Research Progress on Gene Synthesis and Anticancer and Lipid-lowering Mechanism of Monacolin K


Citar

Texto integral

Resumo

Monacolin K (MK), also known as lovastatin (LOV), is a secondary metabolite synthesized by Monascus in the later stage of fermentation and is the main component of functional red yeast rice (RYR). The structure of MK is similar to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), and it can competitively bind to 3-hydroxy-3- methylglutaryl coenzyme A reductase (HMGCR), thus reducing the level of blood lipids. MK can affect the expression of MAPK, PI3K/AKT, and NF-κB pathway, prepare conjugates with other compounds, and enhance the sensitivity of cancer cells to chemotherapeutic drugs so as to induce apoptosis of acute myeloid leukemia, prostate cancer, breast cancer, lung cancer, gastric cancer, and liver cancer. Combined with the synthetic route of MK, this paper summarizes the latest lipid-lowering and anticancer mechanism of MK, and provides a reference for the application of MK in medicine.

Sobre autores

Qiu-Wan Sun

College of Biological and Pharmaceutical Engineering,, Nanjing University of Technology

Email: info@benthamscience.net

Hou-Sheng Hong

College of Biological and Pharmaceutical Engineering, Nanjing University of Technology

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Lin, Y.L.; Wang, T.H.; Lee, M.H.; Su, N.W. Biologically active components and nutraceuticals in the Monascus-fermented rice: A review. Appl. Microbiol. Biotechnol., 2008, 77(5), 965-973. doi: 10.1007/s00253-007-1256-6 PMID: 18038131
  2. Feng, Y.; Shao, Y.; Zhou, Y.; Chen, F. Effects of glycerol on pigments and monacolin K production by the high-monacolin K-producing but citrinin-free strain, Monascus pilosus MS-1. Eur. Food Res. Technol., 2015, 240(3), 635-643. doi: 10.1007/s00217-014-2365-y
  3. Agboyibor, C.; Kong, W.B.; Chen, D.; Zhang, A.M.; Niu, S.Q. Monascus pigments production, composition, bioactivity and its application: A review. Biocatal. Agric. Biotechnol., 2018, 16, 433-447. doi: 10.1016/j.bcab.2018.09.012
  4. Dhale, M.A.; Divakar, S.; Kumar, S.U.; Vijayalakshmi, G. Isolation and characterization of dihydromonacolin-MV from Monascus pur-pureus for antioxidant properties. Appl. Microbiol. Biotechnol., 2007, 73(5), 1197-1202. doi: 10.1007/s00253-006-0578-0 PMID: 17043831
  5. Cheng, M.J.; Wu, M.D.; Chan, H.Y.; Chen, J.J.; Cheng, Y.C.; Chen, Y.L.; Chen, I.S.; Yuan, G.F. A new azaphilone metabolite from the Fungus monascus ruber. Chem. Nat. Compd., 2016, 52(2), 231-233. doi: 10.1007/s10600-016-1602-y
  6. Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biotechnol., 2013, 40(2), 169-181. doi: 10.1007/s10295-012-1216-8 PMID: 23179468
  7. Penson, P.E.; Banach, M. Natural compounds as anti-atherogenic agents: Clinical evidence for improved cardiovascular outcomes. Atherosclerosis, 2021, 316, 58-65. doi: 10.1016/j.atherosclerosis.2020.11.015 PMID: 33340999
  8. Endo, A.; Monacolin, K. A new hypocholesterolemic agent produced by a Monascus species. J. Antibiot., 1979, 32(8), 852-854. doi: 10.7164/antibiotics.32.852 PMID: 500505
