The Mesoionic 1,3,4-thiadiazolium Derivative, MI-D, is a Potential Drug for Treating Glioblastoma by Impairing Mitochondrial Functions Linked to Energy Provision in Glioma Cells


如何引用文章

全文:

详细

Background:Mesoionic compound MI-D possesses important biological activities, such as antiinflammatory and antitumoral against melanoma and hepatocarcinoma. Glioblastoma is the most aggressive and common central nervous system tumor in adults. Currently, chemotherapies are not entirely effective, and the survival of patients diagnosed with glioblastoma is extremely short.

Objective:In this study, we aimed to evaluate the cytotoxicity of MI-D in noninvasive A172 glioblastoma cells and establish which changes in functions linked to energy provision are associated with this effect.

Methods:Cells A172 were cultured under glycolysis and phosphorylation oxidative conditions and evaluated: viability by the MTT method, oxygen consumption by high-resolution respirometry, levels of pyruvate, lactate, citrate, and ATP, and glutaminase and citrate synthase activities by spectrophotometric methods.

Results:Under glycolysis-dependent conditions, MI-D caused significant cytotoxic effects with impaired cell respiration, reducing the maximal capacity of the electron transport chain. However, A172 cells were more susceptible to MI-D effects under oxidative phosphorylation-dependent conditions. At the IC25, inhibition of basal and maximal respiration of A172 cells was observed, without stimulation of the glycolytic pathway or Krebs cycle, along with inhibition of the activity of glutaminase enzyme, resulting in a 30% ATP deficit. Additionally, independent of metabolic conditions, MI-D treatment induced cell death in A172 cells by apoptosis machinery/ processes.

Conclusion:The impairment of mitochondrial respiration by MI-D under the condition sustained by oxidative phosphorylation may enhance the cytotoxic effect on A172 glioma cells, although the mechanism of cell death relies on apoptosis.

