Uses of Cyclohexan-1,3-diones to Synthesis Xanthenes Derivatives with Anti-proliferative Activity Against Cancer Cell Lines and their Inhibitions Toward Tyrosine Kinases


Цитировать

Полный текст

Аннотация

Background:Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, antiinflammatory, anticancer, and antioxidant effects. Their structural flexibility allows for modifications that can enhance specific biological functions, making them valuable candidates in medicinal chemistry and drug development.

Objective:Multi-component reactions involving two equivalents of 5,5-dimethylcyclohexane-1,3-dione with aromatic aldehydes yield xanthene derivatives that are known for their biological activity. Additionally, fused xanthene derivatives are formed through subsequent heterocyclization reactions, resulting in compounds with a broad range of biological properties.

Methods:Various xanthene derivatives incorporating thiophene and thiazole moieties were synthesized. Compounds 3a-c were further subjected to heterocyclization reactions to produce fused xanthene derivatives with additional heterocyclic components, enhancing their biological activity. The cytotoxic effects of the synthesized compounds were assessed across six cancer cell lines. Inhibition studies on c-Met kinase and the PC-3 cell line were conducted.

Results:Additionally, the compounds' inhibitory activity against tyrosine kinases was evaluated, and morphological changes in the A549 cell line were observed with the two most potent compounds.

Conclusion:The synthesized heterocyclic compounds, derived from 5,5-dimethylcyclohexane-1,3-dione and related cyclohexanone derivatives, exhibited significant inhibitory effects across various cancer cell lines. Specifically, compounds 3b, 5c, 5d, 7b, 7c, 7d, 9a, 9b, 10b, 10c, 12c, 15b, 15c, 16b, 16c, 17c, 17d, 17e, and 17f demonstrated high levels of inhibition, indicating potential for further exploration of xanthene-based heterocyclic compounds to enhance anticancer properties.

Об авторах

Rafat Mohareb

Department of Chemistry, Faculty of Science, Cairo University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Nadia Abdo