  9. Halpin, R.A.; Ulm, E.H.; Till, A.E.; Kari, P.H.; Vyas, K.P.; Hunninghake, D.B.; Duggan, D.E. Biotransformation of lovastatin. V. Species differences in in vivo metabolite profiles of mouse, rat, dog, and human. Drug Metab. Dispos., 1993, 21(6), 1003-1011. PMID: 7905377
  10. Wujian, J.; Kuan-Wei, P.; Sihyung, Y.; Huijing, S.; Mario, S.; Zhuo, W.M. A simple protein precipitation-based simultaneous quantifica-tion of lovastatin and its active metabolite lovastatin acid in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry using polarity switching. J. Chromatogr. Sep. Tech., 2015, 6(3), 268. doi: 10.4172/2157-7064.1000268 PMID: 26146590
  11. Li, X-M.; Shen, X-H.; Duan, Z-W.; Guo, S-R. Advances on the pharmacological effects of red yeast rice. Chin. J. Nat. Med., 2011, 9(3), 161-166. doi: 10.3724/SP.J.1009.2011.00161
  12. Parra-Virto, A.; Torres do Rego, A.; Demelo-Rodríguez, P.; Millán Núñez-Cortés, J.; Álvarez-Sala, L.A. Usefulness of compounds with monacolin K in a case of statins intolerance. Clin. Investig. Arterioscler., 2018, 30(6), 268-270. PMID: 30309697
  13. Liu, A.; Juan, Chen A.; Liu, B.; Wei, Q.; Bai, J.; Hu, Y. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species. Fungal Genet. Biol., 2022, 160, 103687. doi: 10.1016/j.fgb.2022.103687 PMID: 35315337
  14. Chen, Y.P.; Tseng, C.P.; Liaw, L.L.; Wang, C.L.; Chen, I.C.; Wu, W.J.; Wu, M.D.; Yuan, G.F. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J. Agric. Food Chem., 2008, 56(14), 5639-5646. doi: 10.1021/jf800595k PMID: 18578535
  15. Ketkaeo, S.; Nagano, Y.; Baba, S.; Kimura, K.; Futagami, T.; Sanpamongkolchai, W.; Kobayashi, G.; Goto, M. Development of Monascus purpureus monacolin K hyperproducing mutant strains by synchrotron light irradiation and their comparative genome analysis. J. Biosci. Bioeng., 2022, 133(4), 362-368. doi: 10.1016/j.jbiosc.2021.11.011 PMID: 35105506
  16. Zhang, C.; Chen, M.; Zang, Y.; Wang, H.; Wei, X.; Zhu, Q.; Yang, X.; Sun, B.; Wang, C. Effect of arginine supplementation on Monacolin K yield of Monascus purpureus. J. Food Compos. Anal., 2022, 106, 104252. doi: 10.1016/j.jfca.2021.104252
  17. Huang, J.; Liao, N.; Li, H. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway. Int. J. Biol. Macromol., 2018, 109, 950-954. doi: 10.1016/j.ijbiomac.2017.11.074 PMID: 29162465
  18. Sakai, K.; Kinoshita, H.; Nihira, T. Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus. Biotechnol. Lett., 2009, 31(12), 1911-1916. doi: 10.1007/s10529-009-0093-3 PMID: 19693441
  19. Chen, Y.P.; Yuan, G.F.; Hsieh, S.Y.; Lin, Y.S.; Wang, W.Y.; Liaw, L.L.; Tseng, C.P. Identification of the mokH gene encoding transcrip-tion factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J. Agric. Food Chem., 2010, 58(1), 287-293. doi: 10.1021/jf903139x PMID: 19968298
  20. Zhang, C.; Zhu, Q.; Zhang, H.; Zhang, N.; Yang, X.; Shi, J.; Sun, B.; Wang, C. Effects on the sporulation and secondary metabolism yields of Monascus purpureus with mokH gene deletion and overexpression. Fungal Biol., 2020, 124(7), 661-670. doi: 10.1016/j.funbio.2020.03.010 PMID: 32540189
