Novel 5-bromoindole-2-carboxylic Acid Derivatives as EGFR Inhibitors: Synthesis, Docking Study, and Structure Activity Relationship


Цитировать

Полный текст

Аннотация

Background: The indole backbone is encountered in a class of N-heterocyclic compounds with physiological and pharmacological effects such as anti-cancer, anti-diabetic, and anti-HIV. These compounds are becoming increasingly popular in organic, medicinal, and pharmaceutical research. Nitrogen compounds' hydrogen bonding, dipole- dipole interactions, hydrophobic effects, Van der Waals forces, and stacking interactions have increased their relevance in pharmaceutical chemistry due to their improved solubility. Indole derivatives, such as carbothioamide, oxadiazole, and triazole, have been reported to act as anti-cancer drugs due to their ability to disrupt the mitotic spindle and prevent human cancer cell proliferation, expansion, and invasion.

Objectives: To synthesize new 5-bromoindole-2-carboxylic acid derivatives that function as EGFR tyrosine kinase inhibitors as deduced through molecular docking studies.

Methods: Different derivatives of indole (carbothioamide, oxadiazole, tetrahydro pyridazine-3,6-dione, and triazole) were synthesized and evaluated through different chemical, spectroscopic methods (IR, 1HNMR, 13CNMR, and MS) and assessed in silico and in vitro for their antiproliferative activities against A549, HepG2, and MCF-7 cancer cell lines.

Results: According to molecular docking analyses, compounds 3a, 3b, 3f, and 7 exhibited the strongest EGFR tyrosine kinase domain binding energies. In comparison to erlotinib, which displayed some hepatotoxicity, all of the evaluated ligands displayed good in silico absorption levels, did not appear to be cytochrome P450 inhibitors, and were not hepatotoxic. The new indole derivatives were found to decrease cell growth of three different types of human cancer cell lines (HepG2, A549, and MCF-7), with compound 3a being the most powerful while still being cancer-specific. Cell cycle arrest and the activation of apoptosis were the results of compound 3a's inhibition of EGFR tyrosine kinase activity.

Conclusion: The novel indole derivatives, compound 3a in particular, are promising anti-cancer agents which inhibit cell proliferation by inhibiting EGFR tyrosine kinase activity.

Об авторах

Omeed Hassan

Department of Pharmaceutical Chemistry, College of Pharmacy,, University of Kirkuk

