Targeting Glutamine Metabolism through Glutaminase Inhibition Suppresses Cell Proliferation and Progression in Nasopharyngeal Carcinoma
- Autores: Su C.1, Li M.2, Yang Y.3, Wang Z.2, Wang Q.2, Wang W.2, Ma X.1, Jie R.4, Chen H.5, Li X.2, Lu J.1
-
Afiliações:
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital,, Southern Medical University
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical Universit
- Department of Health Management, Nanfang Hospital, Southern Medical University
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University,
- Edição: Volume 23, Nº 17 (2023)
- Páginas: 1944-1957
- Seção: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694367
- DOI: https://doi.org/10.2174/1871520623666230727104825
- ID: 694367
Citar
Texto integral
Resumo
Background: Glutaminase (GLS), the key enzyme involved in glutamine metabolism, has been identified as a critical player in tumor growth and progression. The GLS inhibitor CB-839 has entered several clinical trials against a variety of tumors.
Objective: Our study aimed to investigate the role and underlying mechanism of GLS and its inhibitor CB-839 in nasopharyngeal carcinoma (NPC).
Methods: The expression, downstream genes, and signaling pathways of GLS in NPC were determined by real-time polymerase chain reaction (RT-PCR), PCR array, western blotting (WB), and immunohistochemical staining (IHC), and the phenotype of GLS was confirmed by in vivo experiments of subcutaneous tumor formation in mice and in vitro experiments of functional biology, including Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell migration, and Boyden invasion assay. Finally, it was also verified whether the treatment of NPC cells by GLS inhibitor CB-839 can change various biological functions and protein expression to achieve the purpose of blocking tumor progression.
Results: GLS was remarkably overexpressed in NPC cells and tissues, predicting a poor overall survival of NPC patients. GLS promoted cell cycle, proliferation, colony formation, migratory, and invasive capacities by regulating Cyclin D2 (CCND2) via PI3K/AKT/mTOR pathway in NPC in vitro and in vivo. Notably, CB-839 showed an effective anti-NPC tumor effect by blocking the biological functions of the tumor.
Conclusion: The first innovative proof is that GLS promotes cell proliferation by regulating CCND2 via PI3K/AKT/mTOR pathway in NPC, and GLS inhibitor CB-839 may serve as a new potential therapeutic target for NPC treatment.
Palavras-chave
Sobre autores
Chang Su
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital,, Southern Medical University
Autor responsável pela correspondência
Email: info@benthamscience.net
Minghan Li
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Yuxin Yang
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical Universit
Email: info@benthamscience.net
Ziying Wang
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Qianru Wang
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Weijia Wang
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Xuemin Ma
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital,, Southern Medical University
Email: info@benthamscience.net
Rongrong Jie
Department of Health Management, Nanfang Hospital, Southern Medical University
Email: info@benthamscience.net
Huaihong Chen
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University,
Autor responsável pela correspondência
Email: info@benthamscience.net
Xiangping Li
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University
Autor responsável pela correspondência
Email: info@benthamscience.net
Juan Lu
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital,, Southern Medical University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
- Wong, K.C.W.; Hui, E.P.; Lo, K.W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.F.; King, A.D.; Ma, B.B.Y.; Chan, A.T.C. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol., 2021, 18(11), 679-695. doi: 10.1038/s41571-021-00524-x PMID: 34194007
- Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet, 2019, 394(10192), 64-80. doi: 10.1016/S0140-6736(19)30956-0 PMID: 31178151
- Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634. doi: 10.1038/nrc.2016.71 PMID: 27492215
