A Path to the Formation Mechanism of Propolis Nanoparticles, their Cytotoxicity on 3T3 Fibroblasts, Metastatic Murine B16F10 Cells, and their In vivo Irritability in Animals
- Авторы: Gonzalez-Masis J.1, Gonzalez-Paz R.2, Urena Y.2, Guerrero S.3, Gonzalez-Camacho S.4, Mora-Ugalde N.5, Baizan-Rojas M.5, Loaiza R.5, Vega-Baudrit J.2, Cubero-Sesin J.1
-
Учреждения:
- Centro de Investigación y Extensión en Materiales, Escuela de Ciencia e Ingeniería de los Materiales, Instituto Tecnológico de Costa Rica
- National Nanotechnology Laboratory, National Center of High Technology ((LANOTEC-CeNAT- CONARE)
- Facultad de Medicina, Universidad de Atacama
- Biological Assay Laboratory (LEBi), University of Costa Rica
- National Center for Biotechnological Innovations (CENIBiot), National Center of High Technology (CeNAT-CONARE)
- Выпуск: Том 25, № 17 (2025)
- Страницы: 1331-1341
- Раздел: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694456
- DOI: https://doi.org/10.2174/0118715206316231250218063957
- ID: 694456
Цитировать
Полный текст
Аннотация
Background: Natural products, such as propolis, are an important source of biologically active compounds with the potential to treat health disorders. Propolis is a well-known waxy resin recognized for its antimicrobial, immunomodulatory, and cytotoxic effects.
Objective: In this study, we aimed to clarify the formation mechanism of propolis nanoparticles from the perspective of their stability and chemical composition. By evaluating the light absorption behaviour of the nanoparticles formed in different media and quantifying the polyphenols, we show that they are superficially hydrophobic nanoparticles with the capacity to encapsulate some polar compounds.
Methods: Biological activity was evaluated by in vitro cell viability performed on NIH/3T3 fibroblasts incubated with 10, 100, and 1000 μg/mL of propolis nanoparticles for 48 hours.
Results: The results show that nanoparticles are cytocompatible, with a proliferation effect. In contrast, the results of the viability of metastatic murine B16F10 cells indicate that a dose with a concentration of 5 μg/mL in the cell culture media is sufficient to stop the abnormal cell growth, having an antitumor effect. This effect might be related to the flavonoids present in the propolis nanoparticles. In vivo dermal irritability tests on New Zealand rabbits show that propolis nanoparticles' aqueous dissolution was non-irritant.
Conclusion: According to the results obtained from this study, reducing the size of raw propolis down to nanoparticles and dispersing them in water solvents enhance its positive effects. The superficially hydrophobic propolis nanoparticles encapsulate active compounds such as polyphenols and flavonoids, which also confirms their ability to generate selective effects on the cells, depending on their nature.
Ключевые слова
Об авторах
Jeimmy Gonzalez-Masis
Centro de Investigación y Extensión en Materiales, Escuela de Ciencia e Ingeniería de los Materiales, Instituto Tecnológico de Costa Rica
Email: info@benthamscience.net
Rodolfo Gonzalez-Paz
National Nanotechnology Laboratory, National Center of High Technology ((LANOTEC-CeNAT- CONARE)
Автор, ответственный за переписку.