Department of Chemistry, Faculty of Education,, Alexandria University

Email: info@benthamscience.net

Marwa Ibrahim

Department of Chemistry, Faculty of Science, Cairo University

Email: info@benthamscience.net

Список литературы

  1. Rajan, D.; Rajamanikandan, R.; Ilanchelian, M. Exploring the photophysical interaction of Xanthene dyes with gold nanorods by optical spectroscopic techniques and in-vitro cytotoxicity studies of dye-nano conjugates. Dyes Pigments, 2023, 220, 111746. doi: 10.1016/j.dyepig.2023.111746
  2. Khan, Z.; Sekar, N. Effect of spirocyclization of Xanthene dyes on linear and nonlinear optical properties by considering D-π-A and D-A-D Systems: DFT and TD-DFT approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2024, 314, 124183. doi: 10.1016/j.saa.2024.124183 PMID: 38554693
  3. Sharma, S.; Mohan, D.; Singh, N.; Sharma, M.; Sharma, A.K. Spectroscopic and lasing properties of Xanthene dyes encapsulated in silica and polymeric matrices. Optik (Stuttg.), 2010, 121(1), 11-18. doi: 10.1016/j.ijleo.2008.05.005
  4. Kalampaliki, A.D.; Vincent, S.; Mallick, S.; Le, H.N.; Barnoin, G.; More, Y.W.; Burger, A.; Dotsikas, Y.; Gikas, E.; Michel, B.Y.; Kostakis, I.K. Synthesis, spectroscopic and computational evaluation of a Xanthene-based fluorogenic derivatization reagent for the determination of primary amines. Dyes Pigments, 2021, 196, 109798. doi: 10.1016/j.dyepig.2021.109798
  5. Wu, Y.; Lun, W.; Zeng, H.; Guo, X.; Yang, M.; Lan, Q. A facile near-infrared Xanthene fluorescence probe for visualizing of hypochlorous acid in vitro and in vivo. Anal. Chim. Acta, 2024, 1294, 342292. doi: 10.1016/j.aca.2024.342292 PMID: 38336413
  6. El Mesky, M.; Zgueni, H.; Rhazi, Y.; El-Guourrami, O.; Abchir, O.; Jabha, M.; Nakkabi, A.; Chtita, S.; Achamlale, S.; Chalkha, M.; Chebabe, D.; Mabrouk, E.H. Prediction by DFT and synthesis of new Xanthene derivatives: Evaluation of their toxicity and antihyperlipidemic properties in vivo and in silico. J. Mol. Struct., 2024, 1313, 138705. doi: 10.1016/j.molstruc.2024.138705
  7. Mennana, I.; Nemouchi, S.; Sehout, I.; Krid, A.; Boulcina, R.; Mechouche, M.S.; Debache, A. Synthesis, characterization, in silico molecular docking and antibacterial properties of some tetrahydrobenzoaxanthene-11-ones. Org. Prep. Proced. Int., 2024, 56(4), 379-391. doi: 10.1080/00304948.2024.2327227
  8. Ranjbari, S.; Jarrahpour, A.; Heiran, R.; Sepehri, S.; Kianpour, S.; Ghasemi, Y. Dibenzoxanthene-β-lactam hybrids as potential antioxidant and anticancer agents: Synthesis, biological evaluation, and docking study. J. Mol. Struct., 2025, 1322, 140455. doi: 10.1016/j.molstruc.2024.140455
  9. Khaki, D.; Namazi, H.; Amininasab, S.M. Synthesis and identification of new thermostable polyamides containing Xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles. React. Funct. Polym., 2021, 158, 104780. doi: 10.1016/j.reactfunctpolym.2020.104780
  10. Kaur, N.; Dhairwal, P.; Brar, A.; Kaur, G.; Bhalla, A.; Prakash, C.; Chaudhary, G.R. Amphiphilic metallosurfactants as potential scaffolds for facile fabrication of PdO-NiO nanocomposites for environmentally benign synthesis of Xanthene derivatives. Mater. Today Chem., 2019, 14, 100194. doi: 10.1016/j.mtchem.2019.100194
  11. Bongard, R.D.; Lepley, M.; Gastonguay, A.; Syrlybaeva, R.R.; Talipov, M.R.; Jones Lipinski, R.A.; Leigh, N.R.; Brahmbhatt, J.; Kutty, R.; Rathore, R.; Ramchandran, R.; Sem, D.S. Discovery and characterization of halogenated Xanthene inhibitors of DUSP5 as potential photodynamic therapeutics. J. Photochem. Photobiol. Chem., 2019, 375, 114-131. doi: 10.1016/j.jphotochem.2019.01.005 PMID: 31839699