  21. Zhang, C.; Liang, J.; Zhang, A.; Hao, S.; Zhang, H.; Zhu, Q.; Sun, B.; Wang, C. Overexpression of monacolin k biosynthesis genes in the Monascus purpureus azaphilone polyketide pathway. J. Agric. Food Chem., 2019, 67(9), 2563-2569. doi: 10.1021/acs.jafc.8b05524 PMID: 30734557
  22. El-Ganiny, A.M.; Kamel, H.A.; Yossef, N.E.; Mansour, B.; El-Baz, A.M. Repurposing pantoprazole and haloperidol as efflux pump inhib-itors in azole resistant clinical Candida albicans and non-albicans isolates. Saudi Pharm. J., 2022, 30(3), 245-255. doi: 10.1016/j.jsps.2022.01.011 PMID: 35498219
  23. Lin, L.; Wu, S.; Li, Z.; Ren, Z.; Chen, M.; Wang, C. High expression level of mok E enhances the production of monacolin K in Monas-cus. Food Biotechnol., 2018, 32(1), 35-46. doi: 10.1080/08905436.2017.1413985
  24. Zhang, C.; Zhang, H.; Zhu, Q.; Hao, S.; Chai, S.; Li, Y.; Jiao, Z.; Shi, J.; Sun, B.; Wang, C. Overexpression of global regulator LaeA in-creases secondary metabolite production in Monascus purpureus. Appl. Microbiol. Biotechnol., 2020, 104(7), 3049-3060. doi: 10.1007/s00253-020-10379-4 PMID: 32043189
  25. Li, M.; Han, B.; Zhao, H.; Xu, C.; Xu, D.; Sieniawska, E.; Lin, X.; Kai, G. Biological active ingredients of Astragali radix and its mecha-nisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine, 2022, 98, 153918. doi: 10.1016/j.phymed.2021.153918 PMID: 35104756
  26. Pérez-Jiménez, F.; Pascual, V.; Meco, J.F.; Pérez Martínez, P.; Delgado Lista, J.; Domenech, M.; Estruch, R.; León-Acuña, A.; López-Miranda, J.; Sánchez-Ramos, A.; Soler i Ferrer, C.; Soler-Rivas, C.; Solá Alberich, R.M.; Valdivielso, P.; Ros, E. Document of recommen-dations of the SEA 2018. Life style in cardiovascular prevention. Clin. Investig. Arterioscler., 2018, 30(6), 280-310. doi: 10.1016/j.arteri.2018.06.005 PMID: 30236615
  27. King, R.J.; Singh, P.K.; Mehla, K. The cholesterol pathway: Impact on immunity and cancer. Trends Immunol., 2022, 43(1), 78-92. doi: 10.1016/j.it.2021.11.007 PMID: 34942082
  28. Huang, C.F.; Shen, S.M.; Chen, W.T.; Chen, C.C. The effects of mutation and temperature variation on monacolin K production by monascus sp. and relative statistical parameter analysis of monacolin K production. Phytochem. Lett., 2019, 32, 143-150. doi: 10.1016/j.phytol.2019.05.011
  29. Xie, L.; Zhu, G.; Shang, J.; Chen, X.; Zhang, C.; Ji, X.; Zhang, Q.; Wei, Y. An overview on the biological activity and anti-cancer mecha-nism of lovastatin. Cell. Signal., 2021, 87, 110122. doi: 10.1016/j.cellsig.2021.110122 PMID: 34438015
  30. Yang, N.C.; Chou, C.W.; Chen, C.Y.; Hwang, K.L.; Yang, Y.C. Combined nattokinase with red yeast rice but not nattokinase alone has potent effects on blood lipids in human subjects with hyperlipidemia. Asia Pac. J. Clin. Nutr., 2009, 18(3), 310-317. PMID: 19786378
  31. Cicero, A.F.G.; Fogacci, F.; Zambon, A. Red yeast rice for hypercholesterolemia. J. Am. Coll. Cardiol., 2021, 77(5), 620-628. doi: 10.1016/j.jacc.2020.11.056 PMID: 33538260
  32. Choi, H.; Dey, A.K.; Priyamvara, A.; Aksentijevich, M.; Bandyopadhyay, D.; Dey, D.; Dani, S.; Guha, A.; Nambiar, P.; Nasir, K.; Jneid, H.; Mehta, N.N.; Lavie, C.J.; Amar, S. Role of periodontal infection, inflammation and immunity in atherosclerosis. Curr. Probl. Cardiol., 2021, 46(3), 100638. doi: 10.1016/j.cpcardiol.2020.100638 PMID: 32646544