- Masisi, B.K.; El Ansari, R.; Alfarsi, L.; Rakha, E.A.; Green, A.R.; Craze, M.L. The role of glutaminase in cancer. Histopathology, 2020, 76(4), 498-508. doi: 10.1111/his.14014 PMID: 31596504
- Xiang, L.; Mou, J.; Shao, B.; Wei, Y.; Liang, H.; Takano, N.; Semenza, G.L.; Xie, G. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis., 2019, 10(2), 40. doi: 10.1038/s41419-018-1291-5 PMID: 30674873
- Li, B.; Cao, Y.; Meng, G.; Qian, L.; Xu, T.; Yan, C.; Luo, O.; Wang, S.; Wei, J.; Ding, Y.; Yu, D. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine, 2019, 39, 239-254. doi: 10.1016/j.ebiom.2018.11.063 PMID: 30555042
- Edwards, D.N.; Ngwa, V.M.; Raybuck, A.L.; Wang, S.; Hwang, Y.; Kim, L.C.; Cho, S.H.; Paik, Y.; Wang, Q.; Zhang, S.; Manning, H.C.; Rathmell, J.C.; Cook, R.S.; Boothby, M.R.; Chen, J. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Invest., 2021, 131(4), e140100. doi: 10.1172/JCI140100 PMID: 33320840
- Wu, S.; Fukumoto, T.; Lin, J.; Nacarelli, T.; Wang, Y.; Ong, D.; Liu, H.; Fatkhutdinov, N.; Zundell, J.A.; Karakashev, S.; Zhou, W.; Schwartz, L.E.; Tang, H.Y.; Drapkin, R.; Liu, Q.; Huntsman, D.G.; Kossenkov, A.V.; Speicher, D.W.; Schug, Z.T.; Van Dang, C.; Zhang, R. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat. Can., 2021, 2(2), 189-200. doi: 10.1038/s43018-020-00160-x PMID: 34085048
- Xu, L.; Yin, Y.; Li, Y.; Chen, X.; Chang, Y.; Zhang, H.; Liu, J.; Beasley, J.; McCaw, P.; Zhang, H.; Young, S.; Groth, J.; Wang, Q.; Locasale, J.W.; Gao, X.; Tang, D.G.; Dong, X.; He, Y.; George, D.; Hu, H.; Huang, J. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proc. Natl. Acad. Sci. USA, 2021, 118(13), e2012748118. doi: 10.1073/pnas.2012748118 PMID: 33753479
- Li, L.; Meng, Y.; Li, Z.; Dai, W.; Xu, X.; Bi, X.; Bian, J. Discovery and development of small molecule modulators targeting glutamine metabolism. Eur. J. Med. Chem., 2019, 163, 215-242. doi: 10.1016/j.ejmech.2018.11.066 PMID: 30522056
- Varghese, S.; Pramanik, S.; Williams, L.J.; Hodges, H.R.; Hudgens, C.W.; Fischer, G.M.; Luo, C.K.; Knighton, B.; Tan, L.; Lorenzi, P.L.; Mackinnon, A.L.; McQuade, J.L.; Hailemichael, Y.; Roszik, J.; Peng, W.; Vashisht Gopal, Y.N. The glutaminase inhibitor CB-839 (Telaglenastat) enhances the antimelanoma activity of T-cellmediated immunotherapies. Mol. Cancer Ther., 2021, 20(3), 500-511. doi: 10.1158/1535-7163.MCT-20-0430 PMID: 33361272
- Zhao, Y.; Feng, X.; Chen, Y.; Selfridge, J.E.; Gorityala, S.; Du, Z.; Wang, J.M.; Hao, Y.; Cioffi, G.; Conlon, R.A.; Barnholtz-Sloan, J.S.; Saltzman, J.; Krishnamurthi, S.S.; Vinayak, S.; Veigl, M.; Xu, Y.; Bajor, D.L.; Markowitz, S.D.; Meropol, N.J.; Eads, J.R.; Wang, Z. 5-fluorouracil enhances the antitumor activity of the glutaminase inhibitor CB-839 against PIK3CA -mutant colorectal cancers. Cancer Res., 2020, 80(21), 4815-4827. doi: 10.1158/0008-5472.CAN-20-0600 PMID: 32907836
- Jin, H.; Wang, S.; Zaal, E.A.; Wang, C.; Wu, H.; Bosma, A.; Jochems, F.; Isima, N.; Jin, G.; Lieftink, C.; Beijersbergen, R.; Berkers, C.R.; Qin, W.; Bernards, R. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. eLife, 2020, 9, e56749. doi: 10.7554/eLife.56749 PMID: 33016874
- Wicker, C.A.; Hunt, B.G.; Krishnan, S.; Aziz, K.; Parajuli, S.; Palackdharry, S.; Elaban, W.R.; Wise-Draper, T.M.; Mills, G.B.; Waltz, S.E.; Takiar, V. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett., 2021, 502, 180-188. doi: 10.1016/j.canlet.2020.12.038 PMID: 33450358
- Xu, X.; Meng, Y.; Li, L.; Xu, P.; Wang, J.; Li, Z.; Bian, J. Overview of the development of glutaminase inhibitors: Achievements and future directions. J. Med. Chem., 2019, 62(3), 1096-1115. doi: 10.1021/acs.jmedchem.8b00961 PMID: 30148361
- Song, M.; Bode, A.M.; Dong, Z.; Lee, M.H. AKT as a therapeutic target for cancer. Cancer Res., 2019, 79(6), 1019-1031. doi: 10.1158/0008-5472.CAN-18-2738 PMID: 30808672
- Chang, F.; Lee, J.T.; Navolanic, P.M.; Steelman, L.S.; Shelton, J.G.; Blalock, W.L.; Franklin, R.A.; McCubrey, J.A. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia, 2003, 17(3), 590-603. doi: 10.1038/sj.leu.2402824 PMID: 12646949
