Discovery of a Novel Co-crystal of Chrysin and Oroxylin A with Anticancer Properties from Leaves of Oroxylum indicum
- 作者: Singh S.1, Singh A.1, Singh A.2, Devi A.1, Korimayum M.1, Singh L.1
-
隶属关系:
- Department of Biotechnology, Manipur University
- Department of Chemistry, Manipur University
- 期: 卷 25, 编号 8 (2025)
- 页面: 563-573
- 栏目: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694513
- DOI: https://doi.org/10.2174/0118715206364530241128044041
- ID: 694513
如何引用文章
全文:
详细
Background:As the number of new cancer cases increases every year, there is a necessity to develop new drugs for the treatment of different types of cancers. Plants' resources are considered to be huge reservoirs for therapeutic agents in nature. Among all the medicinal plants, Oroxylum indicum is one of the most widely used medicinal plants in India, China, and Southeast Asian countries. Combinatorial drug treatment, on the other hand, is favored over single drug treatment in order to target multiple biomolecular moieties that help in the growth and development of cancer. Therefore, combinatorial drug treatment using a co-crystal of multiple drugs gives researchers an idea of the development of a new type of drug for targeting multiple targets. In this study, a new co-crystal of chrysin and oroxylin A was isolated from the leaves of O. indicum, and its anticancer properties were studied in cervical cancer cells HeLa.
Aim:This study was conducted with the aim of identifying new anticancer compounds from the leaves of Oroxylum indicum and studying the anticancer properties of the isolated compound.
Objective:In this study, we elucidated the structure of a new co-crystal compound, which was isolated from the leaf extract of Oroxylum indicum. The apoptosis induction mechanism of the newly discovered co-crystal in HeLa cells was also studied.
Methods:A crystal compound from the chloroform extract of leaves of Oroxylum Indicum was isolated by solvent fractionation and chromatographic methods involving HPLC. The molecular structure of the isolated crystal was elucidated by Single Crystal-XRD, FT-IR analysis, and further determined by LC-MS. The antiproliferative activity was carried out using an MTT assay and fluorescence microscopy, and the mechanism of apoptosis was determined using Western blotting techniques.
Results:The novel co-crystal consists of two active pharmaceutical ingredients (APIs) in a 1:1 ratio, i.e., oroxylin A and chrysin. The isolated new co-crystal induced death in HeLa cells with a very low IC50 value of 8.49 μM. It induced caspase-dependent apoptosis in HeLa cells by activation of Caspase-3 through inhibition of ERKs and activation of p38 of MAPK cell signalling pathway.
Conclusion:This study presents the first report on the discovery of a naturally occurring co-crystal of chrysin and oroxylin A and the involvement of ERKs and p38 of MAPK pathways in the induction of apoptosis in HeLa cells by the co-crystal. Our study sheds light on the development of a co-crystal of chrysin and oroxylin A in a specific ratio of 1:1 for combination therapy of the two APIs. The purified co-crystal was found to be more efficient compared to the compounds present individually. Further analysis of the physiochemical properties and molecular mechanisms of the isolated co-crystal in different cancer cells is warranted for its application in therapeutics.
关键词
作者简介
Salam Singh
Department of Biotechnology, Manipur University
Email: info@benthamscience.net
Asem Singh
Department of Biotechnology, Manipur University
Email: info@benthamscience.net
Atom Singh
Department of Chemistry, Manipur University
Email: info@benthamscience.net
Anoubam Devi
Department of Biotechnology, Manipur University
Email: info@benthamscience.net
Minhaz Korimayum
Department of Biotechnology, Manipur University
Email: info@benthamscience.net
Lisam Singh
Department of Biotechnology, Manipur University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Ferlay, J. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020. doi: 10.1002/ijc.33588