  12. Niasar, F.N.; Moradian, M. Synthesis of some derivatives of 1,8-dioxo-octa-hydro Xanthene and 9-aryl-hexahydro acridine-1,8-dione using metal ion-exchanged NaY zeolite as heterogeneous catalyst. RSC Advances, 2024, 14(15), 10322-10330. doi: 10.1039/D3RA03020B PMID: 38549799
  13. Parhad, A.R.; Aute, D.S.; Gadhave, A.G.; Uphade, B.K. Synthesis of tetrahydrobenzoaxanthene-11-ones by indium sulfide nanoparticles as green an efficient and reusable catalyst under solvent-free condition. J. Sulfur Chem., 2024, 45(4), 459-476. doi: 10.1080/17415993.2024.2350389
  14. Karimian, A.; Norouzi, M.; Ebrahimnia, A.; Nozari, A. Fe3O4@SiO2@APTES@MPIB-Mn(II) as an eco-friendly and magnetically recyclable nano catalyst for the green synthesis of various Xanthene derivatives. J. Mol. Struct., 2024, 1297, 137014. doi: 10.1016/j.molstruc.2023.137014
  15. Alotaibi, M.A.; Alharthi, A.I.; Qahtan, T.F.; Alotibi, S.; Ali, I.; Bakht, M.A. Green synthesis of Xanthene derivatives through visible light-driven photocatalysis using blackberry dye-sensitized TiO2. J. Alloys Compd., 2024, 978, 173388. doi: 10.1016/j.jallcom.2023.173388
  16. Nasseri, S.; Kiasat, A.R. Designing of a novel dual-function cross-linked wrinkled fibrous silica nanocomposite containing bipyridinum dichloride bridges and brønsted acidic unites and its catalytic application in Xanthene synthesis. J. Taiwan Inst. Chem. Eng., 2024, 157, 105402. doi: 10.1016/j.jtice.2024.105402
  17. Luo, Y.; Shi, M.; Dong, L.; Xie, T.; Lartey, P.O.; Zhao, S.; Guo, K.; Wang, H.; Miao, Y.; Li, J. Synthesis and properties of naphthylamine derivative functionalized spiro-fluorene-9,9′-xanthene for single-component white light-emitting diodes. J. Mol. Struct., 2024, 1317, 139122. doi: 10.1016/j.molstruc.2024.139122
  18. Merroun, Y.; Chehab, S.; El Hallaoui, A.; Guedira, T.; Boukhris, S.; Ghailane, R.; Souizi, A. Synthesis, characterization, and catalytic application of SnP 2 O 7 for the highly efficient synthesis of Xanthene derivatives. Polycycl. Aromat. Compd., 2024, 44(7), 4349-4363. doi: 10.1080/10406638.2023.2247128
  19. Naderi, S.; Sandaroos, R.; Peiman, S.; Maleki, B. Novel crowned cobalt (II) complex containing an ionic liquid: A green and efficient catalyst for the one-pot synthesis of chromene and Xanthene derivatives starting from benzylic alcohols. J. Phys. Chem. Solids, 2023, 180, 111459. doi: 10.1016/j.jpcs.2023.111459
  20. Londhe, G.S.; Gnanaprakasam, B. FeCl 3 ⋅ 6H 2 O mediated sequential oxidative cleavage and spiro coupling of peroxyoxindole with cyclic‐1,3‐diketone/1‐naphthol for the synthesis of spirooxindolo‐xanthene derivatives. Asian J. Org. Chem., 2023, 12(11), e202300358. doi: 10.1002/ajoc.202300358
  21. Thanaraj, C.; Alagesan, M.; Velladurai, R. Reusable SiO 2 @NiO core-shell nanoparticles catalyzed efficient synthesis of 14-aryl-14 H -dibenzo a,i xanthene-8, 13-dione derivatives. Synth. Commun., 2023, 53(23), 2002-2017. doi: 10.1080/00397911.2023.2261571
  22. Taib, L.A.; Keshavarz, M.; Panahimehr, M. Introduction of click synthesized novel organic-inorganic solid acid catalysts for highly promoted synthesis of substituted xanthenes. Polycycl. Aromat. Compd., 2023, 43(3), 2233-2249. doi: 10.1080/10406638.2022.2128380
  23. Mohamadpour, F. Supramolecular β -cyclodextrin as a reusable catalyst for Xanthene synthesis in aqueous medium. Org. Prep. Proced. Int., 2023, 55(4), 317-325. doi: 10.1080/00304948.2022.2141047
