and p- AKT1 proteins were detected using western blot analysis.
Results:Songorine, aconitine, and benzoylaconine significantly inhibited the growth of tumors as evidenced by decreased tumor volume and weight. The extent and scope of tumor cell necrosis were less in the songorine group compared to the vehicle group. Songorine, aconitine, and benzoylaconine significantly reduced IL-6, IL-1β, and TNF-α levels. Furthermore, songorine, aconitine, and benzoylecgonine induced down-regulation of N-cadherin and AKT1 mRNA in comparison to the vehicle group. Meanwhile, songorine, aconitine, and benzoylaconine also significantly reduced N-cadherin, p-PIK3CA, and p-AKT1 proteins, while upregulating E-cadherin protein expression in comparison to the vehicle group. These effects were further enhanced when combined with the PI3K inhibitor LY294002.
Conclusion:Songorine, aconitine, and benzoylaconine may inhibit ovarian cancer growth in vivo by blocking the PI3K/AKT signaling pathway. Our findings may provide evidence for the clinical application of the processed products of Aconitum soongaricum Stapf. in ovarian cancer treatment.
作者简介
Xiaojuan Li
, Pharmacy Department of Fourth Clinical Medical College of Xinjiang Medical University
Email: info@benthamscience.net
Xinle Tang
, Laboratory Department of the Sixth Affiliated Hospital of Xinjiang Medical University
Email: info@benthamscience.net
Liang Chen
, Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University
Email: info@benthamscience.net
Xingxing Cao
, Pharmacy Department of Fourth Clinical Medical College of Xinjiang Medical University
Email: info@benthamscience.net
Reziya Ailimujiang
, Pharmacy Department of Fourth Clinical Medical College of Xinjiang Medical University
Email: info@benthamscience.net
Qian Li
, Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Feicui Zhao
, Pharmacy Department of Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Yang, C.; Xia, B.R.; Zhang, Z.C.; Zhang, Y.J.; Lou, G.; Jin, W.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front. Immunol., 2020, 11, 577869. doi: 10.3389/fimmu.2020.577869 PMID: 33123161
- Lheureux, S.; Braunstein, M.; Oza, A.M. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J. Clin., 2019, 69(4), 280-304. doi: 10.3322/caac.21559 PMID: 31099893
- Siminiak, N.; Czepczyński, R.; Zaborowski, M.P.; Iżycki, D. Immunotherapy in ovarian cancer. Arch. Immunol. Ther. Exp., 2022, 70(1), 19. doi: 10.1007/s00005-022-00655-8 PMID: 35941287
- Yang, L.; Xie, H.J.; Li, Y.Y.; Wang, X.; Liu, X.X.; Mai, J. Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol. Rep., 2022, 47(4), 82. doi: 10.3892/or.2022.8293 PMID: 35211759
- Moufarrij, S.; Dandapani, M.; Arthofer, E.; Gomez, S.; Srivastava, A.; Lopez-Acevedo, M.; Villagra, A.; Chiappinelli, K.B. Epigenetic therapy for ovarian cancer: Promise and progress. Clin. Epigenetics, 2019, 11(1), 7. doi: 10.1186/s13148-018-0602-0 PMID: 30646939
- Zhang, J.; Chen, Y.; Chen, X.; Zhang, W.; Zhao, L.; Weng, L.; Tian, H.; Wu, Z.; Tan, X.; Ge, X.; Wang, P.; Fang, L. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer. Cell Death Differ., 2021, 28(1), 139-155. doi: 10.1038/s41418-020-0588-y PMID: 32678307
- Yu, H.H.; Li, M.; Li, Y.B.; Lei, B.B.; Yuan, X.; Xing, X.K.; Xie, Y.F.; Wang, M.; Wang, L.; Yang, H.J.; Feng, Z.W.; Cheng, B.F. Benzoylaconitine inhibits production of IL-6 and IL-8 via MAPK, Akt, NF-κB signaling in IL-1β-induced human synovial cells. Biol. Pharm. Bull., 2020, 43(2), 334-339. doi: 10.1248/bpb.b19-00719 PMID: 31735734
- Fu, L.; Dai, L.L.; Zhao, F.C.; Jiang, T. Study on the hydrolysis mechanism of Aconitum soongaricum Stapf. alkaloids and deoxyaconitine. Chin. Tradit. Herbal Drugs, 2018, 49, 5794-5802.