Email: info@benthamscience.net
Yendry Urena
National Nanotechnology Laboratory, National Center of High Technology ((LANOTEC-CeNAT- CONARE)
Email: info@benthamscience.net
Simon Guerrero
Facultad de Medicina, Universidad de Atacama
Email: info@benthamscience.net
Sara Gonzalez-Camacho
Biological Assay Laboratory (LEBi), University of Costa Rica
Email: info@benthamscience.net
Nohelia Mora-Ugalde
National Center for Biotechnological Innovations (CENIBiot), National Center of High Technology (CeNAT-CONARE)
Email: info@benthamscience.net
Monica Baizan-Rojas
National Center for Biotechnological Innovations (CENIBiot), National Center of High Technology (CeNAT-CONARE)
Email: info@benthamscience.net
Randall Loaiza
National Center for Biotechnological Innovations (CENIBiot), National Center of High Technology (CeNAT-CONARE)
Email: info@benthamscience.net
Jose Vega-Baudrit
National Nanotechnology Laboratory, National Center of High Technology ((LANOTEC-CeNAT- CONARE)
Email: info@benthamscience.net
Jorge Cubero-Sesin
Centro de Investigación y Extensión en Materiales, Escuela de Ciencia e Ingeniería de los Materiales, Instituto Tecnológico de Costa Rica
Email: info@benthamscience.net
Список литературы
- Proestos, C. The benefits of plant extracts for human health. Foods, 2020, 9(11), 1653. doi: 10.3390/foods9111653 PMID: 33198209
- Veiga, M.; Costa, E.M.; Silva, S.; Pintado, M. Impact of plant extracts upon human health: A review. Crit. Rev. Food Sci. Nutr., 2020, 60(5), 873-886. doi: 10.1080/10408398.2018.1540969 PMID: 30501504
- Shakeri, M.; Tayer, A.H.; Shakeri, H.; Jahromi, A.S.; Moradzadeh, M.; Hojjat-Farsangi, M. Toxicity of saffron extracts on cancer and normal cells: A review article. Asian Pac. J. Cancer Prev., 2020, 21(7), 1867-1875. doi: 10.31557/APJCP.2020.21.7.1867
- Cheimonidi, C.; Samara, P.; Polychronopoulos, P.; Tsakiri, E.N.; Nikou, T.; Myrianthopoulos, V.; Sakellaropoulos, T.; Zoumpourlis, V.; Mikros, E.; Papassideri, I.; Argyropoulou, A.; Halabalaki, M.; Alexopoulos, L.G.; Skaltsounis, A.L.; Tsitsilonis, O.E.; Aligiannis, N.N.; Trougakos, I.P. Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol., 2018, 16, 169-178. doi: 10.1016/j.redox.2018.02.015 PMID: 29505920
- Wigner, P.; Bijak, M.; Saluk-Bijak, J. The green anti-cancer weapon. The role of natural compounds in bladder cancer treatment. Int. J. Mol. Sci., 2021, 22(15), 7787. doi: 10.3390/ijms22157787 PMID: 34360552
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661. doi: 10.1021/acs.jnatprod.5b01055 PMID: 26852623
- Trisciuoglio, D.; Uranchimeg, B.; Cardellina, J.H.; Meragelman, T.L.; Matsunaga, S.; Fusetani, N.; Del Bufalo, D.; Shoemaker, R.H.; Melillo, G. Induction of apoptosis in human cancer cells by candidaspongiolide, a novel sponge polyketide. J. Natl. Cancer Inst., 2008, 100(17), 1233-1246. doi: 10.1093/jnci/djn239 PMID: 18728285
- Bhavana, V.; Sudharshan, S.; Madhu, D. Natural anticancer compounds and their derivatives in clinical trials, de anticancer plants: Clinical trials and nanotechnology; Springer: Singapore, 2017, pp. 51-104.
- Ruffa, M.J.; Ferraro, G.; Wagner, M.L.; Calcagno, M.L.; Campos, R.H.; Cavallaro, L. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J. Ethnopharmacol., 2002, 79(3), 335-339. doi: 10.1016/S0378-8741(01)00400-7 PMID: 11849838
- Diaz, C.; Quesada, S.; Brenes, O.; Aguilar, G.; Ciccio, J.F. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines. Nat. Prod. Res., 2008, 22(17), 1521-1534. doi: 10.1080/14786410701848154 PMID: 19023816
- M.E.S.; El-Sherbiny, G.M.; Sharaf, M.H.; Kalaba, M.H.; Shaban, A.S. Phytochemical analysis, antimicrobial, antioxidant, and cytotoxicity activities of Schinus molle (L.) extracts. Biomass Conv. Bioref, 2024, 1-8. doi: 10.1007/s13399-024-05301-1
- Adebayo, I.A.; Arsad, H.; Samian, M.R. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 282-287. doi: 10.21010/ajtcam.v14i2.30 PMID: 28573245
- Moremane, M.M.; Abrahams, B.; Tiloke, C. Moringa oleifera: A review on the antiproliferative potential in breast cancer cells. Curr. Issues Mol. Biol., 2023, XLV(8), 6880-6902. doi: 10.3390/cimb45080434 PMID: 37623253
- Alwhibi, M.S.; Khalil, M.I.M.; Ibrahim, M.M.; El-Gaaly, G.A.; Sultan, A.S. Potential antitumor activity and apoptosis induction of Glossostemon bruguieri root extract against hepatocellular carcinoma cells. Evid. Based Complement. Alternat. Med., 2017, 2017(1), 7218562. doi: 10.1155/2017/7218562 PMID: 28421122
- Al-Snafi, A. Medical importance of Glossostemon bruguieri – A review. IOSR J. Pharm., 2019, 9(5), 34-39.
