Quercetin’s Potential Therapeutic Role in Human Colorectal Cancer: An Effective Strategy for Prevention and Treatment
- Авторы: Mehrabadi S.1
-
Учреждения:
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences
- Выпуск: Том 25, № 17 (2025)
- Страницы: 1302-1310
- Раздел: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694453
- DOI: https://doi.org/10.2174/0118715206354948250226103832
- ID: 694453
Цитировать
Полный текст
Аннотация
Background: Colorectal cancer (CRC) is a significant global health burden, ranking third in incidence and second in mortality worldwide. The incidence of CRC continues to rise, and drug resistance to conventional therapies such as 5-fluorouracil (5-FU) poses a challenge in treatment. Quercetin, a naturally occurring flavonol, has shown anti-carcinogenic properties and potential in sensitizing cancer cells to chemotherapy.
Aims and Objective:This review assesses recent animal and clinical studies on the impact of quercetin on CRC treatment and progression and evaluates its potential in combination with conventional therapies.
Methods: A comprehensive literature search was conducted to identify relevant studies investigating quercetin's effects on CRC. The search included both animal and clinical studies.
Results: Quercetin has been shown to inhibit cancer progression through cell cycle arrest and apoptosis induction. It sensitizes cancer cells to chemotherapy while exhibiting protective effects on normal cells. In CRC, quercetin has demonstrated potential in reducing tumor growth and modulating signaling pathways involved in inflammation and immune responses.
Conclusion: Quercetin shows promise as a novel therapeutic agent for CRC, and its combination with conventional therapies may lead to more effective treatment options and improved patient outcomes. Further research is warranted to validate these findings in clinical settings.
Ключевые слова
Об авторах
Shima Mehrabadi
Metabolic Syndrome Research Center, Mashhad University of Medical Sciences
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Huang, J. Global epidemiology, Precursor detection, and screening uptake for colorectal cancer; The Chinese University of Hong Kong: Hong Kong, 2021.
- Safarpour, A.R.; Bananzadeh, A.; Izadpanah, A.; Ghahramani, L.; Tadayon, S.M.K.; Bahrami, F.; Hosseini, S.V. Report of 13-year survival of patients with colon and rectal cancers; lessons from Shiraz colorectal cancer surgery registry system of a level three medical center. BMC Surg., 2022, 22(1), 142. doi: 10.1186/s12893-022-01591-2 PMID: 35428290
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
- Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594. doi: 10.1016/j.ejmech.2017.12.039 PMID: 29289883
- Ashique, S.; Bhowmick, M.; Pal, R.; Khatoon, H.; Kumar, P.; Sharma, H. Multi drug resistance in colorectal cancer-approaches to overcome, Advancements and future success. Adv. Cancer Biol. Metast., 2024, 12, 100114.
- Gavrilas, L.I.; Cruceriu, D.; Mocan, A.; Loghin, F.; Miere, D.; Balacescu, O. Plant-derived bioactive compounds in colorectal cancer: Insights from combined regimens with conventional chemotherapy to overcome drug-resistance. Biomedicines, 2022, 10(8), 1948. doi: 10.3390/biomedicines10081948 PMID: 36009495
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167. doi: 10.3390/nu8030167 PMID: 26999194
- Bhat, I.U.H.; Bhat, R. Quercetin: A bioactive compound imparting cardiovascular and neuroprotective benefits: Scope for exploring fresh produce, Their wastes, And by-products. Biology, 2021, 10(7), 586. doi: 10.3390/biology10070586 PMID: 34206761
- Parasuraman, S.; David, A.A.V.; Arulmoli, R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89. doi: 10.4103/0973-7847.194044 PMID: 28082789
