Targeted Regulation of PI3K/Akt/mTOR/NF-κB Signaling by Indole Compounds and their Derivatives: Mechanistic Details and Biological Implications for Cancer Therapy
- Authors: Ahmad A.1, Biersack B.1, Li Y.1, Kong D.1, Bao B.1, Schobert R.1, Padhye S.1, Sarkar F.1
-
Affiliations:
- ,
- Issue: Vol 13, No 7 (2013)
- Pages: 1002-1013
- Section: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694958
- DOI: https://doi.org/10.2174/18715206113139990078
- ID: 694958
Cite item
Full Text
Abstract
Indole compounds, found in cruciferous vegetables, are potent anti-cancer agents. Studies with indole-3-carbinol (I3C) and its dimeric product, 3,3'-diindolylmethane (DIM) suggest that these compounds have the ability to deregulate multiple cellular signaling pathways, including PI3K/Akt/mTOR signaling pathway. These natural compounds are also effective modulators of downstream transcription factor NF-κB signaling which might help explain their ability to inhibit invasion and angiogenesis, and the reversal of epithelial-to-mesenchymal transition (EMT) phenotype and drug resistance. Signaling through PI3K/Akt/mTOR and NF-κB pathway is increasingly being realized to play important role in EMT through the regulation of novel miRNAs which further validates the importance of this signaling network and its regulations by indole compounds. Here we will review the available literature on the modulation of PI3K/Akt/mTOR/NF-κB signaling by both parental I3C and DIM, as well as their analogs/derivatives, in an attempt to catalog their anticancer activity.
Keywords
About the authors
Aamir Ahmad
,
Email: info@benthamscience.net
Bernhard Biersack
,
Email: info@benthamscience.net
Yiwei Li
,
Email: info@benthamscience.net
Dejuan Kong
,
Email: info@benthamscience.net
Bin Bao
,
Email: info@benthamscience.net
Rainer Schobert
,
Email: info@benthamscience.net
Subhash Padhye
,
Email: info@benthamscience.net
Fazlul Sarkar
,
Email: info@benthamscience.net
Supplementary files