- Lee, A.W.M.; Ng, W.T.; Chan, J.Y.W.; Corry, J.; Mäkitie, A.; Mendenhall, W.M.; Rinaldo, A.; Rodrigo, J.P.; Saba, N.F.; Strojan, P.; Suárez, C.; Vermorken, J.B.; Yom, S.S.; Ferlito, A. Management of locally recurrent nasopharyngeal carcinoma. Cancer Treat. Rev., 2019, 79, 101890. doi: 10.1016/j.ctrv.2019.101890 PMID: 31470314
- Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308. doi: 10.1016/j.ccr.2012.02.014 PMID: 22439925
- Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359. doi: 10.1038/ncb3124 PMID: 25774832
- Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, 123(9), 3678-3684. doi: 10.1172/JCI69600 PMID: 23999442
- Matés, J.M.; Campos-Sandoval, J.A.; Márquez, J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 158-164. doi: 10.1016/j.bbcan.2018.07.007 PMID: 30053497
- Matés, J.M.; Di Paola, F.J.; Campos-Sandoval, J.A.; Mazurek, S.; Márquez, J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin. Cell Dev. Biol., 2020, 98, 34-43. doi: 10.1016/j.semcdb.2019.05.012 PMID: 31100352
- Mukha, A.; Kahya, U.; Dubrovska, A. Targeting glutamine metabolism and autophagy: The combination for prostate cancer radiosensitization. Autophagy, 2021, 17(11), 3879-3881. doi: 10.1080/15548627.2021.1962682 PMID: 34486482
- Zhang, J.; Mao, S.; Guo, Y.; Wu, Y.; Yao, X.; Huang, Y. Inhibition of GLS suppresses proliferation and promotes apoptosis in prostate cancer. Biosci. Rep., 2019, 39(6), BSR20181826. doi: 10.1042/BSR20181826 PMID: 31196962
- Yuan, L.; Sheng, X.; Clark, L.H.; Zhang, L.; Guo, H.; Jones, H.M.; Willson, A.K.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. Glutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer. Am. J. Transl. Res., 2016, 8(10), 4265-4277. PMID: 27830010
- Qie, S.; Diehl, J.A. Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin. Cancer Biol., 2020, 67(Pt 2), 159-170. doi: 10.1016/j.semcancer.2020.01.012 PMID: 32006569
- Park, S.Y.; Lee, C.J.; Choi, J.H.; Kim, J.H.; Kim, J.W.; Kim, J.Y.; Nam, J.S. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J. Exp. Clin. Cancer Res., 2019, 38(1), 399. doi: 10.1186/s13046-019-1405-7 PMID: 31511084
- Shi, H.; Han, J.; Yue, S.; Zhang, T.; Zhu, W.; Zhang, D. Prognostic significance of combined microRNA-206 and CyclinD2 in gastric cancer patients after curative surgery: A retrospective cohort study. Biomed. Pharmacother., 2015, 71, 210-215. doi: 10.1016/j.biopha.2014.12.037 PMID: 25960238
- Wang, S.; Li, X.; Li, Z.G.; Lu, J.; Fang, W.Y.; Ding, Y.Q.; Yao, K.T. Gene expression profile changes and possible molecular subtypes in differentiated-type nonkeratinizing nasopharyngeal carcinoma. Int. J. Cancer, 2011, 128(4), 753-762. doi: 10.1002/ijc.25392 PMID: 20473882
- Li, X.; Liu, F.; Lin, B.; Luo, H.; Liu, M.; Wu, J.; Li, C.; Li, R.; Zhang, X.; Zhou, K.; Ren, D. miR-150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int. J. Oncol., 2017, 50(4), 1097-1108. doi: 10.3892/ijo.2017.3909 PMID: 28350089
- Lu, J.; He, M.L.; Wang, L.; Chen, Y.; Liu, X.; Dong, Q.; Chen, Y.C.; Peng, Y.; Yao, K.T.; Kung, H.F.; Li, X.P. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res., 2011, 71(1), 225-233. doi: 10.1158/0008-5472.CAN-10-1850 PMID: 21199804
- Vadlakonda, L.; Pasupuleti, M.; Pallu, R. Role of PI3K-AKT-mTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 2013, 3, 85. doi: 10.3389/fonc.2013.00085 PMID: 23596569
- Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; Cheng, H.; Pollard, J.; Winter, C.; Richon, V.; Garcia-Escheverria, C.; Adrian, F.; Wiederschain, D.; Srinivasan, L. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One, 2017, 12(9), e0185092. doi: 10.1371/journal.pone.0185092 PMID: 28950000
- Yuan, L.; Sheng, X.; Willson, A.K.; Roque, D.R.; Stine, J.E.; Guo, H.; Jones, H.M.; Zhou, C.; Bae-Jump, V.L. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr. Relat. Cancer, 2015, 22(4), 577-591. doi: 10.1530/ERC-15-0192 PMID: 26045471
- Xi, J.; Sun, Y.; Zhang, M.; Fa, Z.; Wan, Y.; Min, Z.; Xu, H.; Xu, C.; Tang, J. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp. Cell Res., 2019, 381(1), 1-9. doi: 10.1016/j.yexcr.2019.04.005 PMID: 31054856
- Yang, W.H.; Qiu, Y.; Stamatatos, O.; Janowitz, T.; Lukey, M.J. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer, 2021, 7(8), 790-804. doi: 10.1016/j.trecan.2021.04.003 PMID: 34020912
Arquivos suplementares