- Basak, D.; Uddin, M.N.; Hancock, J. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancers, 2020, 12(11), 3336. doi: 10.3390/cancers12113336 PMID: 33187272
- Avan, A.; Mehrabadi, S.; Velayati, M.; Zafari, N.; Hassanian, S.M.; Mobarhan, M.G.; Ferns, G.; Khazaei, M. Growth-hormone-releasing hormone as a prognostic biomarker and therapeutic target in gastrointestinal cancer. Curr. Cancer Drug Targets, 2023, 23(5), 346-353. doi: 10.2174/1568009623666221228094557 PMID: 36582060
- Mehrabadi, S. Interaction between gut microbiota dysbiosis and multiple sclerosis. Int. J. Med. Investig., 2019, 24(19), 14756. doi: 10.3390/ijms241914756 PMID: 37834203
- Damavandi, S.; Avan, A.; Zafari, N.; Velayati, M.; Mehrabadi, S.; Khazaei, M.; Hassanian, S.M.; Ferns, G.A. Remodeling of the gut microbiota in colorectal cancer and its association with obesity. Curr. Pharm. Des., 2023, 29(4), 256-271. doi: 10.2174/1381612829666230118123018 PMID: 36654469
- Ding, C.; Shan, Z.; Li, M.; Chen, H.; Li, X.; Jin, Z. Characterization of the fatty acid metabolism in colorectal cancer to guide clinical therapy. Mol. Ther. Oncolytics, 2021, 20, 532-544. doi: 10.1016/j.omto.2021.02.010 PMID: 33738339
- Yang, M.; Yang, H.; Ji, L.; Hu, X.; Tian, G.; Wang, B.; Yang, J. A multi-omics machine learning framework in predicting the survival of colorectal cancer patients. Comput. Biol. Med., 2022, 146, 105516. doi: 10.1016/j.compbiomed.2022.105516 PMID: 35468406
- Chan, C.Y.; Lien, C.H.; Lee, M.F.; Huang, C.Y. Quercetin suppresses cellular migration and invasion in human head and neck squamous cell carcinoma (HNSCC). Biomedicine, 2016, 6(3), 15. doi: 10.7603/s40681-016-0015-3 PMID: 27510965
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules, 2021, 26(5), 1315. doi: 10.3390/molecules26051315 PMID: 33804548
- Jain, A.; Madu, C.O.; Lu, Y. Phytochemicals in chemoprevention: A cost-effective complementary approach. J. Cancer, 2021, 12(12), 3686-3700. doi: 10.7150/jca.57776 PMID: 33995644
- Ghafouri-Fard, S.; Shabestari, F.A.; Vaezi, S.; Abak, A.; Shoorei, H.; Karimi, A.; Taheri, M.; Basiri, A. Emerging impact of quercetin in the treatment of prostate cancer. Biomed. Pharmacother., 2021, 138, 111548. doi: 10.1016/j.biopha.2021.111548 PMID: 34311541
- Ezzati, M.; Yousefi, B.; Velaei, K.; Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci., 2020, 248, 117463. doi: 10.1016/j.lfs.2020.117463 PMID: 32097663
- Sharma, H.; Sen, S.; Singh, N. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol. Ther., 2005, 4(9), 949-955. doi: 10.4161/cbt.4.9.1908 PMID: 16082193
- Uttarawichien, T.; Kamnerdnond, C.; Inwisai, T.; Suwannalert, P.; Sibmooh, N.; Payuhakrit, W. Quercetin inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2. Sci. Pharm., 2021, 89(2), 23. doi: 10.3390/scipharm89020023
- Leersum, v.N.J.; Aalbers, A.G.; Snijders, H.S.; Henneman, D.; Wouters, M.W.; Tollenaar, R.A.; Eddes, E.H. Synchronous colorectal carcinoma: A risk factor in colorectal cancer surgery. Dis. Colon Rectum, 2014, 57(4), 460-466. doi: 10.1097/DCR.0000000000000068 PMID: 24608302
- Häfner, M.F.; Debus, J. Radiotherapy for colorectal cancer: Current standards and future perspectives. Visc. Med., 2016, 32(3), 172-177. doi: 10.1159/000446486 PMID: 27493944
- Nørgaard, A.; Dam, C.; Jakobsen, A.; Pløen, J.; Lindebjerg, J.; Rafaelsen, S.R. Selection of colon cancer patients for neoadjuvant chemotherapy by preoperative CT scan. Scand. J. Gastroenterol., 2014, 49(2), 202-208. doi: 10.3109/00365521.2013.862294 PMID: 24279811
- Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 361-375. doi: 10.1038/s41575-019-0126-x PMID: 30886395
- Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447. doi: 10.1016/j.pharmthera.2019.107447 PMID: 31756363
- Singh, N.; Baby, D.; Rajguru, J.; Patil, P.; Thakkannavar, S.; Pujari, V. Inflammation and cancer. Ann. Afr. Med., 2019, 18(3), 121-126. doi: 10.4103/aam.aam_56_18 PMID: 31417011
- Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324. doi: 10.1038/nri.2017.142 PMID: 29379212
- Tuomisto, A.E.; Mäkinen, M.J.; Väyrynen, J.P. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J. Gastroenterol., 2019, 25(31), 4383-4404. doi: 10.3748/wjg.v25.i31.4383 PMID: 31496619
- Gangadharan, A.; Choi, S.E.; Hassan, A.; Ayoub, N.M.; Durante, G.; Balwani, S.; Kim, Y.H.; Pecora, A.; Goy, A.; Suh, K.S. Protein calorie malnutrition, nutritional intervention and personalized cancer care. Oncotarget, 2017, 8(14), 24009-24030. doi: 10.18632/oncotarget.15103 PMID: 28177923
- Yamamoto, T.; Kawada, K.; Obama, K. Inflammation-related biomarkers for the prediction of prognosis in colorectal cancer patients. Int. J. Mol. Sci., 2021, 22(15), 8002. doi: 10.3390/ijms22158002 PMID: 34360768
- Lichtenstern, C.R.; Ngu, R.K.; Shalapour, S.; Karin, M. Immunotherapy, inflammation and colorectal cancer. Cells, 2020, 9(3), 618. doi: 10.3390/cells9030618 PMID: 32143413
- East, J.E.; Dekker, E. A new focus for CRC prevention—more serration, less inflammation. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(2), 69-70. doi: 10.1038/nrgastro.2012.245 PMID: 23296243
- Zhong, J.; Zong, S.; Wang, J.; Feng, M.; Wang, J.; Zhang, H.; Xiong, L. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment. Biochim. Biophys. Acta Mol. Cell Res., 2023, 1870(7), 119493. doi: 10.1016/j.bbamcr.2023.119493 PMID: 37201766
- Dalal, N.; Jalandra, R.; Bayal, N.; Yadav, A.K. Harshulika; Sharma, M.; Makharia, G.K.; Kumar, P.; Singh, R.; Solanki, P.R.; Kumar, A. Gut microbiota-derived metabolites in CRC progression and causation. J. Cancer Res. Clin. Oncol., 2021, 147(11), 3141-3155. doi: 10.1007/s00432-021-03729-w PMID: 34273006
- Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; Bittencourt, d.P.I.H., Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550. doi: 10.1042/BCJ20160503C PMID: 27941030
- Cieślar-Pobuda, A.; Yue, J.; Lee, H-C.; Skonieczna, M.; Wei, Y-H. ROS and oxidative stress in stem cells. Oxid. Med. Cell. Longev., 2017, 2017, 5047168. doi: 10.1155/2017/5047168 PMID: 29018510
- Farooq, M.A.; Niazi, A.K.; Akhtar, J. Saifullah; Farooq, M.; Souri, Z.; Karimi, N.; Rengel, Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem., 2019, 141, 353-369. doi: 10.1016/j.plaphy.2019.04.039 PMID: 31207496
- Xian, D.; Lai, R.; Song, J.; Xiong, X.; Zhong, J. Emerging perspective: Role of increased ROS and redox imbalance in skin carcinogenesis. Oxid. Med. Cell. Longev., 2019, 2019, 1-11. doi: 10.1155/2019/8127362 PMID: 31636809
- Sahoo, B.M.; Banik, B.K.; Borah, P.; Jain, A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer. Agents Med. Chem., 2022, 22, 215-222. doi: 10.2174/1871520621666210608095512 PMID: 34102991
- Farmer, E.E.; Mueller, M.J. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol., 2013, 64(1), 429-450. doi: 10.1146/annurev-arplant-050312-120132 PMID: 23451784
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species‐induced lipid peroxidation in apoptosis, autophagy, And ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-13. doi: 10.1155/2019/5080843 PMID: 31737171
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, Toxicity, Oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol., 2023, 97(10), 2499-2574. doi: 10.1007/s00204-023-03562-9 PMID: 37597078
- Pivetta, T.P.; Silva, L.B.; Kawakami, C.M.; Araújo, M.M.; Lama, D.M.P.F.M.; Naal, R.M.Z.G.; Maria-Engler, S.S.; Gaspar, L.R.; Marcato, P.D. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J. Drug Deliv. Sci. Technol., 2019, 53, 101148. doi: 10.1016/j.jddst.2019.101148
- Kendre, P.N.; Pande, V.V.; Chavan, K.M. Novel formulation strategy to enhance solubility of quercetin. Pharmacophore, 2014, 5, 358-370.
