Uses of Cyclohexan-1,3-diones to Synthesis Xanthenes Derivatives with Anti-proliferative Activity Against Cancer Cell Lines and their Inhibitions Toward Tyrosine Kinases
- Авторы: Mohareb R.1, Abdo N.2, Ibrahim M.1
-
Учреждения:
- Department of Chemistry, Faculty of Science, Cairo University
- Department of Chemistry, Faculty of Education,, Alexandria University
- Выпуск: Том 25, № 9 (2025)
- Страницы: 643-662
- Раздел: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694520
- DOI: https://doi.org/10.2174/0118715206350037241206062610
- ID: 694520
Цитировать
Полный текст
Аннотация
Background:Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, antiinflammatory, anticancer, and antioxidant effects. Their structural flexibility allows for modifications that can enhance specific biological functions, making them valuable candidates in medicinal chemistry and drug development.
Objective:Multi-component reactions involving two equivalents of 5,5-dimethylcyclohexane-1,3-dione with aromatic aldehydes yield xanthene derivatives that are known for their biological activity. Additionally, fused xanthene derivatives are formed through subsequent heterocyclization reactions, resulting in compounds with a broad range of biological properties.
Methods:Various xanthene derivatives incorporating thiophene and thiazole moieties were synthesized. Compounds 3a-c were further subjected to heterocyclization reactions to produce fused xanthene derivatives with additional heterocyclic components, enhancing their biological activity. The cytotoxic effects of the synthesized compounds were assessed across six cancer cell lines. Inhibition studies on c-Met kinase and the PC-3 cell line were conducted.
Results:Additionally, the compounds' inhibitory activity against tyrosine kinases was evaluated, and morphological changes in the A549 cell line were observed with the two most potent compounds.
Conclusion:The synthesized heterocyclic compounds, derived from 5,5-dimethylcyclohexane-1,3-dione and related cyclohexanone derivatives, exhibited significant inhibitory effects across various cancer cell lines. Specifically, compounds 3b, 5c, 5d, 7b, 7c, 7d, 9a, 9b, 10b, 10c, 12c, 15b, 15c, 16b, 16c, 17c, 17d, 17e, and 17f demonstrated high levels of inhibition, indicating potential for further exploration of xanthene-based heterocyclic compounds to enhance anticancer properties.
Ключевые слова
Об авторах
Rafat Mohareb
Department of Chemistry, Faculty of Science, Cairo University
Автор, ответственный за переписку.
Email: info@benthamscience.net
Nadia Abdo
Department of Chemistry, Faculty of Education,, Alexandria University
Email: info@benthamscience.net
Marwa Ibrahim
Department of Chemistry, Faculty of Science, Cairo University
Email: info@benthamscience.net
Список литературы
- Rajan, D.; Rajamanikandan, R.; Ilanchelian, M. Exploring the photophysical interaction of Xanthene dyes with gold nanorods by optical spectroscopic techniques and in-vitro cytotoxicity studies of dye-nano conjugates. Dyes Pigments, 2023, 220, 111746. doi: 10.1016/j.dyepig.2023.111746
- Khan, Z.; Sekar, N. Effect of spirocyclization of Xanthene dyes on linear and nonlinear optical properties by considering D-π-A and D-A-D Systems: DFT and TD-DFT approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2024, 314, 124183. doi: 10.1016/j.saa.2024.124183 PMID: 38554693