- Sulaiman, G.M.; Sammarrae, K.W.A.; Ad’hiah, A.H.; Zucchetti, M.; Frapolli, R.; Bello, E.; Erba, E.; D’Incalci, M.; Bagnati, R. Chemical characterization of Iraqi propolis samples and assessing their antioxidant potentials. Food Chem. Toxicol., 2011, 49(9), 2415-2421. doi: 10.1016/j.fct.2011.06.060 PMID: 21723909
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules, 2019, 24(11), 2047. doi: 10.3390/molecules24112047 PMID: 31146392
- Silva, J.C.; Rodrigues, S.; Feás, X.; Estevinho, L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol., 2012, 50(5), 1790-1795. doi: 10.1016/j.fct.2012.02.097 PMID: 22425940
- Ożarowski, M.; Karpiński, T.M.; Alam, R.; Łochyńska, M. Antifungal properties of chemically defined propolis from various geographical regions. Microorganisms, 2022, 10(2), 364. doi: 10.3390/microorganisms10020364 PMID: 35208818
- Magnavacca, A.; Sangiovanni, E.; Racagni, G.; Dell’Agli, M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med. Res. Rev., 2022, 42(2), 897-945. doi: 10.1002/med.21866 PMID: 34725836
- Athikomkulchai, S.; Awale, S.; Ruangrungsi, N.; Ruchirawat, S.; Kadota, S. Chemical constituents of Thai propolis. Fitoterapia, 2013, 88, 96-100. doi: 10.1016/j.fitote.2013.04.008 PMID: 23660244
- Altabbal, S.; Athamnah, K.; Rahma, A.; Wali, A.F.; Eid, A.H.; Iratni, R.; Al Dhaheri, Y. Propolis: A detailed insight of its anticancer molecular mechanisms. Pharmaceuticals, 2023, 16(3), 450. doi: 10.3390/ph16030450 PMID: 36986549
- Alvear, M.; Santos, E.; Cabezas, F.; Pérez-SanMartín, A.; Lespinasse, M.; Veloz, J. Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of chilean propolis. Plants, 2021, 10(8), 1543. doi: 10.3390/plants10081543 PMID: 34451588
- Al-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci., 2012, 9(9), 793-800. doi: 10.7150/ijms.4722 PMID: 23136543
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie, 1995, 26(2), 83-99. doi: 10.1051/apido:19950202
- Marcucci, M.C.; Ferreres, F.; García-Viguera, C.; Bankova, V.S.; De Castro, S.L.; Dantas, A.P.; Valente, P.H.M.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol., 2001, 74(2), 105-112. doi: 10.1016/S0378-8741(00)00326-3 PMID: 11167028
- Tran, T.D.; Ogbourne, S.M.; Brooks, P.R.; Sánchez-Cruz, N.; Medina-Franco, J.L.; Quinn, R.J. Lessons from exploring chemical space and chemical diversity of propolis components. Int. J. Mol. Sci., 2020, 21(14), 4988. doi: 10.3390/ijms21144988 PMID: 32679731
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci., 2008, 73(9), R117-R124. doi: 10.1111/j.1750-3841.2008.00966.x PMID: 19021816
- Frozza, C.O.; Garcia, C.S.; Gambato, G.; de Souza, M.D.; Salvador, M.; Moura, S.; Padilha, F.F.; Seixas, F.K.; Collares, T.; Borsuk, S.; Dellagostin, O.A.; Henriques, J.A.; Roesch-Ely, M. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food Chem. Toxicol., 2013, 52, 137-142. doi: 10.1016/j.fct.2012.11.013