- Rodríguez-Félix, F.; Del-Toro-Sánchez, C.L.; Javier Cinco-Moroyoqui, F.; Juárez, J.; Ruiz-Cruz, S.; López-Ahumada, G.A.; Carvajal-Millan, E.; Castro-Enríquez, D.D.; Barreras-Urbina, C.G.; Tapia-Hernández, J.A. Preparation and characterization of quercetin‐loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J. Food Sci., 2019, 84(10), 2883-2897. doi: 10.1111/1750-3841.14803 PMID: 31553062
- Ferreira, M.; Gomes, D.; Neto, M.; Passarinha, L.A.; Costa, D.; Sousa, Â. Development and characterization of quercetin-loaded delivery systems for increasing its bioavailability in cervical cancer cells. Pharmaceutics, 2023, 15(3), 936. doi: 10.3390/pharmaceutics15030936 PMID: 36986797
- Neamtu, A.A.; Maghiar, T.A.; Alaya, A.; Olah, N.K.; Turcus, V.; Pelea, D.; Totolici, B.D.; Neamtu, C.; Maghiar, A.M.; Mathe, E. A comprehensive view on the quercetin impact on colorectal cancer. Molecules, 2022, 27(6), 1873. doi: 10.3390/molecules27061873 PMID: 35335239
- Catalán, M.; Ferreira, J.; Carrasco-Pozo, C. The microbiota-derived metabolite of quercetin, 3, 4-dihydroxyphenylacetic acid prevents malignant transformation and mitochondrial dysfunction induced by hemin in colon cancer and normal colon epithelia cell lines. Molecules, 2020, 25(18), 4138. doi: 10.3390/molecules25184138 PMID: 32927689
- Almaghrabi, O.A. Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney. Saudi J. Biol. Sci., 2015, 22(2), 227-231. doi: 10.1016/j.sjbs.2014.12.008 PMID: 25737657
- Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Fallahi, F.; Taghavipour, M.; Ghasemi, Y.; Akbari, M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Razi, E.; Savardashtaki, A.; Mirzaei, H. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells. Cell Biosci., 2020, 10(1), 32. doi: 10.1186/s13578-020-00397-0 PMID: 32175075
- Sun, D.; Zou, Y.; Song, L.; Han, S.; Yang, H.; Chu, D.; Dai, Y.; Ma, J.; O’Driscoll, C.M.; Yu, Z.; Guo, J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm. Sin. B, 2022, 12(1), 378-393. doi: 10.1016/j.apsb.2021.06.005 PMID: 35127393
- Lu, J.; Wang, Z.; Li, S.; Xin, Q.; Yuan, M.; Li, H.; Song, X.; Gao, H.; Pervaiz, N.; Sun, X.; Lv, W.; Jing, T.; Zhu, Y. Quercetin inhibits the migration and invasion of HCCLM3 cells by suppressing the expression of p-Akt1, matrix metalloproteinase (MMP) MMP-2, and MMP-9. Med. Sci. Monit., 2018, 24, 2583-2589. doi: 10.12659/MSM.906172 PMID: 29701200
- Trinh, N.T.; Nguyen, T.M.N.; Yook, J.I.; Ahn, S.G.; Kim, S.A. Quercetin and quercitrin from Agrimonia pilosa Ledeb inhibit the migration and invasion of colon cancer cells through the JNK signaling pathway. Pharmaceuticals, 2022, 15(3), 364. doi: 10.3390/ph15030364 PMID: 35337161
- Baghel, S.S.; Shrivastava, N.; Baghel, R.S.; Agrawal, P.; Rajput, S. A review of quercetin: Antioxidant and anticancer properties. World J. Pharm. Pharm. Sci., 2012, 1, 146-160.