Email: info@benthamscience.net

Ammar Kubba

Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad

Email: info@benthamscience.net

Lubna Tahtamouni

Department of Biology and Biotechnology, Faculty of Science, The Hashemite University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Moiseenko, F.V.; Volkov, N.M.; Zhabina, A.S.; Stepanova, M.L.; Rysev, N.A.; Klimenko, V.V.; Myslik, A.V.; Artemieva, E.V.; Egoren-kov, V.V.; Abduloeva, N.H.; Ivantsov, A.O. Monitoring of the presence of EGFR-mutated DNA during EGFR-targeted therapy may assist in the prediction of treatment outcome. Cancer Treat. Res. Comm., 2022, 31, 100524. doi: 10.1016/j.ctarc.2022.100524
  2. Amelia, T.; Kartasasmita, R.E.; Ohwada, T.; Tjahjono, D.H. Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules, 2022, 27(3), 819. doi: 10.3390/molecules27030819 PMID: 35164092
  3. Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges. Mol. Cancer, 2018, 17(1), 34. doi: 10.1186/s12943-018-0797-x PMID: 29455658
  4. Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11), 2748. doi: 10.3390/cancers13112748 PMID: 34206026
  5. Dziadziuszko, R.; Jassem, J. Epidermal growth factor receptor (EGFR) inhibitors and derived treatments. Ann. Oncol., 2012, 23(10), x193-x196. doi: 10.1093/annonc/mds351 PMID: 22987961
  6. Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res., 2022, 175, 106037. doi: 10.1016/j.phrs.2021.106037 PMID: 34921994
  7. Zanetti-Domingues, L.C.; Bonner, S.E.; Martin-Fernandez, M.L.; Huber, V. Mechanisms of action of EGFR tyrosine kinase receptor in-corporated in extracellular vesicles. Cells, 2020, 9(11), 2505. doi: 10.3390/cells9112505 PMID: 33228060
  8. Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861. doi: 10.1038/s41573-021-00252-y PMID: 34354255
  9. Wijnen, R.; Pecoraro, C.; Carbone, D.; Fiuji, H.; Avan, A.; Peters, G.J.; Giovannetti, E.; Diana, P. Cyclin dependent kinase-1 (CDK-1) inhi-bition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers, 2021, 13(17), 4389. doi: 10.3390/cancers13174389 PMID: 34503199
  10. El-Naggar, A.M.; Hassan, A.M.A.; Elkaeed, E.B.; Alesawy, M.S.; Al-Karmalawy, A.A. Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2. Bioorg. Chem., 2022, 123, 105770. doi: 10.1016/j.bioorg.2022.105770 PMID: 35395446
  11. Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615. doi: 10.3390/molecules25071615 PMID: 32244744
  12. Nasser, A.A.; Eissa, I.H.; Oun, M.R.; El-Zahabi, M.A.; Taghour, M.S.; Belal, A.; Saleh, A.M.; Mehany, A.B.M.; Luesch, H.; Mostafa, A.E.; Afifi, W.M.; Rocca, J.R.; Mahdy, H.A. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFRWT and EGFRT790M. Org. Biomol. Chem., 2020, 18(38), 7608-7634. doi: 10.1039/D0OB01557A PMID: 32959865
  13. Hassan, O.M.; Sarsam, S.W. Synthesis, characterization and preliminary anti-inflammatory evaluation of new etodolac derivatives. Iraqi J. Pharm Sci., 2019, 28(1), 106-112. doi: 10.31351/vol28iss1pp106-112
  14. Abbas, A.H.; Mahmood, A.A.R.; Tahtamouni, L.H.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: Synthesis, docking study, and anticancer activity. Pharmacia, 2021, 68(3), 679-692. doi: 10.3897/pharmacia.68.e70654
  15. Al-Bayati, A.I.; Razzak Mahmood, A.A.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Al-bayati, R.I.; Alsoubani, F.; Tahtamouni, L.H. Synthesis, docking study, and in vitro anticancer evaluation of new flufenamic acid derivatives. Pharmacia, 2021, 68(2), 449-461. doi: 10.3897/pharmacia.68.e66788
  16. Shireen, S.; Kumar, B.R. Synthesis, characterization, and antimicrobial evaluation of 3,5-disubstituted ttriazoles bearing 5-chloro-2-methylindole. Asian J. Pharm. Clin. Res., 2019, 12(10), 184-187. doi: 10.22159/ajpcr.2019.v12i10.35004
  17. Cacic, M.; Trkovnik, M.; Cacic, F.; Has-Schon, E. Synthesis and antimicrobial activity of some derivatives of (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid hydrazide. Molecules, 2006, 11(2), 134-147. doi: 10.3390/11010134 PMID: 17962784
  18. Hojo, K.; Maeda, M.; Smith, T.J.; Kawasaki, K. Acylation of hydrazides with acetic acid and formic acid. Chem. Pharm. Bull., 2002, 50(1), 140-142. doi: 10.1248/cpb.50.140 PMID: 11824577
  19. Kasim, A.W.; Al, M.A. Synthesis of three-five and membered ring heterocyclic compounds derived from 2-(2, 6-dichloroanilino) phe-nyl-acetic acid. Inter. J. Rec. Res. Rev, 2017, 10(3), 56-64.
  20. Basheer, H.A.; Mohammed, S.A.; Abdulla, W.R. Synthesis of some ibuprofen amino acid heterocyclic compounds. World J. Pharm. Pharm. Sci., 2019, 8(11), 1333-1340. doi: 10.20959/wjpps201911-15050