  33. Ratnikova, N.M.; Lezhnin, Y.N.; Frolova, E.I.; Kravchenko, J.E.; Chumakov, S.P. CD47 receptor as a primary target for cancer therapy. Mol. Biol., 2017, 51(2), 251-261. PMID: 28537232
  34. Li, Z.; Li, Y.; Gao, J.; Fu, Y.; Hua, P.; Jing, Y.; Cai, M.; Wang, H.; Tong, T. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci., 2021, 273, 119150. doi: 10.1016/j.lfs.2021.119150 PMID: 33662426
  35. Kojima, Y.; Volkmer, J.P.; McKenna, K.; Civelek, M.; Lusis, A.J.; Miller, C.L.; Direnzo, D.; Nanda, V.; Ye, J.; Connolly, A.J.; Schadt, E.E.; Quertermous, T.; Betancur, P.; Maegdefessel, L.; Matic, L.P.; Hedin, U.; Weissman, I.L.; Leeper, N.J. CD47-blocking antibodies re-store phagocytosis and prevent atherosclerosis. Nature, 2016, 536(7614), 86-90. doi: 10.1038/nature18935 PMID: 27437576
  36. Yu, D.; Liao, J.K. Emerging views of statin pleiotropy and cholesterol lowering. Cardiovasc. Res., 2022, 118(2), 413-423. doi: 10.1093/cvr/cvab032 PMID: 33533892
  37. Ridker, P.M.; Danielson, E.; Fonseca, F.A.H. Rosuvastatin to prevent vascular events in men and women with elevated c-reactive protein. J. Vasc. Surg., 2009, 49(2), 534. doi: 10.1016/j.jvs.2008.12.037
  38. Eberhardt, N.; Giannarelli, C. Statins boost the macrophage eat-me signal to keep atherosclerosis at bay. Nat. Cardiov. Res., 2022, 1(3), 196-197. doi: 10.1038/s44161-022-00038-4
  39. Jarr, K.U.; Ye, J.; Kojima, Y.; Ye, Z.; Gao, H.; Schmid, S.; Luo, L.; Baylis, R.A.; Lotfi, M.; Lopez, N.; Eberhard, A.V.; Smith, B.R.; Weissman, I.L.; Maegdefessel, L.; Leeper, N.J. The pleiotropic benefits of statins include the ability to reduce CD47 and amplify the effect of pro-efferocytic therapies in atherosclerosis. Nat. Cardiovas. Res., 2022, 1(3), 253-262. doi: 10.1038/s44161-022-00023-x PMID: 35990913
  40. Cao, Z.; Shu, Y.; Wang, J.; Wang, C.; Feng, T.; Yang, L.; Shao, J.; Zou, L. Super enhancers: Pathogenic roles and potential therapeutic targets for acute myeloid leukemia (AML). Genes Dis., 2022, 9(6), 1466-1477. doi: 10.1016/j.gendis.2022.01.006 PMID: 36157504
  41. Chen, C.C.; Liu, T.Y.; Huang, S.P.; Ho, C.T.; Huang, T.C. Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell. Signal., 2015, 27(11), 2182-2190. doi: 10.1016/j.cellsig.2015.07.014 PMID: 26208883
  42. Abankwa, D.; Gorfe, A.A. Mechanisms of Ras membrane organization and signaling: Ras rocks again. Biomolecules, 2020, 10(11), 1522. doi: 10.3390/biom10111522 PMID: 33172116
  43. Adjei, A.A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl. Cancer Inst., 2001, 93(14), 1062-1074. doi: 10.1093/jnci/93.14.1062 PMID: 11459867
  44. Xiong, Z.; Cao, X.; Wen, Q.; Chen, Z.; Cheng, Z.; Huang, X.; Zhang, Y.; Long, C.; Zhang, Y.; Huang, Z. An overview of the bioactivity of monacolin K/lovastatin. Food Chem. Toxicol., 2019, 131, 110585. doi: 10.1016/j.fct.2019.110585 PMID: 31207306
  45. Chen, C.C.; Wu, M.L.; Ho, C.T.; Huang, T.C. Blockade of the ras/raf/erk and ras/pi3k/akt pathways by monacolin K reduces the expres-sion of glo1 and induces apoptosis in u937 cells. J. Agric. Food Chem., 2015, 63(4), 1186-1195. doi: 10.1021/jf505275s PMID: 25569448