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75. doi: 10.1016/j.jff.2017.10.047
- Delgado, L.; Fernandes, I.; González-Manzano, S.; Freitas, d.V.; Mateus, N.; Santos-Buelga, C. Anti-proliferative effects of quercetin and catechin metabolites. Food Funct., 2014, 5(4), 797-803. doi: 10.1039/c3fo60441a PMID: 24573487
- Zhang, H.; Zhang, M.; Yu, L.; Zhao, Y.; He, N.; Yang, X. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol., 2012, 50(5), 1589-1599. doi: 10.1016/j.fct.2012.01.025 PMID: 22310237
- Bulzomi, P.; Galluzzo, P.; Bolli, A.; Leone, S.; Acconcia, F.; Marino, M. The pro‐apoptotic effect of quercetin in cancer cell lines requires ERβ‐dependent signals. J. Cell. Physiol., 2012, 227(5), 1891-1898. doi: 10.1002/jcp.22917 PMID: 21732360
- Kim, H.J.; Kim, S.K.; Kim, B.S.; Lee, S.H.; Park, Y.S.; Park, B.K.; Kim, S.J.; Kim, J.; Choi, C.; Kim, J.S.; Cho, S.D.; Jung, J.W.; Roh, K.H.; Kang, K.S.; Jung, J.Y. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J. Agric. Food Chem., 2010, 58(15), 8643-8650. doi: 10.1021/jf101510z PMID: 20681654
- Hongyu, Z.; Yongqing, Z.; Mingxiu, S.; Jinping, L.; Pingya, L.; Ning, L.; Kai, Z. Role of ginseng, quercetin, and tea in enhancing chemotherapeutic efficacy of colorectal cancer. Front. Med., 2022, 9, 939424.
- Amado, N.; Predes, D.; Moreno, M.; Carvalho, I.; Mendes, F.; Abreu, J. Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. Int. J. Mol. Sci., 2014, 15(7), 12094-12106. doi: 10.3390/ijms150712094 PMID: 25007066
- Pashirzad, M.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of polyphenols on the treatment of colorectal cancer by regulating wnt β-Catenin signaling pathway. J. Oncol., 2021, 2021, 1-12. doi: 10.1155/2021/3619510 PMID: 34621313
- Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828. doi: 10.3892/or.2017.5766 PMID: 28677813
- Dong, Y.; Lei, J.; Zhang, B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult. Sci., 2020, 99(10), 4892-4903. doi: 10.1016/j.psj.2020.06.028 PMID: 32988526
- Qiu, D.; Yan, X.; Xiao, X.; Zhang, G.; Wang, Y.; Cao, J.; Ma, R.; Hong, S.; Ma, M. To explore immune synergistic function of Quercetin in inhibiting breast cancer cells. Cancer Cell Int., 2021, 21(1), 632. doi: 10.1186/s12935-021-02345-5 PMID: 34838003
- Yang, Y.; Wang, T.; Chen, D.; Ma, Q.; Zheng, Y.; Liao, S.; Wang, Y.; Zhang, J. Quercetin preferentially induces apoptosis in KRAS‐mutant colorectal cancer cells via JNK signaling pathways. Cell Biol. Int., 2019, 43(2), 117-124. doi: 10.1002/cbin.11055 PMID: 30203888
- Adorisio, S.; Argentieri, M.P.; Avato, P.; Caderni, G.; Chioccioli, S.; Cirmi, S.; Delfino, D.V.; Greco, G.; Hrelia, P.; Iriti, M.; Lenzi, M.; Lombardo, G.E.; Luceri, C.; Maugeri, A.; Montopoli, M.; Muscari, I.; Nani, M.F.; Navarra, M.; Gasperini, S.; Turrini, E.; Fimognari, C. The molecular basis of the anticancer properties of quercetin. Pharmadvances, 2021, 3(3), 496-520. doi: 10.36118/pharmadvances.2021.10