- Zhang, L.; Siyiti, M.; Zhang, J.; Yao, M.; Zhao, F. Anti‑inflammatory and anti‑rheumatic activities in vitro of alkaloids separated from Aconitum soongoricum Stapf. Exp. Ther. Med., 2021, 21(5), 493. doi: 10.3892/etm.2021.9924 PMID: 33791002
- Mukadais, S. Screening of anti-egfr active components in aconitum ungernii from junggar, xinjiang based on cell membrane chromatography. Chinese Pharmacist, 2018, 21(05), 766-771.
- Zhang, L. Study on the anti-tumor activity of alkaloids and processed hydrolysis products of Aconitum soongaricum in Junggar; Xinjiang Medical University: Xinjiang, 2019.
- Yang, M. Mechanism research on the inhibitory effects of processed products of Aconitum soongaricum Stapf. on ovarian cancer metastasis and invasion based on network pharmacology and experimental verification; Xinjiang Medical University, 2022.
- Wang, Y.; Li, Y.; Wang, L.; Chen, B.; Zhu, M.; Ma, C.; Mu, C.; Tao, A.; Li, S.; Luo, L.; Ma, P.; Ji, S.; Lan, T. Cinnamaldehyde suppressed EGF-induced EMT process and inhibits ovarian cancer progression through PI3K/AKT pathway. Front. Pharmacol., 2022, 13, 779608. doi: 10.3389/fphar.2022.779608 PMID: 35645793
- Cui, P.; Li, H.; Wang, C.; Liu, Y.; Zhang, M.; Yin, Y.; Sun, Z.; Wang, Y.; Chen, X. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. J. Ovarian Res., 2022, 15(1), 103. doi: 10.1186/s13048-022-01034-9 PMID: 36088429
- Huang, Y.; Hong, W.; Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol., 2022, 15(1), 129. doi: 10.1186/s13045-022-01347-8 PMID: 36076302
- Wu, X.; Zhao, J.; Ruan, Y.; Sun, L.; Xu, C.; Jiang, H. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell Death Dis., 2018, 9(11), 1102. doi: 10.1038/s41419-018-1101-0 PMID: 30375371
- Wang, H.; Xu, Y.; Guo, Y. Novel prognostic marker TGFBI affects the migration and invasion function of ovarian cancer cells and activates the integrin αvβ3-PI3K-Akt signaling pathway. J. Ovarian Res., 2024, 17(1), 50. doi: 10.1186/s13048-024-01377-5 PMID: 38395907
- Li, D.; Pan, Y.; Huang, Y.; Zhang, P.; Fang, X. PAK5 induces EMT and promotes cell migration and invasion by activating the PI3K/AKT pathway in ovarian cancer. Anal. Cell. Pathol., 2018, 2018, 1-9. doi: 10.1155/2018/8073124 PMID: 30245957
- Liu, S.Y.; Chen, W.; Chughtai, E.A.; Qiao, Z.; Jiang, J.T.; Li, S.M.; Zhang, W.; Zhang, J. PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma. World J. Gastroenterol., 2017, 23(14), 2585-2591. doi: 10.3748/wjg.v23.i14.2585 PMID: 28465643
- Cheng, J.C.; Leung, P.C.K. Type I collagen down-regulates E-cadherin expression by increasing PI3KCA in cancer cells. Cancer Lett., 2011, 304(2), 107-116. doi: 10.1016/j.canlet.2011.02.008 PMID: 21377268
- Wang, X.; Xu, X.; Jiang, G.; Zhang, C.; Liu, L.; Kang, J.; Wang, J.; Owusu, L.; Zhou, L.; Zhang, L.; Li, W. Dihydrotanshinone I inhibits ovarian cancer cell proliferation and migration by transcriptional repression of PIK3CA gene. J. Cell. Mol. Med., 2020, 24(19), 11177-11187. doi: 10.1111/jcmm.15660 PMID: 32860347
- Geng, Y.; Wu, W.; Zhou, L.; Li, J.; Geng, Y.; Yang, Y. Synergistic effects of LY294002 and ABT199 on the cell cycle in K562, HL60 and KG1a cells. Oncol. Rep., 2021, 45(6), 97. doi: 10.3892/or.2021.8048 PMID: 33846811
- Xu, R.; Zhang, Y.; Li, A.; Ma, Y.; Cai, W.; Song, L.; Xie, Y.; Zhou, S.; Cao, W.; Tang, X. LY‑294002 enhances the chemosensitivity of liver cancer to oxaliplatin by blocking the PI3K/AKT/HIF‑1α pathway. Mol. Med. Rep., 2021, 24(1), 508. doi: 10.3892/mmr.2021.12147 PMID: 33982772
- Jiang, T. Changes in the content of four alkaloids in the processing of Aconitum Ungernii. Zhongchengyao, 2016, 38, 2641-2646.