- Sharma, S.; Mohan, D.; Singh, N.; Sharma, M.; Sharma, A.K. Spectroscopic and lasing properties of Xanthene dyes encapsulated in silica and polymeric matrices. Optik (Stuttg.), 2010, 121(1), 11-18. doi: 10.1016/j.ijleo.2008.05.005
- Kalampaliki, A.D.; Vincent, S.; Mallick, S.; Le, H.N.; Barnoin, G.; More, Y.W.; Burger, A.; Dotsikas, Y.; Gikas, E.; Michel, B.Y.; Kostakis, I.K. Synthesis, spectroscopic and computational evaluation of a Xanthene-based fluorogenic derivatization reagent for the determination of primary amines. Dyes Pigments, 2021, 196, 109798. doi: 10.1016/j.dyepig.2021.109798
- Wu, Y.; Lun, W.; Zeng, H.; Guo, X.; Yang, M.; Lan, Q. A facile near-infrared Xanthene fluorescence probe for visualizing of hypochlorous acid in vitro and in vivo. Anal. Chim. Acta, 2024, 1294, 342292. doi: 10.1016/j.aca.2024.342292 PMID: 38336413
- El Mesky, M.; Zgueni, H.; Rhazi, Y.; El-Guourrami, O.; Abchir, O.; Jabha, M.; Nakkabi, A.; Chtita, S.; Achamlale, S.; Chalkha, M.; Chebabe, D.; Mabrouk, E.H. Prediction by DFT and synthesis of new Xanthene derivatives: Evaluation of their toxicity and antihyperlipidemic properties in vivo and in silico. J. Mol. Struct., 2024, 1313, 138705. doi: 10.1016/j.molstruc.2024.138705
- Mennana, I.; Nemouchi, S.; Sehout, I.; Krid, A.; Boulcina, R.; Mechouche, M.S.; Debache, A. Synthesis, characterization, in silico molecular docking and antibacterial properties of some tetrahydrobenzoaxanthene-11-ones. Org. Prep. Proced. Int., 2024, 56(4), 379-391. doi: 10.1080/00304948.2024.2327227
- Ranjbari, S.; Jarrahpour, A.; Heiran, R.; Sepehri, S.; Kianpour, S.; Ghasemi, Y. Dibenzoxanthene-β-lactam hybrids as potential antioxidant and anticancer agents: Synthesis, biological evaluation, and docking study. J. Mol. Struct., 2025, 1322, 140455. doi: 10.1016/j.molstruc.2024.140455
- Khaki, D.; Namazi, H.; Amininasab, S.M. Synthesis and identification of new thermostable polyamides containing Xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles. React. Funct. Polym., 2021, 158, 104780. doi: 10.1016/j.reactfunctpolym.2020.104780
- Kaur, N.; Dhairwal, P.; Brar, A.; Kaur, G.; Bhalla, A.; Prakash, C.; Chaudhary, G.R. Amphiphilic metallosurfactants as potential scaffolds for facile fabrication of PdO-NiO nanocomposites for environmentally benign synthesis of Xanthene derivatives. Mater. Today Chem., 2019, 14, 100194. doi: 10.1016/j.mtchem.2019.100194
- Bongard, R.D.; Lepley, M.; Gastonguay, A.; Syrlybaeva, R.R.; Talipov, M.R.; Jones Lipinski, R.A.; Leigh, N.R.; Brahmbhatt, J.; Kutty, R.; Rathore, R.; Ramchandran, R.; Sem, D.S. Discovery and characterization of halogenated Xanthene inhibitors of DUSP5 as potential photodynamic therapeutics. J. Photochem. Photobiol. Chem., 2019, 375, 114-131. doi: 10.1016/j.jphotochem.2019.01.005 PMID: 31839699
- Niasar, F.N.; Moradian, M. Synthesis of some derivatives of 1,8-dioxo-octa-hydro Xanthene and 9-aryl-hexahydro acridine-1,8-dione using metal ion-exchanged NaY zeolite as heterogeneous catalyst. RSC Advances, 2024, 14(15), 10322-10330. doi: 10.1039/D3RA03020B PMID: 38549799
- Parhad, A.R.; Aute, D.S.; Gadhave, A.G.; Uphade, B.K. Synthesis of tetrahydrobenzoaxanthene-11-ones by indium sulfide nanoparticles as green an efficient and reusable catalyst under solvent-free condition. J. Sulfur Chem., 2024, 45(4), 459-476. doi: 10.1080/17415993.2024.2350389