  24. Alsharif, M.A.; Ahmed, N.; Issa Alahmdi, M.; Mukhtar, S.; Parveen, H.; Obaid, R.J.; Almalki, A.S.A. Divergent synthesis of fused Benzo-xanthene and oxazine derivatives via Cu-catalyst. J. Saudi Chem. Soc., 2022, 26(6), 101568. doi: 10.1016/j.jscs.2022.101568
  25. Chawala, V.; Kheto, A.; Sharma, L.; Sehrawat, R. Chapter Two - Microwave and ultrasound-assisted sample preparation as green analytical technology in food analysis. In: Green Chemistry in Food Analysis Conventional and Emerging Approaches; , 2024; pp. 25-43.
  26. Kajal, K.; Shakya, R.; Rashid, M.; Nigam, V.; Kurmi, B.D.; Gupta, G.D.; Patel, P. Recent green chemistry approaches for pyrimidine derivatives as a potential anti-cancer agent: An overview (2013–2023). Sustain. Chem. Pharm., 2024, 37, 101374. doi: 10.1016/j.scp.2023.101374
  27. Verma, C.; Chauhan, D.S.; Aslam, R.; Banerjee, P.; Aslam, J.; Quadri, T.W.; Zehra, S.; Verma, D.K.; Quraishi, M.A.; Dubey, S.; AlFantazi, A.; Rasheed, T. Principles and theories of green chemistry for corrosion science and engineering: design and application. Green Chem., 2024, 26(8), 4270-4357. doi: 10.1039/D3GC05207A
  28. Majhi, S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem., 2021, 77, 105665. doi: 10.1016/j.ultsonch.2021.105665 PMID: 34298310
  29. Fujita, M.; Furusho, Y. Ultrasound-assisted synthesis of substituted guanidines using 1H-pyrazole-1-carboxamidine and S-methylisothiouronium sulfate under solvent-free conditions. Tetrahedron, 2018, 74(32), 4339-4342. doi: 10.1016/j.tet.2018.06.057
  30. Bhosale, M.A.; Ummineni, D.; Sasaki, T.; Nishio-Hamane, D.; Bhanage, B.M. Magnetically separable γ-Fe2O3 nanoparticles: An efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition. J. Mol. Catal. Chem., 2015, 404-405, 8-17. doi: 10.1016/j.molcata.2015.04.002
  31. Sahu, C.C.; Biswas, S.; Hommelsheim, R.; Bolm, C. Synthesis of α-ketothioamides with elemental sulfur under solvent-free conditions in a mixer mill. RSC Mechanochemistry, 2024, 1(1), 38-42. doi: 10.1039/D3MR00025G
  32. Tasic, G.; Mitrovic, N.; Simic, M.; Koravovic, M.; Jovanovic, P.; Petkovic, M.; Jovanovic, M.; Ivkovic, B.; Savic, V. Synthesis of hydantoins from N‐Boc protected amino acid derived amides using polymer‐supported PPh 3 / CBr 4 as a reagent. J. Heterocycl. Chem., 2024, 61(5), 753-760. doi: 10.1002/jhet.4802
  33. Ma, B.; Yao, J.; Knudsen, T.Š.; Chen, Z.; Liu, B.; Zhao, C.; Zhu, X. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. J. Hazard. Mater., 2022, 424(Pt C), 126698. doi: 10.1016/j.jhazmat.2021.126698 PMID: 34315632
  34. Mohareb, R.M.; Ibrahim, R.A.; Al Farouk, F.O.; Alwan, E.S. Ionic liquid immobilized synthesis of new Xantheses derivatives and their antiproliferative, molecular docking and morphological studies. Anticancer. Agents Med. Chem., 2024, 24(13), 990-1008. doi: 10.2174/0118715206299407240324110505 PMID: 38685778
  35. Mohareb, R.M.; Mukhtar, S.; Parveen, H.; Abdelaziz, M.A.; Alwan, E.S. Anti-proliferative, morphological and molecular docking studies of new thiophene derivatives and their strategy in ionic liquids immobilized reactions. Anticancer. Agents Med. Chem., 2024, 24(9), 691-708. doi: 10.2174/0118715206262307231122104748 PMID: 38321904
  36. Reeve, A.M. Reaction of dimedone and benzaldehyde: A discovery-based lab for second-semester organic chemistry. J. Chem. Educ., 2015, 92(3), 582-585. doi: 10.1021/ed400457c
  37. Wang, D.L.; Wu, J.Y.; Cui, Q.T. An efficient one-pot synthesis of thiophene-fused pyrido3,2-aazulenes via Gewald reaction. Chin. Chem. Lett., 2014, 25(12), 1591-1594. doi: 10.1016/j.cclet.2014.07.007
  38. El-Borai, M.A.; Rizk, H.F.; Ibrahim, S.A.; Fares, A.K. An eco‐friendly synthesis and biological screening of fused heterocyclic compounds containing a thiophene moiety via Gewald reaction. J. Heterocycl. Chem., 2019, 56(10), 2787-2795. doi: 10.1002/jhet.3658