  46. Gao, M.; Sun, L.; Liu, Y.L.; Xie, J.W.; Qin, L.; Xue, J.; Wang, Y.T.; Guo, K.M.; Ma, M.M.; Li, X.Y. Reduction of glyoxalase 1 (GLO1) aggravates cerebrovascular remodeling via promoting the proliferation of basilar smooth muscle cells in hypertension. Biochem. Biophys. Res. Commun., 2019, 518(2), 278-285. doi: 10.1016/j.bbrc.2019.08.047 PMID: 31420161
  47. Toriumi, K.; Miyashita, M.; Suzuki, K.; Tabata, K.; Horiuchi, Y.; Ishida, H.; Itokawa, M.; Arai, M. Role of glyoxalase 1 in methylglyoxal detoxification–the broad player of psychiatric disorders. Redox Biol., 2022, 49, 102222. doi: 10.1016/j.redox.2021.102222 PMID: 34953453
  48. Ravandi, F.; Burnett, A.K.; Agura, E.D.; Kantarjian, H.M. Progress in the treatment of acute myeloid leukemia. Cancer, 2007, 110(9), 1900-1910. doi: 10.1002/cncr.23000 PMID: 17786921
  49. Dimitroulakos, J.; Nohynek, D.; Backway, K.L.; Hedley, D.W.; Yeger, H.; Freedman, M.H.; Minden, M.D.; Penn, L.Z. Increased sensitivi-ty of acute myeloid leukemias to lovastatin-induced apoptosis: A potential therapeutic approach. Blood, 1999, 93(4), 1308-1318. doi: 10.1182/blood.V93.4.1308 PMID: 9949174
  50. Holstein, S.A.; Hohl, R.J. Interaction of cytosine arabinoside and lovastatin in human leukemia cells. Leuk. Res., 2001, 25(8), 651-660. doi: 10.1016/S0145-2126(00)00162-4 PMID: 11397469
  51. Rodriguez-Ariza, A.; Lopez-Pedrera, C.; Aranda, E.; Barbarroja, N. VEGF targeted therapy in acute myeloid leukemia. Crit. Rev. Oncol. Hematol., 2011, 80(2), 241-256. doi: 10.1016/j.critrevonc.2010.09.009 PMID: 21035354
  52. Lewis, K.A.; Holstein, S.A.; Hohl, R.J. Lovastatin alters the isoprenoid biosynthetic pathway in acute myelogenous leukemia cells in vivo. Leuk. Res., 2005, 29(5), 527-533. doi: 10.1016/j.leukres.2004.10.007 PMID: 15755505
  53. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33. doi: 10.3322/caac.21654 PMID: 33433946
  54. Malm, J.; Lilja, H. Biochemistry of prostate specific antigen, PSA. Scand. J. Clin. Lab. Invest. Suppl., 1995, 55(S221), 15-22. doi: 10.3109/00365519509090559 PMID: 7544481
  55. Stamey, T.A.; Yang, N.; Hay, A.R.; McNeal, J.E.; Freiha, F.S.; Redwine, E. Prostate-specific antigen as a serum marker for adenocarcino-ma of the prostate. N. Engl. J. Med., 1987, 317(15), 909-916. doi: 10.1056/NEJM198710083171501 PMID: 2442609
  56. Cho, H.; Oh, C.K.; Cha, J.; Chung, J.I.; Byun, S.S.; Hong, S.K.; Chung, J.S.; Han, K.H. Association of serum prostate-specific antigen (PSA) level and circulating tumor cell-based PSA mRNA in prostate cancer. Prostate Int., 2022, 10(1), 14-20. doi: 10.1016/j.prnil.2022.01.002 PMID: 35229001
  57. Yang, L.; Egger, M.; Plattner, R.; Klocker, H.; Eder, I.E. Lovastatin causes diminished PSA secretion by inhibiting AR expression and function in LNCaP prostate cancer cells. Urology, 2011, 77(6), 1508.e1-1508.e7. doi: 10.1016/j.urology.2010.12.074 PMID: 21624609
  58. Rowinsky, E.K.; Donehower, R.C.; Jones, R.J.; Tucker, R.W. Microtubule changes and cytotoxicity in leukemic cell lines treated with tax-ol. Cancer Res., 1988, 48(14), 4093-4100. PMID: 2898289