- Benito, I.; Encío, I.J.; Milagro, F.I.; Alfaro, M.; Martínez-Peñuela, A.; Barajas, M.; Marzo, F. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in combination with Quercetin inhibit colorectal cancer development in ApcMin/+ mice. Int. J. Mol. Sci., 2021, 22(9), 4906. doi: 10.3390/ijms22094906 PMID: 34063173
- Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130. doi: 10.1016/j.lfs.2018.07.027 PMID: 30025823
- Fang, J.; Zhang, S.; Xue, X.; Zhu, X.; Song, S.; Wang, B.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomed., 2018, 13, 5113-5126. doi: 10.2147/IJN.S170862 PMID: 30233175
- Zhou, Y.; Zhang, J.; Wang, K.; Han, W.; Wang, X.; Gao, M.; Wang, Z.; Sun, Y.; Yan, H.; Zhang, H.; Xu, X.; Yang, D.H. Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter. Eur. J. Pharmacol., 2020, 881, 173185. doi: 10.1016/j.ejphar.2020.173185 PMID: 32422185
- Maugeri, A.; Calderaro, A.; Patanè, G.T.; Navarra, M.; Barreca, D.; Cirmi, S.; Felice, M.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms. Int. J. Mol. Sci., 2023, 24(3), 2952. doi: 10.3390/ijms24032952 PMID: 36769274
- Lee, Y.K.; Park, S.Y.; Kim, Y.M.; Lee, W.S.; Park, O.J. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp. Mol. Med., 2009, 41(3), 201-207. doi: 10.3858/emm.2009.41.3.023 PMID: 19293639
- Zhao, P.; Hu, Z.; Ma, W.; Zang, L.; Tian, Z.; Hou, Q. Quercetin alleviates hyperthyroidism‐induced liver damage via Nrf2 Signaling pathway. Biofactors, 2020, 46(4), 608-619. doi: 10.1002/biof.1626 PMID: 32078205
- Lee, S. H.; Kim, I.S.; Park, S. Y.; Park, O. J.; Kim, Y. M. Quercetin induces apoptosis via regulation of mTOR-VASP signaling pathway in HT-29 colon cancer cells 2011, 16(4), 340-347.
- Mawalizadeh, F.; Mohammadzadeh, G.; Khedri, A.; Rashidi, M. Quercetin potentiates the chemosensitivity of MCF-7 breast cancer cells to 5-fluorouracil. Mol. Biol. Rep., 2021, 48(12), 7733-7742. doi: 10.1007/s11033-021-06782-3 PMID: 34637097
- Sanaei, A.; Mohammadzadeh, G.; Rashidi, M. Quercetin improves the anti-angiogenic property of 5-fluorouracil on the human umbilical vein endothelial cells huvec cell line. Internat J. Cancer Manag., 2022, 14(12), 1685. doi: 10.3390/life14121685
- Wang, L.; Lee, I.M.; Zhang, S.M.; Blumberg, J.B.; Buring, J.E.; Sesso, H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr., 2009, 89(3), 905-912. doi: 10.3945/ajcn.2008.26913 PMID: 19158208
- Wu, H.; Pan, L.; Gao, C.; Xu, H.; Li, Y.; Zhang, L.; Ma, L.; Meng, L.; Sun, X.; Qin, H. Quercetin inhibits the proliferation of glycolysis-addicted HCC cells by reducing hexokinase 2 and Akt-mTOR pathway. Molecules, 2019, 24(10), 1993. doi: 10.3390/molecules24101993 PMID: 31137633
- Lee, S.H.; Kim, I.S.; Park, O.J.; Kim, Y.M. Quercetin induces apoptosis via regulation of mTOR-VASP signaling pathway in HT-29 colon cancer cells. J. Cancer Prev., 2011, 16, 340-347.