- Wang, X.; Lin, Y.; Zheng, Y. Antitumor effects of aconitine in A2780 cells via estrogen receptor β‑mediated apoptosis, DNA damage and migration. Mol. Med. Rep., 2020, 22(3), 2318-2328. doi: 10.3892/mmr.2020.11322 PMID: 32705198
- Zhang, H.; Dong, R.; Zhang, P.; Wang, Y. Songorine suppresses cell growth and metastasis in epithelial ovarian cancer via the Bcl‑2/Bax and GSK3β/β‑catenin signaling pathways. Oncol. Rep., 2019, 41(5), 3069-3079. doi: 10.3892/or.2019.7070 PMID: 30896826
- Tao, H.; Liu, X.; Tian, R.; Liu, Y.; Zeng, Y.; Meng, X.; Zhang, Y. A review: Pharmacokinetics and pharmacology of aminoalcohol-diterpenoid alkaloids from Aconitum species. J. Ethnopharmacol., 2023, 301, 115726. doi: 10.1016/j.jep.2022.115726 PMID: 36183950
- Vahedian-Movahed, H.; Saberi, M.R.; Chamani, J. Comparison of binding interactions of lomefloxacin to serum albumin and serum transferrin by resonance light scattering and fluorescence quenching methods. J. Biomol. Struct. Dyn., 2011, 28(4), 483-502. doi: 10.1080/07391102.2011.10508590 PMID: 21142219
- Azzalini, E.; Barbazza, R.; Stanta, G.; Giorda, G.; Bortot, L.; Bartoletti, M.; Puglisi, F.; Canzonieri, V.; Bonin, S. Histological patterns and intra-tumor heterogeneity as prognostication tools in high grade serous ovarian cancers. Gynecol. Oncol., 2021, 163(3), 498-505. doi: 10.1016/j.ygyno.2021.09.012 PMID: 34602289
- Rong, C.; Shi, Y.; Huang, J.; Wang, X.; Shimizu, R.; Mori, Y.; Murai, A.; Liang, J. The effect of metadherin on NF-κB activation and downstream genes in ovarian cancer. Cell Transplant., 2020, 29 doi: 10.1177/0963689720905506 PMID: 32207338
- Sommerfeld, L.; Finkernagel, F.; Jansen, J.M.; Wagner, U.; Nist, A.; Stiewe, T.; Müller-Brüsselbach, S.; Sokol, A.M.; Graumann, J.; Reinartz, S.; Müller, R. The multicellular signalling network of ovarian cancer metastases. Clin. Transl. Med., 2021, 11(11), e633. doi: 10.1002/ctm2.633 PMID: 34841720
- Shi, J.; Huo, R.; Li, N.; Li, H.; Zhai, T.; Li, H.; Shen, B.; Ye, J.; Fu, R.; Di, W. CYR61, a potential biomarker of tumor inflammatory response in epithelial ovarian cancer microenvironment of tumor progress. BMC Cancer, 2019, 19(1), 1140. doi: 10.1186/s12885-019-6321-x PMID: 31766991
- Liu, J.; Li, L.; Luo, N.; Liu, Q.; Liu, L.; Chen, D.; Cheng, Z.; Xi, X. Inflammatory signals induce MUC16 expression in ovarian cancer cells via NF‑κB activation. Exp. Ther. Med., 2020, 21(2), 163. doi: 10.3892/etm.2020.9594 PMID: 33456530
- Jo, E.; Jang, H.J.; Yang, K.E.; Jang, M.S.; Huh, Y.H.; Yoo, H.S.; Park, J.S.; Jang, I.S.; Park, S.J. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement. Med. Ther., 2020, 20(1), 1. doi: 10.1186/s12906-019-2780-5 PMID: 32020859
- Liu, C.; Huang, X.; Su, H. The role of the inflammasome and its related pathways in ovarian cancer. Clin. Transl. Oncol., 2022, 24(8), 1470-1477. doi: 10.1007/s12094-022-02805-y PMID: 35288840
- Gening, S.O.; Abakumova, T.V.; Antoneeva, I.I.; Rizvanov, A.A.; Gening, T.P.; Gafurbaeva, D.U. Stem-like tumor cells and proinflammatory cytokines in the ascitic fluid of ovarian cancer patients. Russ. Clin. Lab. Diagn., 2021, 66(5), 297-303. doi: 10.51620/0869-2084-2021-66-5-297-303 PMID: 34047516
- Mao, T.L.; Fan, M.H.; Dlamini, N.; Liu, C.L. LncRNA MALAT1 facilitates ovarian cancer progression through promoting chemoresistance and invasiveness in the tumor microenvironment. Int. J. Mol. Sci., 2021, 22(19), 10201. doi: 10.3390/ijms221910201 PMID: 34638541