- Guida, F.; Kidman, R.; Ferlay, J.; Schüz, J.; Soerjomataram, I.; Kithaka, B.; Ginsburg, O.; Mailhot Vega, R.B.; Galukande, M.; Parham, G.; Vaccarella, S.; Canfell, K.; Ilbawi, A.M.; Anderson, B.O.; Bray, F.; dos-Santos-Silva, I.; McCormack, V. Global and regional estimates of orphans attributed to maternal cancer mortality in 2020. Nat. Med., 2022, 28(12), 2563-2572. doi: 10.1038/s41591-022-02109-2 PMID: 36404355
- Ramírez, M.H.; López, K.G.; Carrancá, A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front. Pharmacol., 2021, 12, 710304. doi: 10.3389/fphar.2021.710304 PMID: 34744708
- Golmohammadi, M.; Zamanian, M.Y.; Jalal, S.M.; Noraldeen, S.A.M.; Ramírez-Coronel, A.A.; Oudaha, K.H.; Obaid, R.F.; Almulla, A.F.; Bazmandegan, G.; Kamiab, Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci. Nutr., 2023, 11(12), 7458-7468. doi: 10.1002/fsn3.3699 PMID: 38107139
- Guamán-Ortiz, L.; Orellana, M.; Ratovitski, E. Natural compounds as modulators of non-apoptotic cell death in cancer cells. Curr. Genomics, 2017, 18(2), 132-155. doi: 10.2174/1389202917666160803150639 PMID: 28367073
- Zamanian, M.Y.; Golmohammadi, M.; Yumashev, A.; Hjazi, A.; Toama, M.A. AbdRabou, M.A.; Gehlot, A.; Alwaily, E.R.; Shirsalimi, N.; Yadav, P.K.; Moriasi, G. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem. Funct., 2024, 42(4), e4071. doi: 10.1002/cbf.4071 PMID: 38863255
- Khan, T. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47. doi: 10.3390/biom10010047
- Van Hasselt, J.C.; Iyengar, R.J.A. Systems pharmacology: Defining the interactions of drug combinations. Annu. Rev. Pharmacol. Toxicol., 2019, 59, 21-40. doi: 10.1146/annurev-pharmtox-010818-021511
- Vakil, V.; Trappe, W.J.P. Drug combinations: Mathematical modeling and networking methods. Pharmaceutics, 2019, 11(5), 208. doi: 10.3390/pharmaceutics11050208
- Frantz, S.J.N. The trouble with making combination drugs. Nat. Rev. Drug Discov., 2006, 5, 881-882. doi: 10.1038/nrd2188
- Wang, X. Drug-drug cocrystals: Opportunities and challenges. Asian J. Pharm. Sci., 2021, 16(3), 307-317. doi: 10.1016/j.ajps.2020.06.004
- Kumar Bandaru, R.; Rout, S.R.; Kenguva, G.; Gorain, B.; Alhakamy, N.A.; Kesharwani, P.; Dandela, R. Recent advances in pharmaceutical cocrystals: From bench to market. Front. Pharmacol., 2021, 12, 780582. doi: 10.3389/fphar.2021.780582 PMID: 34858194
- Kara, D.D.; Rathnanand, M. Cocrystals and drug–drug cocrystals of anticancer drugs: A perception towards screening techniques, preparation, and enhancement of drug properties. Crystals, 2022, 12(10), 1337. doi: 10.3390/cryst12101337
- Singh, V.; Chaudhary, A.J.I.J. A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum Vent. Indian J. Pharm. Sci., 2011, 73(5), 483-490. doi: 10.4103/0250-474X.98981
- Wu, B.L.; Wu, Z-W.; Yang, F.; Shen, X-F.; Wang, L.; Chen, B.; Li, F.; Wang, M-K. Flavonoids from the seeds of Oroxylum indicum and their anti-inflammatory and cytotoxic activities. Phytochem. Lett., 2019, 32, 66-69. doi: 10.1016/j.phytol.2019.05.003
- Yan, R.; Cao, Y.; Chen, C.; Dai, H.; Yu, S.; Wei, J.; Li, H.; Yang, B. Antioxidant flavonoids from the seed of Oroxylum indicum. Fitoterapia, 2011, 82(6), 841-848. doi: 10.1016/j.fitote.2011.04.006 PMID: 21596112
- Chen, J.; Chen, J.; Lu, J. Systematic elucidation of the mechanism of Oroxylum indicum via network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020(1), 5354215. doi: 10.1155/2020/5354215 PMID: 32733583
- Dinda, B. SilSarma, I.; Dinda, M.; Rudrapaul, P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. J. Ethnopharmacol., 2015, 161, 255-278. doi: 10.1016/j.jep.2014.12.027 PMID: 25543018
- Singh, A.R.; Singh, S.A.; Singh, T.D.; Singh, N.T.; Machathoibi, T.C.; Singh, O.M.; Singh, L.S. Bioassay-guided isolation of 2-p-(2-Carboxyhydrazino)phenoxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol from Oroxylum indicum and the investigation of its molecular mechanism action of apoptosis induction. Pharmaceuticals, 2022, 15(5), 559. doi: 10.3390/ph15050559 PMID: 35631385
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(1), 112-122. doi: 10.1107/S0108767307043930 PMID: 18156677