- Oliveira, R.N.; Mancini, M.C.; Oliveira, F.C.; Passos, T.M.; Quilty, B.; Thiré, R.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Materia, 2016, XXI(3), 767-779. doi: 10.1590/S1517-707620160003.0072
- Chan, G.C.F.; Cheung, K.W.; Sze, D.M.Y. The immunomodulatory and anticancer properties of propolis. Clin. Rev. Allergy Immunol., 2013, 44(3), 262-273. doi: 10.1007/s12016-012-8322-2 PMID: 22707327
- Hayat, J.; Akodad, M.; Moumen, A.; Baghour, M.; Skalli, A.; Ezrari, S.; Belmalha, S. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon, 2020, 6(11), e05609. doi: 10.1016/j.heliyon.2020.e05609
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant activity of propolis of various geographic origins. Food Chem., 2004, 84(3), 329-339. doi: 10.1016/S0308-8146(03)00216-4
- Li, F.; Awale, S.; Tezuka, Y.; Kadota, S. Cytotoxic constituents from Brazilian red propolis and their structure–activity relationship. Bioorg. Med. Chem., 2008, 16(10), 5434-5440. doi: 10.1016/j.bmc.2008.04.016 PMID: 18440233
- Cheung, K.W.; Sze, D.M.Y.; Chan, W.K.; Deng, R.X.; Tu, W.; Chan, G.C.F. Brazilian green propolis and its constituent, Artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation. J. Ethnopharmacol., 2011, 138(2), 463-471. doi: 10.1016/j.jep.2011.09.031 PMID: 21964192
- Kimoto, T.; Arai, S.; Kohguchi, M.; Aga, M.; Nomura, Y.; Micallef, M.J.; Kurimoto, M.; Mito, K. Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detect. Prev., 1998, 22(6), 506-515. doi: 10.1046/j.1525-1500.1998.00020.x PMID: 9824373
- Chen, M.J.; Chang, W.H.; Lin, C.C.; Liu, C.Y.; Wang, T.E.; Chu, C.H.; Shih, S.C.; Chen, Y.J. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology, 2008, 8(6), 558-565. doi: 10.1159/000159214 PMID: 18824880
- Chang, H.; Wang, Y.; Yin, X.; Liu, X.; Xuan, H. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement. Altern. Med., 2017, 17(1), 471. doi: 10.1186/s12906-017-1984-9 PMID: 28950845
- Caetano, A.R.; Oliveira, R.D.; Celeiro, S.P.; Freitas, A.S.; Cardoso, S.M.; Gonçalves, M.S.T.; Baltazar, F.; Almeida-Aguiar, C. Phenolic compounds contribution to portuguese propolis anti-melanoma activity. Molecules, 2023, 28(7), 3107. doi: 10.3390/molecules28073107
- Ozturk, G.; Ginis, Z.; Akyol, S.; Erden, G.; Gurel, A.; Akyol, O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): Review of melanomas, lung and prostate cancers. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(15), 2064-2068. PMID: 23280020
- Watkins, R.; Wu, L.; Zhang, C.; Davis, R.M.; Xu, B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomedicine, 2015, 10, 6055-6074. PMID: 26451111
- Jayakumar, R.; Ramya, C.; Kumar, P.; Snima, K.; Lakshmanan, V.; Shantikumar, N. In vitro anti-cancerous and anti-microbial activity of propolis nanoparticles. J. Nanopharm. Drug Deliv., 2012, 1(1), 1-7.