作者简介

Marília Corrêa-Ferreira

Department of Biochemistry and Molecular Biology, Federal University of Paraná

Email: info@benthamscience.net

Amanda do Rocio Andrade Pires

Department of Biochemistry and Molecular Biology, Federal University of Paraná

Email: info@benthamscience.net

Juan Miranda

Department of Biochemistry and Molecular Biology, Federal University of Paraná

Email: info@benthamscience.net

Eduardo de Freitas Montin

Department of Biochemistry and Molecular Biology, Federal University of Paraná

Email: info@benthamscience.net

Igor Barbosa

Department of Chemistry, Federal Rural University of Rio de Janeiro

Email: info@benthamscience.net

Aurea Lima

Department of Chemistry, Federal Rural University of Rio de Janeiro

Email: info@benthamscience.net

Maria Rocha

Department of Biochemistry and Molecular Biology, Federal University of Paraná

Email: info@benthamscience.net

Glaucia Martinez

Department of Biochemistry and Molecular Biology, Federal University of Paraná

Email: info@benthamscience.net

Sílvia Cadena

Department of Biochemistry and Molecular Biology, Federal University of Paraná

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Paiva, R.O.; Kneipp, L.F.; Dos Reis, C.M.; Echevarria, A. Mesoionic compounds with antifungal activity against Fusarium verticillioides. BMC Microbiol., 2015, 15(1), 11. doi: 10.1186/s12866-015-0340-9 PMID: 25649493
  2. Zhang, J.; Song, R.; Wu, S. Discovery of pyrido1,2-apyrimidinone mesoionic compounds incorporating a dithioacetal moiety as novel potential insecticidal agents. J. Agric. Food Chem., 2021, 69(50), 15136-15144. doi: 10.1021/acs.jafc.1c05823 PMID: 34878774
  3. Brandt, A.P.; Gozzi, G.J.; Pires, A.R.A. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2). Chem. Biol. Interact., 2016, 256, 154-160. doi: 10.1016/j.cbi.2016.07.007 PMID: 27417255
  4. Senff-Ribeiro, A.; Echevarria, A.; Silva, E.F.; Franco, C.R.C.; Veiga, S.S.; Oliveira, M.B.M. Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma. Br. J. Cancer, 2004, 91(2), 297-304. doi: 10.1038/sj.bjc.6601946 PMID: 15199390
  5. Corrêa-Ferreira, M.L.; Do Rocio, A.P.A.; Barbosa, I.R. The mesoionic compound MI-D changes energy metabolism and induces apoptosis in T98G glioma cells. Mol. Cell. Biochem., 2022, 477(8), 2033-2045. doi: 10.1007/s11010-022-04423-2 PMID: 35420333
  6. Newton, C.G.; Ramsden, C.A. Meso-ionic heterocycles (1976–1980). Tetrahedron, 1982, 38(20), 2965-3011. doi: 10.1016/0040-4020(82)80186-5
  7. Ferlay, J.; Ervik, M.; Lam, F. Global cancer observatory: Cancer today; , 2024. Available from: https://gco.iarc.fr/today
  8. Cancer Stat Facts, S.E.E.R. Brain and other nervous system cancer., 2023. Available from: https://seer.cancer.gov/statfacts/html/brain.html
  9. Obara-Michlewska, M.; Szeliga, M. Targeting glutamine addiction in gliomas. Cancers (Basel), 2020, 12(2), 310.
  10. Le Rhun, E.; Preusser, M.; Roth, P. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev., 2019, 80, 101896. doi: 10.1016/j.ctrv.2019.101896 PMID: 31541850
  11. Zanders, E.D.; Svensson, F.; Bailey, D.S. Therapy for glioblastoma: Is it working? Drug Discov. Today, 2019, 24(5), 1193-1201. doi: 10.1016/j.drudis.2019.03.008 PMID: 30878561
  12. Minniti, G.; Muni, R.; Lanzetta, G.; Marchetti, P.; Enrici, R.M. Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res., 2009, 29(12), 5171-5184. PMID: 20044633
  13. Colquhoun, A. Cell biology-metabolic crosstalk in glioma. Int. J. Biochem. Cell Biol., 2017, 89, 171-181. doi: 10.1016/j.biocel.2017.05.022 PMID: 28549626
  14. Cadena, S.M.S.C.; Carnieri, E.G.S.; Echevarria, A.; De Oliveira, M.B.M. Effect of MI‐D, a new mesoionic compound, on energy‐linked functions of rat liver mitochondria. FEBS Lett., 1998, 440(1-2), 46-50. doi: 10.1016/S0014-5793(98)01427-6 PMID: 9862422
  15. Senff-Ribeiro, A.; Echevarria, A.; Silva, E.F.; Veiga, S.S.; Oliveira, M.B.M. Antimelanoma activity of 1,3,4-thiadiazolium mesoionics: A structure–activity relationship study. Anticancer Drugs, 2004, 15(3), 269-275. doi: 10.1097/00001813-200403000-00012 PMID: 15014361
  16. Gozzi, G.J.; Pires, A.R.A.; Valdameri, G. Selective cytotoxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2). PLoS One, 2015, 10(6), e0130046. doi: 10.1371/journal.pone.0130046 PMID: 26083249
  17. Trombetta-Lima, M.; Winnischofer, S.M.B.; Demasi, M.A.A. Isolation and characterization of novel RECK tumor suppressor gene splice variants. Oncotarget, 2015, 6(32), 33120-33133. doi: 10.18632/oncotarget.5305 PMID: 26431549
  18. Corrẽa, T.C.S.; Brohem, C.A.; Winnischofer, S.M.B. Downregulation of the RECK ‐tumor and metastasis suppressor gene in glioma invasiveness. J. Cell. Biochem., 2006, 99(1), 156-167. doi: 10.1002/jcb.20917 PMID: 16791855