- Renkoğlu, P.; Çelebier, M.; Yegin, A.B. HPLC determination of olanzapine and carbamazepine in their nicotinamide cocrystals and investigation of the dissolution profiles of cocrystal tablet formulations. Pharm. Dev. Technol., 2015, 20(3), 380-384. doi: 10.3109/10837450.2014.882937 PMID: 24521464
- Raina, R.; Afroze, N.; Kedhari Sundaram, M.; Haque, S.; Bajbouj, K.; Hamad, M.; Hussain, A. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2206-2220. doi: 10.26355/eurrev_202103_25253 PMID: 33755959
- Raina, R.; Hussain, A.; Almutary, A.G.; Haque, S.; Raza, T.; D’Souza, A.C.; Subramani, S.; Sajeevan, A. Co-administration of chrysin and luteolin with cisplatin and topotecan exhibits a variable therapeutic value in human cancer cells, HeLa. ACS Omega, 2023, 8(44), 41204-41213. doi: 10.1021/acsomega.3c04443 PMID: 37970041
- Zhang, T.; Chen, X.; Qu, L.; Wu, J.; Cui, R.; Zhao, Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem., 2004, 12(23), 6097-6105. doi: 10.1016/j.bmc.2004.09.013 PMID: 15519155
- Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci., 2010, 11(5), 2188-2199. doi: 10.3390/ijms11052188 PMID: 20559509
- Pawar, J.S.; Mustafa, S.; Ghosh, I. Chrysin and Capsaicin induces premature senescence and apoptosis via mitochondrial dysfunction and p53 elevation in Cervical cancer cells. Saudi J. Biol. Sci., 2022, 29(5), 3838-3847. doi: 10.1016/j.sjbs.2022.03.011 PMID: 35844432
- Li, H.N.; Nie, F.F.; Liu, W.; Dai, Q.S.; Lu, N.; Qi, Q.; Li, Z.Y.; You, Q.D.; Guo, Q.L. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology, 2009, 257(1-2), 80-85. doi: 10.1016/j.tox.2008.12.011 PMID: 19135124
- Kiraly, G.; Simonyi, A.S.; Turani, M. Micronucleus formation during chromatin condensation and under apoptotic conditions. Apoptosis, 2017, 22(2), 207-219. doi: 10.1007/s10495-016-1316-4
- Bossy-Wetzel, E.; Green, D.R. Detection of apoptosis by annexin V labeling. In: Methods in enzymology; Elsevier; , 2000; pp. 15-18. doi: 10.1016/S0076-6879(00)22004-1
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp. Ther. Med., 2020, 19(3), 1997-2007. doi: 10.3892/etm.2020.8454 PMID: 32104259
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol., 2020, 21(10), 607-632. doi: 10.1038/s41580-020-0255-7 PMID: 32576977
- Berra, E.; Diaz-Meco, M.T.; Moscat, J. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J. Biol. Chem., 1998, 273(17), 10792-10797. doi: 10.1074/jbc.273.17.10792 PMID: 9553146
- Berra, E.; Municio, M.M.; Sanz, L.; Frutos, S.; Diaz-Meco, M.T.; Moscat, J. Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade. Mol. Cell. Biol., 1997, 17(8), 4346-4354. doi: 10.1128/MCB.17.8.4346 PMID: 9234692
- Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R.J.; Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, 270(5240), 1326-1331. doi: 10.1126/science.270.5240.1326 PMID: 7481820
- Yang, C.; Luo, J.; Luo, X.; Jia, W.; Fang, Z.; Yi, S.; Li, L. Morusin exerts anti-cancer activity in renal cell carcinoma by disturbing MAPK signaling pathways. Ann. Transl. Med., 2020, 8(6), 327. doi: 10.21037/atm.2020.02.107 PMID: 32355771
- Eid, W.; Abdel-Rehim, W. Neferine enhances the antitumor effect of mitomycin‐C in hela cells through the activation of p38‐MAPK pathway. J. Cell. Biochem., 2017, 118(10), 3472-3479. doi: 10.1002/jcb.26006 PMID: 28328092
- Yao, W.; Lin, Z.; Wang, G.; Li, S.; Chen, B.; Sui, Y.; Huang, J.; Liu, Q.; Shi, P.; Lin, X.; Liu, Q.; Yao, H. Delicaflavone induces apoptosis via mitochondrial pathway accompanying G2/M cycle arrest and inhibition of MAPK signaling cascades in cervical cancer HeLa cells. Phytomedicine, 2019, 62, 152973. doi: 10.1016/j.phymed.2019.152973 PMID: 31177019
- Thakuria, R.; Sarma, B.J.C. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: A crystal engineering approach. Crystals, 2018, 2, 101. doi: 10.3390/cryst8020101
- Kumbhar, P.; Kolekar, K. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J. Control. Release, 2023, 353, 1150-1170. doi: 10.1016/j.jconrel.2022.12.042
- Nascimento, A.L.; Fernandes, R.P. Co-crystals of non-steroidal anti-inflammatory drugs (NSAIDs): Insight toward formation, methods, and drug enhancement. Particuology, 2021, 58, 227-241. doi: 10.1016/j.partic.2021.03.015
补充文件