- González-Masís, J.; Cubero-Sesin, J.M.; Corrales-Ureña, Y.R.; González-Camacho, S.; Mora-Ugalde, N.; Baizán-Rojas, M.; Loaiza, R.; Vega-Baudrit, J.R.; González-Paz, R.J. Increased fibroblast metabolic activity of collagen scaffolds via the addition of propolis nanoparticles. Materials, 2020, 13(14), 3118. doi: 10.3390/ma13143118 PMID: 32668654
- González-Masís, J.; Cubero-Sesin, J.M.; Corrales-Ureña, Y.R.; González-Camacho, S.; Mora-Ugalde, N.; Vega-Baudrit, J.R.; Rischka, K.; Verma, V.; Gonzalez-Paz, R.J. Nonirritant and cytocompatible Tinospora cordifolia nanoparticles for topical antioxidant treatments. Int. J. Biomater., 2020, 2020, 3637098. doi: 10.1155/2020/3637098
- Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668. doi: 10.1021/nl052396o
- Wu, M.; Guo, H.; Liu, L.; Liu, Y.; Xie, L. Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int. J. Nanomed., 2019, 14, 4247-4259. doi: 10.2147/IJN.S201107
- Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys., 1995, 322(2), 339-346. doi: 10.1006/abbi.1995.1473 PMID: 7574706
- Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complement. Altern. Med., 2015, 15, 156. doi: 10.1186/s12906-015-0677-5
- Correa-Pacheco, Z.N.; Bautista-Baños, S. Ramos-García, M.de L.; Martínez-González, M.del C.; Hernández-Romano, J. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Prog. Org. Coat., 2019, 137, 105326. doi: 10.1016/j.porgcoat.2019.105326
- Sharaf, S.; Higazy, A.; Hebeish, A. Propolis induced antibacterial activity and other technical properties of cotton textiles. Int. J. Biol. Macromol., 2013, 59, 408-416. doi: 10.1016/j.ijbiomac.2013.04.030
- Moussa, A.; Mokhtar, A.; Aissat, S.; Aissa, M.A.; Khiati, B. FTIR characterization of Sahara honey and propolis and evaluation of its anticandidal potentials. Acta Scientifica Naturalis, 2020, 7(3), 46-57. doi: 10.2478/asn-2020-0032
- Hegazi, A.G.; El-Houssiny, A.S.; Fouad, E.A. Egyptian propolis 14: Potential antibacterial activity of propolis-encapsulated alginate nanoparticles against different pathogenic bacteria strains. Adv. Nat. Sci: Nanosci. Nanotechnol., 2019, 10(4), 045019. doi: 10.1088/2043-6254/ab52f4
- Basyirah, N.; Azemin, A.; Rodi, M.M.; Rashid, Z.M.; Mohd, K. Application of FTIR fingerprints coupled with chemometric for comparison of stingless bee propolis from different extraction methods. Malays. J. Fundam. Appl. Sci., 2019, 15(2-1), 350-355. doi: 10.11113/mjfas.v15n2-1.1553
- Cao, J.; Peng, L.Q.; Du, L.J.; Zhang, Q.D.; Xu, J.J. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis. Analytica Chimica Acta, 2017, 963, 24-32. doi: 10.1016/j.aca.2017.01.063
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P. Kuś, Marek; Jerković, I. Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay. Antioxidants, 2020, 9(4), 337. doi: 10.3390/antiox9040337 PMID: 32326085
- da Silva, C.; Prasniewski, A.; Calegari, M.A.; de Lima, V.A.; Oldoni, T.L. Determination of total phenolic compounds and antioxidant activity of ethanolic extracts of propolis using ATR–FT-IR spectroscopy and chemometrics. Food Anal. Methods, 2018, 11, 2013-2021. doi: 10.1007/s12161-018-1161-x
- Yuliana, N.D.; Wijaya, C.H.; Nasrullah, N. Classification of Trigona spp bee propolis from four regions in Indonesia using FTIR metabolomics approach. 13th Asian Food Conference 2013, Singapore, 2013, 9-11.