- Carrillo-Martinez, E.J.; Flores-Hernández, F.Y.; Salazar-Montes, A.M.; Nario-Chaidez, H.F.; Hernández-Ortega, L.D. Quercetin, A flavonoid with great pharmacological capacity. Molecules, 2024, 29(5), 1000. doi: 10.3390/molecules29051000 PMID: 38474512
- Hussain, Y.; Mirzaei, S.; Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Khan, H.; Daglia, M. Quercetin and its nano-scale delivery systems in prostate cancer therapy: Paving the way for cancer elimination and reversing chemoresistance. Cancers, 2021, 13(7), 1602. doi: 10.3390/cancers13071602 PMID: 33807174
- Askar, M.A.; El-Nashar, H.A.S.; Al-Azzawi, M.A.; Rahman, S.S.A.; Elshawi, O.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer, 2022, 16, 11782234221086728. doi: 10.1177/11782234221086728 PMID: 35359610
- Li, Y.; Wang, Z.; Jin, J.; Zhu, S.X.; He, G.Q.; Li, S.H.; Wang, J.; Cai, Y. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochem. Biophys. Res. Commun., 2020, 523(4), 947-953. doi: 10.1016/j.bbrc.2020.01.048 PMID: 31964531
- Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Quercetin nanoformulations:A promising strategy for tumor therapy. Food Funct., 2021, 12(15), 6664-6681. doi: 10.1039/D1FO00851J PMID: 34152346
- Farag, M.R.; Moselhy, A.A.A.; El-Mleeh, A.; Aljuaydi, S.H.; Ismail, T.A.; Cerbo, D.A.; Crescenzo, G.; Abou-Zeid, S.M. Quercetin alleviates the immunotoxic impact mediated by oxidative stress and inflammation induced by doxorubicin exposure in rats. Antioxidants, 2021, 10(12), 1906. doi: 10.3390/antiox10121906 PMID: 34943009
- Tan, R.Z.; Wang, C.; Deng, C.; Zhong, X.; Yan, Y.; Luo, Y.; Lan, H.Y.; He, T.; Wang, L. Quercetin protects against cisplatin‐induced acute kidney injury by inhibiting Mincle/Syk/NF‐κB signaling maintained macrophage inflammation. Phytother. Res., 2020, 34(1), 139-152. doi: 10.1002/ptr.6507 PMID: 31497913
- Sánchez-González, P.D.; López-Hernández, F.J.; Dueñas, M.; Prieto, M.; Sánchez-López, E.; Thomale, J.; Ruiz-Ortega, M.; López-Novoa, J.M.; Morales, A.I. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food Chem. Toxicol., 2017, 107(Pt A), 226-236. doi: 10.1016/j.fct.2017.06.047 PMID: 28669851
- Behling, E.B.; Sendão, M.C.; Francescato, H.D.; Antunes, L.M.; Costa, R.S.; Bianchi, M.D. Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol. Rep., 2006, 58(4), 526-532. PMID: 16963799
- Langner, E.; Lemieszek, M.K.; Rzeski, W. Lycopene, sulforaphane, quercetin, And curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro. J. Food Biochem., 2019, 43(4), e12802. doi: 10.1111/jfbc.12802 PMID: 31353575
- Hardie, D.G.; Carling, D.; Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem., 1998, 67(1), 821-855. doi: 10.1146/annurev.biochem.67.1.821 PMID: 9759505
- Wu, S.; Xie, J.; Shi, H.; Wang, Z. miR-492 promotes chemoresistance to CDDP and metastasis by targeting inhibiting DNMT3B and induces stemness in gastric cancer. Biosci. Rep., 2020, 40(3), BSR20194342. doi: 10.1042/BSR20194342 PMID: 32065219
- Kim, H.S.; Wannatung, T.; Lee, S.; Yang, W.K.; Chung, S.H.; Lim, J.S.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis, 2012, 17(9), 938-949. doi: 10.1007/s10495-012-0719-0 PMID: 22684842
- Huang, C.; Chen, T.; Zhu, D.; Huang, Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem., 2020, 8, 225. doi: 10.3389/fchem.2020.00225 PMID: 32296682
- Redondo-Blanco, S.; Fernández, J.; Gutiérrez-del-Río, I.; Villar, C.J.; Lombó, F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol., 2017, 8, 109. doi: 10.3389/fphar.2017.00109 PMID: 28352231
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; Soofiyani, S.R.; Kozhamzharova, L.; Sharifi-Rad, J.; Calina, D.; Cho, W.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int., 2022, 22(1), 257. doi: 10.1186/s12935-022-02677-w PMID: 35971151
Дополнительные файлы