- Wang, D.; Zhang, L.; Hu, A.; Wang, Y.; Liu, Y.; Yang, J.; Du, N.; An, X.; Wu, C.; Liu, C. Loss of 4.1N in epithelial ovarian cancer results in EMT and matrix-detached cell death resistance. Protein Cell, 2021, 12(2), 107-127. doi: 10.1007/s13238-020-00723-9 PMID: 32448967
- Fan, L.; Lei, H.; Zhang, S.; Peng, Y.; Fu, C.; Shu, G.; Yin, G. Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10. Theranostics, 2020, 10(13), 5895-5913. doi: 10.7150/thno.43198 PMID: 32483426
- Augustine, D.; Khan, W.; Rao, R.; Patil, S.; Awan, K.; Sowmya, S.; Haragannavar, V.; Prasad, K. Lipid metabolism in cancer: A systematic review. J. Carcinog., 2021, 20(1), 4. doi: 10.4103/jcar.JCar_15_20 PMID: 34321955
- Cai, L.; He, Y.; Huang, H. The role and mechanism of lycopene in regulating the PI3K/AKT pathway to inhibit epithelial-mesenchymal transition in ovarian cancer cells. Chin. Tradit. Herbal Drugs, 2022, (08), 1943-1948.
- Yao, Z.; Gao, G.; Yang, J.; Long, Y.; Wang, Z.; Hu, W.; Liu, Y. Prognostic role of the activated p-AKT molecule in various hematologic malignancies and solid tumors: A meta-analysis. Front. Oncol., 2020, 10, 588200. doi: 10.3389/fonc.2020.588200 PMID: 33363017
- Deng, S.; Leong, H.C.; Datta, A.; Gopal, V.; Kumar, A.P.; Yap, C.T. PI3K/AKT signaling tips the balance of cytoskeletal forces for cancer progression. Cancers, 2022, 14(7), 1652. doi: 10.3390/cancers14071652 PMID: 35406424
- Malek-Esfandiari, Z.; Rezvani-Noghani, A.; Sohrabi, T.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Chamani, J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J. Fluoresc., 2023, 33(4), 1537-1557. doi: 10.1007/s10895-023-03169-4 PMID: 36787038
- Wang, Y.; Huang, Z.; Li, B.; Liu, L.; Huang, C. The emerging roles and therapeutic implications of epigenetic modifications in ovarian cancer. Front. Endocrinol., 2022, 13, 863541. doi: 10.3389/fendo.2022.863541 PMID: 35620395
- Ratovitski, E. Anticancer natural compounds as epigenetic modulators of gene expression. Curr. Genomics, 2017, 18(2), 175-205. doi: 10.2174/1389202917666160803165229 PMID: 28367075
- To, K.K.W.; Cho, W.C.S. Flavonoids overcome drug resistance to cancer chemotherapy by epigenetically modulating multiple mechanisms. Curr. Cancer Drug Targets, 2021, 21(4), 289-305. doi: 10.2174/1568009621666210203111220 PMID: 33535954
- Zając, A.; Sumorek-Wiadro, J.; Maciejczyk, A.; Langner, E.; Wertel, I.; Rzeski, W.; Jakubowicz-Gil, J. LY294002 and sorafenib as inhibitors of intracellular survival pathways in the elimination of human glioma cells by programmed cell death. Cell Tissue Res., 2021, 386(1), 17-28. doi: 10.1007/s00441-021-03481-0 PMID: 34236519
- Andreidesz, K.; Koszegi, B.; Kovacs, D.; Bagone, V.V.; Gallyas, F.; Kovacs, K. Effect of oxaliplatin, olaparib and LY294002 in combination on triple-negative breast cancer cells. Int. J. Mol. Sci., 2021, 22(4), 2056. doi: 10.3390/ijms22042056 PMID: 33669671
- Bai, J.; Xu, Y.; Dieo, Y.; Sun, G. Combined low-dose LiCl and LY294002 for the treatment of osteoporosis in ovariectomized rats. J. Orthop. Surg. Res., 2019, 14(1), 177. doi: 10.1186/s13018-019-1210-1 PMID: 31196133
- Yang, H.; Li, H.; Lu, S.; Shan, S.; Guo, Y. Fuzheng jiedu decoction induces apoptosis and enhances cisplatin efficacy in ovarian cancer cells in vitro and in vivo through inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway. BioMed Res. Int., 2022, 2022, 1-18. doi: 10.1155/2022/5739909 PMID: 35281608
补充文件