  59. Zhang, X.; Huang, C.; Yuan, Y.; Jin, S.; Zhao, J.; Zhang, W.; Liang, H.; Chen, X.; Zhang, B. FOXM1-mediated activation of phospholipase D1 promotes lipid droplet accumulation and reduces ROS to support paclitaxel resistance in metastatic cancer cells. Free Radic. Biol. Med., 2022, 179, 213-228. doi: 10.1016/j.freeradbiomed.2021.11.024 PMID: 34808333
  60. van Eijk, M.; Boosman, R.J.; Schinkel, A.H.; Huitema, A.D.R.; Beijnen, J.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: Relevance for resistance to taxanes. Cancer Chemother. Pharmacol., 2019, 84(3), 487-499. doi: 10.1007/s00280-019-03905-3 PMID: 31309254
  61. Li, Y.; Chen, S.; Zhu, J.; Zheng, C.; Wu, M.; Xue, L.; He, G.; Fu, S.; Deng, X. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochem. Biophys. Res. Commun., 2022, 589, 85-91. doi: 10.1016/j.bbrc.2021.12.007 PMID: 34896780
  62. Vásquez-Bochm, L.X.; Velázquez-Paniagua, M.; Castro-Vázquez, S.S.; Guerrero-Rodríguez, S.L.; Mondragon-Peralta, A.; De La Fuente-Granada, M.; Pérez-Tapia, S.M.; González-Arenas, A.; Velasco-Velázquez, M.A. Transcriptome-based identification of lovastatin as a breast cancer stem cell-targeting drug. Pharmacol. Rep., 2019, 71(3), 535-544. doi: 10.1016/j.pharep.2019.02.011 PMID: 31026757
  63. Siddiqui, R.A.; Harvey, K.A.; Xu, Z.; Bammerlin, E.M.; Walker, C.; Altenburg, J.D. Docosahexaenoic acid: A natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. Biofactors, 2011, 37(6), 399-412. doi: 10.1002/biof.181 PMID: 22038684
  64. Ortega, L.; Lobos-González, L.; Reyna-Jeldes, M.; Cerda, D.; De la Fuente-Ortega, E.; Castro, P.; Bernal, G.; Coddou, C. The Ω-3 fatty acid docosahexaenoic acid selectively induces apoptosis in tumor-derived cells and suppress tumor growth in gastric cancer. Eur. J. Pharmacol., 2021, 896, 173910. doi: 10.1016/j.ejphar.2021.173910 PMID: 33508285
  65. Bozzatello, P.; Brignolo, E.; De Grandi, E.; Bellino, S. Supplementation with omega-3 fatty acids in psychiatric disorders: A review of literature data. J. Clin. Med., 2016, 5(8), 67. doi: 10.3390/jcm5080067
  66. El-Ashmawy, N.E.; Al-Ashmawy, G.M.; Amr, E.A.; Khedr, E.G. Inhibition of lovastatin and docosahexaenoic acid-initiated autophagy in triple negative breast cancer reverted resistance and enhanced cytotoxicity. Life Sci., 2020, 259, 118212. doi: 10.1016/j.lfs.2020.118212 PMID: 32768581
  67. Siddiqui, R.A.; Harvey, K.A.; Xu, Z.; Natarajan, S.K.; Davisson, V.J. Characterization of lovastatin-docosahexaenoate anticancer proper-ties against breast cancer cells. Bioorg. Med. Chem., 2014, 22(6), 1899-1908. doi: 10.1016/j.bmc.2014.01.051 PMID: 24556504
  68. Zhang, H.; Sang, S.; Xu, H.; Piao, L.; Liu, X. Lovastatin suppresses bacterial therapy-induced neutrophil recruitment to the tumor by pro-moting neutrophil apoptosis. J. Funct. Foods, 2021, 86, 104693. doi: 10.1016/j.jff.2021.104693
  69. Zhao, X.; Wang, Y.; Gao, J.J.; Yin, J.J. Inhibited effects of veliparib combined doxorubicin for BEL-7404 proliferation of human liver cancer cell line. Asian Pac. J. Trop. Med., 2014, 7(6), 468-472. doi: 10.1016/S1995-7645(14)60076-6 PMID: 25066396