  19. Grynberg, N.; Santos, A.C.; Echevarria, A. Synthesis and in vivo antitumor activity of new heterocyclic derivatives of the 1,3,4-thiadiazolium-2-aminide class. Anticancer Drugs, 1997, 8(1), 88-91. doi: 10.1097/00001813-199701000-00012 PMID: 9147617
  20. Souza, A.C.; Echevarria, A. Electronic effects on 13C NMR chemical shifts of substituted 1,3,4‐thiadiazolium salts. Magn. Reson. Chem., 2001, 39(4), 182-186. doi: 10.1002/mrc.812
  21. Reilly, T.P.; Bellevue, F.H., III; Woster, P.M.; Svensson, C.K. Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone. Biochem. Pharmacol., 1998, 55(6), 803-810. doi: 10.1016/S0006-2952(97)00547-9 PMID: 9586952
  22. Sladowski, D.; Steer, S.J.; Clothier, R.H.; Balls, M. An improved MIT assay. J. Immunol. Methods, 1993, 157(1-2), 203-207. doi: 10.1016/0022-1759(93)90088-O PMID: 8423364
  23. Kumar, P; Nagarajan, A; Uchil, PD Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb Protoc, 2018, 2018(6), pdb.prot095497. doi: 10.1101/pdb.prot095497 PMID: 29858337
  24. Ruas, J.S.; Siqueira-Santos, E.S.; Amigo, I.; Rodrigues-Silva, E.; Kowaltowski, A.J.; Castilho, R.F. Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS One, 2016, 11(3), e0150967. doi: 10.1371/journal.pone.0150967 PMID: 26950698
  25. Czok, R; Lamprecht, W. Phosphoenolpyruvate and D-Glycerate-2- phosphate. Methods of enzymatic analysis 1974.
  26. Gutmann, I.; Wahlefeld, A. L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Methods in enzymatic analysis; Academic Press: New York, 1974; pp. 1464-1468.
  27. Board, M.; Humm, S.; Newsholme, E.A. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem. J., 1990, 265(2), 503-509. doi: 10.1042/bj2650503 PMID: 2302181
  28. Curthoys, N.P.; Lowry, O.H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J. Biol. Chem., 1973, 248(1), 162-168. doi: 10.1016/S0021-9258(19)44458-X PMID: 4692829
  29. Kenny, J.; Bao, Y.; Hamm, B. Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase. Protein Expr. Purif., 2003, 31(1), 140-148. doi: 10.1016/S1046-5928(03)00161-X PMID: 12963351
  30. Marroquin, L.D.; Hynes, J.; Dykens, J.A.; Jamieson, J.D.; Will, Y. Circumventing the crabtree effect: Replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci., 2007, 97(2), 539-547. doi: 10.1093/toxsci/kfm052 PMID: 17361016
  31. Aguer, C.; Gambarotta, D.; Mailloux, R.J. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One, 2011, 6(12), e28536. doi: 10.1371/journal.pone.0028536 PMID: 22194845
  32. Gohil, V.M.; Sheth, S.A.; Nilsson, R. Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat. Biotechnol., 2010, 28, 249-255. doi: 10.1038/nbt.1606 PMID: 20160716
  33. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254. doi: 10.1016/0003-2697(76)90527-3 PMID: 942051
  34. Comelli, M.; Pretis, I.; Buso, A.; Mavelli, I. Mitochondrial energy metabolism and signalling in human glioblastoma cell lines with different PTEN gene status. J. Bioenerg. Biomembr., 2018, 50(1), 33-52. doi: 10.1007/s10863-017-9737-5 PMID: 29209894
  35. Nguyen, T.; Durán, R.V. Glutamine metabolism in cancer therapy. Cancer Drug Resist., 2018, 1, 126-138.
  36. Chlastakova, I; Liskova, M; Kudelova, J Dynamics of caspase3 activation and inhibition in embryonic micromasses evaluated by a photon-counting chemiluminescence approach. in vitro Cell Dev Biol Anim, 2012, 48(9), 545-9.
  37. Rodrigues-Silva, E.; Siqueira-Santos, E.S.; Ruas, J.S. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. J. Neurooncol., 2017, 133(3), 519-529. doi: 10.1007/s11060-017-2482-0 PMID: 28540666
  38. Molina, J.R.; Sun, Y.; Protopopova, M. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med., 2018, 24(7), 1036-1046. doi: 10.1038/s41591-018-0052-4 PMID: 29892070
  39. Dott, W.; Mistry, P.; Wright, J.; Cain, K.; Herbert, K.E. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Redox Biol., 2014, 2, 224-233. doi: 10.1016/j.redox.2013.12.028 PMID: 24494197
  40. Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.S.; Kroemer, G.; Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res., 2018, 28(3), 265-280. doi: 10.1038/cr.2017.155 PMID: 29219147
  41. Wang, X.; Chen, Y.; Wang, J.; Liu, Z.; Zhao, S. Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway. Tumour Biol., 2014, 35(2), 1641-1647. doi: 10.1007/s13277-013-1226-9 PMID: 24197975
  42. Pereira, R.A.; Pires, A.R.A.; Echevarria, A.; Sousa-Pereira, D.; Noleto, G.R.; Suter, C.C.S.M. The toxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2) is associated with mitochondrial dysfunction. Chem. Biol. Interact., 2021, 349, 109675. doi: 10.1016/j.cbi.2021.109675 PMID: 34563518
  43. Sheikh, T.N.; Patwardhan, P.P.; Cremers, S.; Schwartz, G.K. Targeted inhibition of glutaminase as a potential new approach for the treatment of NF1 associated soft tissue malignancies. Oncotarget, 2017, 8(55), 94054-94068. doi: 10.18632/oncotarget.21573

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2025