  21. Luczynski, M.; Kudelko, A. Synthesis and biological activity of 1, 3, 4-oxadiazoles used in medicine and agriculture. Appl. Sci., 2022, 12(8), 3756. doi: 10.3390/app12083756
  22. Hassan, O.M.; Razzak Mahmood, A.A.; Hamzah, A.H.; Tahtamouni, L.H. Design, Synthesis, and Molecular Docking Studies of 5‐Bromoindole‐2‐Carboxylic Acid Hydrazone Derivatives: In vitro Anticancer and VEGFR‐2 Inhibitory Effects. Chemistry Select., 2022, 7(46), p.e202203726. doi: 10.1002/slct.202203726
  23. Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363. doi: 10.1107/S0907444904011679 PMID: 15272157
  24. Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), pp.595-614. doi: 10.3897/pharmacia.69.e86504
  25. Minnelli, C.; Laudadio, E.; Mobbili, G.; Galeazzi, R. Conformational insight on WT-and mutated-EGFR receptor activation and inhibition by epigallocatechin-3-gallate: Over a rational basis for the design of selective non-small-cell lung anticancer agents. Int. J. Mol. Sci., 2020, 21(5), 1721. doi: 10.3390/ijms21051721 PMID: 32138321
  26. Galdadas, I.; Carlino, L.; Ward, R.A.; Hughes, S.J.; Haider, S.; Gervasio, F.L. Structural basis of the effect of activating mutations on the EGF receptor. eLife, 2021, 10, e65824. doi: 10.7554/eLife.65824 PMID: 34319231
  27. Sangande, F.; Julianti, E.; Tjahjono, D.H. Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of dual tyrosine kinase inhibitor of EGFR and VEGFR2. Int. J. Mol. Sci., 2020, 21(20), 7779. doi: 10.3390/ijms21207779 PMID: 33096664
  28. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
  29. Al-Sheddi, E.S.; Al-Zaid, N.A.; Al-Oqail, M.M.; Al-Massarani, S.M.; El-Gamal, A.A.; Farshori, N.N. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm. J., 2019, 27(7), 1053-1060. doi: 10.1016/j.jsps.2019.09.001 PMID: 31997913
  30. Boersma, A.W.M.; Nooter, K.; Oostrum, R.G.; Stoter, G. Quantification of apoptotic cells with fluorescein isothiocyanate-labeled annexin V in chinese hamster ovary cell cultures treated with cisplatin. Cytometry, 1996, 24(2), 123-130. doi: 10.1002/(SICI)1097-0320(19960601)24:2<123:AID-CYTO4>3.0.CO;2-K PMID: 8725661
  31. Khalid, I.; Jafar, T.H.; Unar, A.; Rasool, R.; Sahar, A.; Rashid, H. In-silico identification of anticancer compounds; Ligand-based pharma-cophore approach against EGFR involved in breast cancer. Adv. Breast Cancer Res., 2021, 10(3), 120-132. doi: 10.4236/abcr.2021.103010
  32. Unadkat, V.; Rohit, S.; Parikh, P.; Patel, K.; Sanna, V.; Singh, S. Identification of 1,2,4-oxadiazoles-based novel EGFR inhibitors: Molecu-lar dynamics simulation-guided identification and in vitro ADME studies. OncoTargets Ther., 2022, 15, 479-495. doi: 10.2147/OTT.S357765 PMID: 35535170
  33. Elrayess, R.; Abdel Aziz, Y.M.; Elgawish, M.S.; Elewa, M.; Elshihawy, H.A.; Said, M.M. Pharmacophore modeling, 3D‐QSAR, synthesis, and anti‐lung cancer evaluation of novel thieno2,3‐d1,2,3triazines targeting EGFR. Arch. Pharm., 2020, 353(2), 1900108. doi: 10.1002/ardp.201900108 PMID: 31894866
  34. Zhao, M.; Wang, L.; Zheng, L.; Zhang, M.; Qiu, C.; Zhang, Y.; Du, D.; Niu, B. 2D-QSAR and 3D-QSAR analyses for EGFR inhibitors. BioMed Res. Int., 2017, 2017, 4649191. doi: 10.1155/2017/4649191 PMID: 28630865
  35. Schettino, C.; Bareschino, M.A.; Ricci, V.; Ciardiello, F. Erlotinib: An EGF receptor tyrosine kinase inhibitor in non-small-cell lung cancer treatment. Expert Rev. Respir. Med., 2008, 2(2), 167-178. doi: 10.1586/17476348.2.2.167 PMID: 20477246
  36. Weerapreeyakul, N.; Nonpunya, A.; Barusrux, S.; Thitimetharoch, T.; Sripanidkulchai, B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin. Med., 2012, 7(1), 15. doi: 10.1186/1749-8546-7-15 PMID: 22682026
  37. Alsaad, H.; Kubba, A.; Tahtamouni, L.H.; Hamzah, A.H. Synthesis, docking study, and structure activity relationship of novel anti-tumor 1, 2, 4 triazole derivatives incorporating 2-(2, 3- dimethyl aminobenzoic acid) moiety. Pharmacia, 2022, 69(2), 415-428. doi: 10.3897/pharmacia.69.e83158
  38. Jayat, C.; Ratinaud, M.H. Cell cycle analysis by flow cytometry: Principles and applications. Biol. Cell, 1993, 78(1-2), 15-25. doi: 10.1016/0248-4900(93)90110-Z PMID: 8220224
  39. Tamboli, A.M.; Wadkar, K.A. Comparative cytotoxic activity of Convolvulus pluricaulis against human hepatoma cell line (HepG2) and normal cell line (L929) via apoptosis pathways by flow cytometry analysis. Bull. Natl. Res. Cent., 2022, 46(1), 145. doi: 10.1186/s42269-022-00835-8
  40. Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017, 9(5), 52. doi: 10.3390/cancers9050052 PMID: 28513565

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2023