- Karimian, A.; Norouzi, M.; Ebrahimnia, A.; Nozari, A. Fe3O4@SiO2@APTES@MPIB-Mn(II) as an eco-friendly and magnetically recyclable nano catalyst for the green synthesis of various Xanthene derivatives. J. Mol. Struct., 2024, 1297, 137014. doi: 10.1016/j.molstruc.2023.137014
- Alotaibi, M.A.; Alharthi, A.I.; Qahtan, T.F.; Alotibi, S.; Ali, I.; Bakht, M.A. Green synthesis of Xanthene derivatives through visible light-driven photocatalysis using blackberry dye-sensitized TiO2. J. Alloys Compd., 2024, 978, 173388. doi: 10.1016/j.jallcom.2023.173388
- Nasseri, S.; Kiasat, A.R. Designing of a novel dual-function cross-linked wrinkled fibrous silica nanocomposite containing bipyridinum dichloride bridges and brønsted acidic unites and its catalytic application in Xanthene synthesis. J. Taiwan Inst. Chem. Eng., 2024, 157, 105402. doi: 10.1016/j.jtice.2024.105402
- Luo, Y.; Shi, M.; Dong, L.; Xie, T.; Lartey, P.O.; Zhao, S.; Guo, K.; Wang, H.; Miao, Y.; Li, J. Synthesis and properties of naphthylamine derivative functionalized spiro-fluorene-9,9′-xanthene for single-component white light-emitting diodes. J. Mol. Struct., 2024, 1317, 139122. doi: 10.1016/j.molstruc.2024.139122
- Merroun, Y.; Chehab, S.; El Hallaoui, A.; Guedira, T.; Boukhris, S.; Ghailane, R.; Souizi, A. Synthesis, characterization, and catalytic application of SnP 2 O 7 for the highly efficient synthesis of Xanthene derivatives. Polycycl. Aromat. Compd., 2024, 44(7), 4349-4363. doi: 10.1080/10406638.2023.2247128
- Naderi, S.; Sandaroos, R.; Peiman, S.; Maleki, B. Novel crowned cobalt (II) complex containing an ionic liquid: A green and efficient catalyst for the one-pot synthesis of chromene and Xanthene derivatives starting from benzylic alcohols. J. Phys. Chem. Solids, 2023, 180, 111459. doi: 10.1016/j.jpcs.2023.111459
- Londhe, G.S.; Gnanaprakasam, B. FeCl 3 ⋅ 6H 2 O mediated sequential oxidative cleavage and spiro coupling of peroxyoxindole with cyclic‐1,3‐diketone/1‐naphthol for the synthesis of spirooxindolo‐xanthene derivatives. Asian J. Org. Chem., 2023, 12(11), e202300358. doi: 10.1002/ajoc.202300358
- Thanaraj, C.; Alagesan, M.; Velladurai, R. Reusable SiO 2 @NiO core-shell nanoparticles catalyzed efficient synthesis of 14-aryl-14 H -dibenzo a,i xanthene-8, 13-dione derivatives. Synth. Commun., 2023, 53(23), 2002-2017. doi: 10.1080/00397911.2023.2261571
- Taib, L.A.; Keshavarz, M.; Panahimehr, M. Introduction of click synthesized novel organic-inorganic solid acid catalysts for highly promoted synthesis of substituted xanthenes. Polycycl. Aromat. Compd., 2023, 43(3), 2233-2249. doi: 10.1080/10406638.2022.2128380
- Mohamadpour, F. Supramolecular β -cyclodextrin as a reusable catalyst for Xanthene synthesis in aqueous medium. Org. Prep. Proced. Int., 2023, 55(4), 317-325. doi: 10.1080/00304948.2022.2141047
- Alsharif, M.A.; Ahmed, N.; Issa Alahmdi, M.; Mukhtar, S.; Parveen, H.; Obaid, R.J.; Almalki, A.S.A. Divergent synthesis of fused Benzo-xanthene and oxazine derivatives via Cu-catalyst. J. Saudi Chem. Soc., 2022, 26(6), 101568. doi: 10.1016/j.jscs.2022.101568
- Chawala, V.; Kheto, A.; Sharma, L.; Sehrawat, R. Chapter Two - Microwave and ultrasound-assisted sample preparation as green analytical technology in food analysis. In: Green Chemistry in Food Analysis Conventional and Emerging Approaches; , 2024; pp. 25-43.
