NAD+ Consuming Enzymes: Involvement in Therapies and Prevention of Human Diseases


Дәйексөз келтіру

Толық мәтін

Аннотация

Neuroprotection is one of the hot topics in medicine. Alzheimer's disease, amyotrophic lateral sclerosis, retinal pigment epithelial (RPE) degeneration, and axonal degeneration have been studied for the involvement of NAD depletion. Localized NAD+ depletion could lead to overactivation and crowding of local NAD+ salvage pathways. It has been stated that NAD+ depletion caused by PARPs and PAR cycling has been related to metabolic diseases and cancer. Additionally, it is now acknowledged that SARM1 dependent NAD+ depletion causes axon degeneration. New targeted therapeutics, such as SARM1 inhibitors, and NAD+ salvage drugs will help alleviate the dysfunctions affecting cell life and death in neurodegeneration as well as in metabolic diseases and cancer.

Негізгі сөздер

Авторлар туралы

Mitsuko Masutani

Department of Molecular and Genomic Biomedicine, Graduate School of Biomedical Sciences, Center for Bioinformatics and Molecular Medicine

Email: info@benthamscience.net

Masanao Miwa

, Nagahama Institute of Bio-Science and Technology,

Email: info@benthamscience.net

Palmiro Poltronieri

Institute of Sciences of Food Productions (ISPA-CNR), National Research Council of Italy