  39. Barnes, D.M.; Haight, A.R.; Hameury, T.; McLaughlin, M.A.; Mei, J.; Tedrow, J.S.; Riva Toma, J.D. New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor. Tetrahedron, 2006, 62(49), 11311-11319. doi: 10.1016/j.tet.2006.07.008
  40. Savickienė, V.; Bieliauskas, A.; Belyakov, S.; Šačkus, A.; Arbačiauskienė, E. Synthesis and characterization of novel biheterocyclic compounds from 3‐alkoxy‐1 H ‐pyrazole‐4‐carbaldehydes via multicomponent reactions. J. Heterocycl. Chem., 2024, 61(6), 927-947. doi: 10.1002/jhet.4804
  41. Zhong, Y. Arylformylacetonitriles in multicomponent reactions leading to heterocycles. Eur. J. Org. Chem., 2022, 2022(48), e202201038. doi: 10.1002/ejoc.202201038
  42. Mandal, A.; Khan, A.T. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org. Biomol. Chem., 2024, 22(12), 2339-2358. doi: 10.1039/D4OB00034J PMID: 38444342
  43. Jelizi, H.; Toumi, A.; Abdella, F.I.A.; Daoud, I.; Boudriga, S.; Alshamari, A.K.; Alanazi, T.Y.A.; Alrashdi, A.A.; Edziri, H.; Knorr, M.; Kirchhoff, J.L.; Strohmann, C. Asymmetric synthesis of enantiopure tetracyclic dispirooxindolopyrrolidine-piperidones via microwave-assisted multicomponent reaction: Crystallographic analysis, antimicrobial activity and in silico studies. J. Mol. Struct., 2024, 1308, 138104. doi: 10.1016/j.molstruc.2024.138104
  44. Peach, M.L.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R., Jr; Nicklaus, M.C.; Bottaro, D.P.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52(4), 943-951. doi: 10.1021/jm800791f PMID: 19199650
  45. De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661. doi: 10.1093/jnci/djr093 PMID: 21464397
  46. Jabbarzadeh Kaboli, P.; Chen, H.F.; Babaeizad, A.; Roustai Geraylow, K.; Yamaguchi, H.; Hung, M.C. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett., 2024, 588, 216780. doi: 10.1016/j.canlet.2024.216780 PMID: 38462033
  47. Raju, R.M.; Joy, J.A.; Manjunathaiah, R.N.; Justin, A.; Kumar, B.R. EGFR as therapeutic target to develop new generation tyrosine kinase inhibitors against breast cancer: A critical. Results Chem., 2024, 7, 101490.
  48. Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl), S7-S19. doi: 10.1177/1758834011422556 PMID: 22128289
  49. Jeffers, M.; Rong, S.; Vande Woude, G.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med. (Berl.), 1996, 74(9), 505-513. doi: 10.1007/BF00204976 PMID: 8892055
  50. Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Vande Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60(6), 1113-1117. doi: 10.1016/S0090-4295(02)01954-4 PMID: 12475693
  51. Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol., 1995, 147(2), 386-396. PMID: 7639332
  52. Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67(3), 967-975. doi: 10.1158/0008-5472.CAN-06-3552 PMID: 17283128
  53. Daoui, O.; Elkhattabi, S.; Chtita, S.; Elkhalabi, R.; Zgou, H.; Benjelloun, A.T. QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzoD-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon, 2021, 7(7), e07463. doi: 10.1016/j.heliyon.2021.e07463
  54. Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855. doi: 10.1016/j.bmc.2013.04.013 PMID: 23628470
  55. Zhang, C.; Sheng, M.; lv, J.; Cao, Y.; Chen, D.; Jia, L.; Sun, Y.; Ren, Y.; Li, L.; Weng, Y.; Yu, W. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia–reperfusion. Int. Immunopharmacol., 2023, 124(Pt B), 111043. doi: 10.1016/j.intimp.2023.111043 PMID: 37844464

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2025