- Kajal, K.; Shakya, R.; Rashid, M.; Nigam, V.; Kurmi, B.D.; Gupta, G.D.; Patel, P. Recent green chemistry approaches for pyrimidine derivatives as a potential anti-cancer agent: An overview (2013–2023). Sustain. Chem. Pharm., 2024, 37, 101374. doi: 10.1016/j.scp.2023.101374
- Verma, C.; Chauhan, D.S.; Aslam, R.; Banerjee, P.; Aslam, J.; Quadri, T.W.; Zehra, S.; Verma, D.K.; Quraishi, M.A.; Dubey, S.; AlFantazi, A.; Rasheed, T. Principles and theories of green chemistry for corrosion science and engineering: design and application. Green Chem., 2024, 26(8), 4270-4357. doi: 10.1039/D3GC05207A
- Majhi, S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem., 2021, 77, 105665. doi: 10.1016/j.ultsonch.2021.105665 PMID: 34298310
- Fujita, M.; Furusho, Y. Ultrasound-assisted synthesis of substituted guanidines using 1H-pyrazole-1-carboxamidine and S-methylisothiouronium sulfate under solvent-free conditions. Tetrahedron, 2018, 74(32), 4339-4342. doi: 10.1016/j.tet.2018.06.057
- Bhosale, M.A.; Ummineni, D.; Sasaki, T.; Nishio-Hamane, D.; Bhanage, B.M. Magnetically separable γ-Fe2O3 nanoparticles: An efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition. J. Mol. Catal. Chem., 2015, 404-405, 8-17. doi: 10.1016/j.molcata.2015.04.002
- Sahu, C.C.; Biswas, S.; Hommelsheim, R.; Bolm, C. Synthesis of α-ketothioamides with elemental sulfur under solvent-free conditions in a mixer mill. RSC Mechanochemistry, 2024, 1(1), 38-42. doi: 10.1039/D3MR00025G
- Tasic, G.; Mitrovic, N.; Simic, M.; Koravovic, M.; Jovanovic, P.; Petkovic, M.; Jovanovic, M.; Ivkovic, B.; Savic, V. Synthesis of hydantoins from N‐Boc protected amino acid derived amides using polymer‐supported PPh 3 / CBr 4 as a reagent. J. Heterocycl. Chem., 2024, 61(5), 753-760. doi: 10.1002/jhet.4802
- Ma, B.; Yao, J.; Knudsen, T.Š.; Chen, Z.; Liu, B.; Zhao, C.; Zhu, X. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. J. Hazard. Mater., 2022, 424(Pt C), 126698. doi: 10.1016/j.jhazmat.2021.126698 PMID: 34315632
- Mohareb, R.M.; Ibrahim, R.A.; Al Farouk, F.O.; Alwan, E.S. Ionic liquid immobilized synthesis of new Xantheses derivatives and their antiproliferative, molecular docking and morphological studies. Anticancer. Agents Med. Chem., 2024, 24(13), 990-1008. doi: 10.2174/0118715206299407240324110505 PMID: 38685778
- Mohareb, R.M.; Mukhtar, S.; Parveen, H.; Abdelaziz, M.A.; Alwan, E.S. Anti-proliferative, morphological and molecular docking studies of new thiophene derivatives and their strategy in ionic liquids immobilized reactions. Anticancer. Agents Med. Chem., 2024, 24(9), 691-708. doi: 10.2174/0118715206262307231122104748 PMID: 38321904
- Reeve, A.M. Reaction of dimedone and benzaldehyde: A discovery-based lab for second-semester organic chemistry. J. Chem. Educ., 2015, 92(3), 582-585. doi: 10.1021/ed400457c
- Wang, D.L.; Wu, J.Y.; Cui, Q.T. An efficient one-pot synthesis of thiophene-fused pyrido3,2-aazulenes via Gewald reaction. Chin. Chem. Lett., 2014, 25(12), 1591-1594. doi: 10.1016/j.cclet.2014.07.007
- El-Borai, M.A.; Rizk, H.F.; Ibrahim, S.A.; Fares, A.K. An eco‐friendly synthesis and biological screening of fused heterocyclic compounds containing a thiophene moiety via Gewald reaction. J. Heterocycl. Chem., 2019, 56(10), 2787-2795. doi: 10.1002/jhet.3658