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Poltronieri, P.; Miwa, M.; Masutani, M. ADP-ribosylation as posttranslational modification of proteins: Use of inhibitors in cancer control. Int. J. Mol. Sci., 2021, 22(19), 10829. doi: 10.3390/ijms221910829 PMID: 34639169
  2. Antolín, A.A.; Mestres, J. Linking off-target kinase pharmacology to the differential cellular effects observed among PARP inhibitors. Oncotarget, 2014, 5(10), 3023-3028. doi: 10.18632/oncotarget.1814 PMID: 24632590
  3. Sandhu, D.; Antolin, A.A.; Cox, A.R.; Jones, A.M. Identification of different side effects between PARP inhibitors and their polypharmacological multitarget rationale. Br. J. Clin. Pharmacol., 2022, 88(2), 742-752. doi: 10.1111/bcp.15015 PMID: 34327724
  4. Palve, V.; Knezevic, C.E.; Bejan, D.S.; Luo, Y.; Li, X.; Novakova, S.; Welsh, E.A.; Fang, B.; Kinose, F.; Haura, E.B.; Monteiro, A.N.; Koomen, J.M.; Cohen, M.S.; Lawrence, H.R.; Rix, U. The non-canonical target PARP16 contributes to polypharmacology of the PARP inhibitor talazoparib and its synergy with WEE1 inhibitors. Cell Chem. Biol., 2022, 29(2), 202-214. doi: 10.1016/j.chembiol.2021.07.008 PMID: 34329582
  5. Figley, M.D.; Gu, W.; Nanson, J.D.; Shi, Y.; Sasaki, Y.; Cunnea, K.; Malde, A.K.; Jia, X.; Luo, Z.; Saikot, F.K.; Mosaiab, T.; Masic, V.; Holt, S.; Hartley-Tassell, L.; McGuinness, H.Y.; Manik, M.K.; Bosanac, T.; Landsberg, M.J.; Kerry, P.S.; Mobli, M.; Hughes, R.O.; Milbrandt, J.; Kobe, B.; DiAntonio, A.; Ve, T. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron, 2021, 109(7), 1118-1136. doi: 10.1016/j.neuron.2021.02.009 PMID: 33657413
  6. Horsefield, S.; Burdett, H.; Zhang, X.; Manik, M.K.; Shi, Y.; Chen, J.; Qi, T.; Gilley, J.; Lai, J.S.; Rank, M.X.; Casey, L.W.; Gu, W.; Ericsson, D.J.; Foley, G.; Hughes, R.O.; Bosanac, T.; von Itzstein, M.; Rathjen, J.P.; Nanson, J.D.; Boden, M.; Dry, I.B.; Williams, S.J.; Staskawicz, B.J.; Coleman, M.P.; Ve, T.; Dodds, P.N.; Kobe, B. NAD + cleavage activity by animal and plant TIR domains in cell death pathways. Science, 2019, 365(6455), 793-799. doi: 10.1126/science.aax1911 PMID: 31439792
  7. Eastman, S.; Bayless, A. Guo, M. The nucleotide revolution: Immunity at the intersection of TIR-domains, nucleotides, and Ca2. Mol. Plant Microbe Interact., 2022, 35(11), 964-976. doi: 10.1094/MPMI-06-22-0132-CR PMID: 35881867
  8. Li, W.H.; Huang, K.; Cai, Y.; Wang, Q.W.; Zhu, W.J.; Hou, Y.N.; Wang, S.; Cao, S.; Zhao, Z.Y.; Xie, X.J.; Du, Y.; Lee, C.S.; Lee, H.C.; Zhang, H.; Zhao, Y.J. Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate. eLife, 2021, 10, e67381. doi: 10.7554/eLife.67381 PMID: 33944777
  9. Carreras-Puigvert, J.; Zitnik, M.; Jemth, A.S.; Carter, M.; Unterlass, J.E.; Hallström, B.; Loseva, O.; Karem, Z.; Calderón-Montaño, J.M.; Lindskog, C.; Edqvist, P.H.; Matuszewski, D.J.; Ait Blal, H.; Berntsson, R.P.A.; Häggblad, M.; Martens, U.; Studham, M.; Lundgren, B.; Wählby, C.; Sonnhammer, E.L.L.; Lundberg, E.; Stenmark, P.; Zupan, B.; Helleday, T. A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nat. Commun., 2017, 8(1), 1541. doi: 10.1038/s41467-017-01642-w PMID: 29142246
  10. Kulikova, V.A.; Nikiforov, A.A. Role of NUDIX Hydrolases in NAD and ADP-ribose metabolism in mammals. Biochemistry, 2020, 85(8), 883-894. doi: 10.1134/S0006297920080040 PMID: 33045949
  11. Sharma, S.; Grudzien-Nogalska, E.; Hamilton, K.; Jiao, X.; Yang, J.; Tong, L.; Kiledjian, M. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Res., 2020, 48(12), 6788-6798. doi: 10.1093/nar/gkaa402 PMID: 32432673
  12. Poltronieri, P.; Mezzolla, V.; Farooqi, A.A.; Di Girolamo, M. NAD precursors, mitochondria targeting compounds and ADP-ribosylation inhibitors in treatment of inflammatory diseases and cancer. Curr. Med. Chem., 2021, 28(41), 8453-8479. doi: 10.2174/0929867328666210118152653 PMID: 33461448
  13. Zhao, Q.; Capelli, R.; Carloni, P.; Lüscher, B.; Li, J.; Rossetti, G. Enhanced sampling approach to the induced-fit docking problem in protein–ligand binding: The case of mono-adp-ribosylation hydrolase inhibitors. J. Chem. Theory Comput., 2021, 17(12), 7899-7911. doi: 10.1021/acs.jctc.1c00649 PMID: 34813698
  14. Seydel, C. Diving deeper into the proteome. Nat. Methods, 2022, 19(9), 1036-1040. doi: 10.1038/s41592-022-01599-9 PMID: 36008631
  15. Rhine, K.; Dasovich, M.; Yoniles, J.; Badiee, M.; Skanchy, S.; Ganser, L.R.; Ge, Y.; Fare, C.M.; Shorter, J.; Leung, A.K.L.; Myong, S. Poly(ADP-ribose) drives condensation of FUS via a transient interaction. Mol. Cell, 2022, 82(5), 969-985.e11. doi: 10.1016/j.molcel.2022.01.018 PMID: 35182479
  16. Feldman, H.C.; Merlini, E.; Guijas, C.; DeMeester, K.E.; Njomen, E.; Kozina, E.M.; Yokoyama, M.; Vinogradova, E.; Reardon, H.T.; Melillo, B.; Schreiber, S.L.; Loreto, A.; Blankman, J.L.; Cravatt, B.F. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc. Natl. Acad. Sci., 2022, 119(35), e2208457119. doi: 10.1073/pnas.2208457119 PMID: 35994671

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2023