- Ibrahim, N.; Zakaria, A.J.; Ismail, Z. Application of GCMS and FTIR fingerprinting in discriminating two species of malaysian stingless bees propolis. Int. J. Eng. Technol., 2018, 7(4.43), 106-112. doi: 10.14419/ijet.v7i4.43.25828
- Lim, J.R.; Chua, L.S.; Soo, J. Study of stingless bee (Heterotrigona itama) propolis using LC-MS/MS and TGA-FTIR. Applied Food Research, 2023, 3(1), 100252. doi: 10.1016/j.afres.2022.100252
- Fabris, S.; Bertelle, M.; Astafyeva, O.; Gregoris, E.; Zangrando, R.; Gambaro, A.; P.P Lima, G.; Stevanato, R.Antioxidant properties and chemical composition relationship of Europeans and Brazilians propolis. Pharmacol. Pharm., 2013, 4(1), 46-51. doi: 10.4236/pp.2013.41006
- Chen, H.J.; Inbaraj, B.S.; Chen, B.H. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. Int. J. Mol. Sci., 2011, 13(1), 260-285. doi: 10.3390/ijms13010260 PMID: 22312251
- Halake, K.; Lee, J. Functional hyaluronic acid conjugates based on natural polyphenols exhibit antioxidant, adhesive, gelation, and self-healing properties. J. Ind. Eng. Chem., 2017, 54, 44-51. doi: 10.1016/j.jiec.2017.04.018
- Masek, A.; Chrzescijanska, E.; Latos, M.; Kosmalska, A. Electrochemical and spectrophotometric characterization of the propolis antioxidants properties. Int. J. Electrochem. Sci., 2019, 14(2), 1231-1247. doi: 10.20964/2019.02.66
- Erdoğan, Ü. Ultrasonic assisted propolis extraction: Characterization by ATR-FTIR and determination of its total antioxidant capacity and radical scavenging ability. Int. J. Sec. Metabolite., 2023, 10(2), 231-239. doi: 10.21448/ijsm.1167773
- González-Paz, R.; Cádiz, V.; Kiara, R.; Vega-Baudrit, J. Isomerization of fatty acids: A cellular barrier mechanism in nanotechnology? J. Nanosci. Nanotechnol., 2017, 17(8), 5436-5444. doi: 10.1166/jnn.2017.13791
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem., 2000, 267(17), 5421-5426. doi: 10.1046/j.1432-1327.2000.01606.x PMID: 10951200
- Munshi, S.; Twining, R.C.; Dahl, R. Alamar blue reagent interacts with cell-culture media giving different fluorescence over time: Potential for false positives. J. Pharmacol. Toxicol. Methods, 2014, 70(2), 195-198. doi: 10.1016/j.vascn.2014.06.005 PMID: 24933394
- Rampersad, S.N. Multiple applications of Alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors, 2012, 12(9), 12347-12360. doi: 10.3390/s120912347 PMID: 23112716
- Jacob, A.; Parolia, A.; Pau, A.; D Amalraj, F. The effects of Malaysian propolis and Brazilian red propolis on connective tissue fibroblasts in the wound healing process. BMC Complement. Altern. Med., 2015, 15(1), 294. doi: 10.1186/s12906-015-0814-1 PMID: 26303848
- Olczyk, P.; Wisowski, G.; Komosinska-Vassev, K.; Stojko, J.; Klimek, K.; Olczyk, M.; Kozma, E.M. Propolis modifies collagen types I and III accumulation in the matrix of burnt tissue. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-10. doi: 10.1155/2013/423809 PMID: 23781260
- Elkhenany, H.; El-Badri, N.; Dhar, M. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed. Pharmacother., 2019, 115, 108861. doi: 10.1016/j.biopha.2019.108861 PMID: 31005795
- Gjertsen, A.W.; Stothz, K.A.; Neiva, K.G.; Pileggi, R. Effect of propolis on proliferation and apoptosis of periodontal ligament fibroblasts, Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology. Endodontology, 2011, 112(6), 843-848.
- Dieter, A.C.; True, A.B.; Gilbertson, E.A.; Snyder, G.; Lacy-Hulbert, A.; Traylor-Knowles, N.; Browne, W.E.; Vandepas, L.E. Flow cytometry methods for targeted isolation of ctenophore cells. Front. Mar. Sci., 2023, 10, 1276041. doi: 10.3389/fmars.2023.1276041
- Oršolić, N.; Jembrek, J.M. Molecular and cellular mechanisms of propolis and its polyphenolic compounds against cancer. Int. J. Mol. Sci., 2022, 23(18), 10479. doi: 10.3390/ijms231810479
- Sung, S.H.; Choi, G.H.; Lee, N.W.; Shin, B.C. External use of propolis for oral, skin, and genital diseases: A systematic review and meta‐analysis. Evid. Based Complement. Alternat. Med., 2017, 2017(1), 8025752. doi: 10.1155/2017/8025752 PMID: 28265293
- Valero da Silva, M.; Gomes de Moura Jr, N.; B Motoyama, A.; M Ferreira, V. A review of the potential therapeutic and cosmetic use of propolis in topical formulations. J. Appl. Pharm. Sci., 2019, 001-011.
Дополнительные файлы