  70. Yang, X.; Xie, Y. Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int. J. Pharm., 2021, 608, 121094. doi: 10.1016/j.ijpharm.2021.121094 PMID: 34534631
  71. Xiao, Q.; Li, X.; Liu, C.; Yang, Y.; Hou, Y.; Wang, Y.; Su, M.; He, W. Liposome-based anchoring and core-encapsulation for combinatori-al cancer therapy. Chin. Chem. Lett., 2022, 33(9), 4191-4196. doi: 10.1016/j.cclet.2022.01.083
  72. Wang, T.; Jiang, Y.; Chu, H.; Liu, X.; Dai, Y.; Wang, D. Doxorubicin and lovastatin co-delivery liposomes for synergistic therapy of liver cancer. J. Drug Deliv. Sci. Technol., 2019, 52, 452-459. doi: 10.1016/j.jddst.2019.04.045
  73. Kim, J.K.; Noh, J.H.; Eun, J.W.; Jung, K.H.; Bae, H.J.; Shen, Q.; Kim, M.G.; Chang, Y.G.; Kim, S.J.; Park, W.S.; Lee, J.Y.; Borlak, J.; Nam, S.W. Targeted inactivation of HDAC2 restores p16INK4a activity and exerts antitumor effects on human gastric cancer. Mol. Cancer Res., 2013, 11(1), 62-73. doi: 10.1158/1541-7786.MCR-12-0332 PMID: 23175521
  74. Zhang, X.; Yashiro, M.; Ren, J.; Hirakawa, K. Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol. Rep., 2006, 16(3), 563-568. doi: 10.3892/or.16.3.563 PMID: 16865256
  75. Zhang, L.; Kang, W.; Lu, X.; Ma, S.; Dong, L.; Zou, B. Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2. Gene, 2019, 681, 15-25. doi: 10.1016/j.gene.2018.09.040 PMID: 30266498
  76. Sanli, T.; Liu, C.; Rashid, A.; Hopmans, S.N.; Tsiani, E.; Schultz, C.; Farrell, T.; Singh, G.; Wright, J.; Tsakiridis, T. Lovastatin sensitizes lung cancer cells to ionizing radiation: Modulation of molecular pathways of radioresistance and tumor suppression. J. Thorac. Oncol., 2011, 6(3), 439-450. doi: 10.1097/JTO.0b013e3182049d8b PMID: 21258249
  77. Weiss, R.H. p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell, 2003, 4(6), 425-429. doi: 10.1016/S1535-6108(03)00308-8 PMID: 14706334
  78. Müller, C.; Kiehl, M.G.; van de Loo, J.; Koch, O.M. Lovastatin induces p21WAF1/Cip1 in human vascular smooth muscle cells: Influence on protein phosphorylation, cell cycle, induction of apoptosis, and growth inhibition. Int. J. Mol. Med., 1999, 3(1), 63-68. doi: 10.3892/ijmm.3.1.63 PMID: 9864387
  79. Ding, L.; Chen, Q.; Chen, K.; Jiang, Y.; Li, G.; Chen, Q.; Bai, D.; Gao, D.; Deng, M.; Zhang, H.; Xu, B. Simvastatin potentiates the cell-killing activity of imatinib in imatinib-resistant chronic myeloid leukemia cells mainly through PI3K/AKT pathway attenuation and Myc downregulation. Eur. J. Pharmacol., 2021, 913, 174633. doi: 10.1016/j.ejphar.2021.174633 PMID: 34843676
  80. Santoni, M.; Monteiro, F.S.M.; Massari, F.; Abahssain, H.; Aurilio, G.; Molina-Cerrillo, J.; Myint, Z.W.; Zabalza, I.O.; Battelli, N.; Grande, E. Statins and renal cell carcinoma: Antitumor activity and influence on cancer risk and survival. Crit. Rev. Oncol. Hematol., 2022, 176, 103731. doi: 10.1016/j.critrevonc.2022.103731 PMID: 35718065
  81. Hong, M.Y.; Seeram, N.P.; Zhang, Y.; Heber, D. Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J. Nutr. Biochem., 2008, 19(7), 448-458. doi: 10.1016/j.jnutbio.2007.05.012 PMID: 17869085

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023