- Barnes, D.M.; Haight, A.R.; Hameury, T.; McLaughlin, M.A.; Mei, J.; Tedrow, J.S.; Riva Toma, J.D. New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor. Tetrahedron, 2006, 62(49), 11311-11319. doi: 10.1016/j.tet.2006.07.008
- Savickienė, V.; Bieliauskas, A.; Belyakov, S.; Šačkus, A.; Arbačiauskienė, E. Synthesis and characterization of novel biheterocyclic compounds from 3‐alkoxy‐1 H ‐pyrazole‐4‐carbaldehydes via multicomponent reactions. J. Heterocycl. Chem., 2024, 61(6), 927-947. doi: 10.1002/jhet.4804
- Zhong, Y. Arylformylacetonitriles in multicomponent reactions leading to heterocycles. Eur. J. Org. Chem., 2022, 2022(48), e202201038. doi: 10.1002/ejoc.202201038
- Mandal, A.; Khan, A.T. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org. Biomol. Chem., 2024, 22(12), 2339-2358. doi: 10.1039/D4OB00034J PMID: 38444342
- Jelizi, H.; Toumi, A.; Abdella, F.I.A.; Daoud, I.; Boudriga, S.; Alshamari, A.K.; Alanazi, T.Y.A.; Alrashdi, A.A.; Edziri, H.; Knorr, M.; Kirchhoff, J.L.; Strohmann, C. Asymmetric synthesis of enantiopure tetracyclic dispirooxindolopyrrolidine-piperidones via microwave-assisted multicomponent reaction: Crystallographic analysis, antimicrobial activity and in silico studies. J. Mol. Struct., 2024, 1308, 138104. doi: 10.1016/j.molstruc.2024.138104
- Peach, M.L.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R., Jr; Nicklaus, M.C.; Bottaro, D.P.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52(4), 943-951. doi: 10.1021/jm800791f PMID: 19199650
- De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661. doi: 10.1093/jnci/djr093 PMID: 21464397
- Jabbarzadeh Kaboli, P.; Chen, H.F.; Babaeizad, A.; Roustai Geraylow, K.; Yamaguchi, H.; Hung, M.C. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett., 2024, 588, 216780. doi: 10.1016/j.canlet.2024.216780 PMID: 38462033
- Raju, R.M.; Joy, J.A.; Manjunathaiah, R.N.; Justin, A.; Kumar, B.R. EGFR as therapeutic target to develop new generation tyrosine kinase inhibitors against breast cancer: A critical. Results Chem., 2024, 7, 101490.
- Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl), S7-S19. doi: 10.1177/1758834011422556 PMID: 22128289
- Jeffers, M.; Rong, S.; Vande Woude, G.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med. (Berl.), 1996, 74(9), 505-513. doi: 10.1007/BF00204976 PMID: 8892055
- Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Vande Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60(6), 1113-1117. doi: 10.1016/S0090-4295(02)01954-4 PMID: 12475693
- Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol., 1995, 147(2), 386-396. PMID: 7639332
- Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67(3), 967-975. doi: 10.1158/0008-5472.CAN-06-3552 PMID: 17283128
- Daoui, O.; Elkhattabi, S.; Chtita, S.; Elkhalabi, R.; Zgou, H.; Benjelloun, A.T. QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzoD-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon, 2021, 7(7), e07463. doi: 10.1016/j.heliyon.2021.e07463
- Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855. doi: 10.1016/j.bmc.2013.04.013 PMID: 23628470
- Zhang, C.; Sheng, M.; lv, J.; Cao, Y.; Chen, D.; Jia, L.; Sun, Y.; Ren, Y.; Li, L.; Weng, Y.; Yu, W. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia–reperfusion. Int. Immunopharmacol., 2023, 124(Pt B), 111043. doi: 10.1016/j.intimp.2023.111043 PMID: 37844464
Дополнительные файлы
