Targeting Glutamine Metabolism through Glutaminase Inhibition Suppresses Cell Proliferation and Progression in Nasopharyngeal Carcinoma


Citar

Texto integral

Resumo

Background: Glutaminase (GLS), the key enzyme involved in glutamine metabolism, has been identified as a critical player in tumor growth and progression. The GLS inhibitor CB-839 has entered several clinical trials against a variety of tumors.

Objective: Our study aimed to investigate the role and underlying mechanism of GLS and its inhibitor CB-839 in nasopharyngeal carcinoma (NPC).

Methods: The expression, downstream genes, and signaling pathways of GLS in NPC were determined by real-time polymerase chain reaction (RT-PCR), PCR array, western blotting (WB), and immunohistochemical staining (IHC), and the phenotype of GLS was confirmed by in vivo experiments of subcutaneous tumor formation in mice and in vitro experiments of functional biology, including Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, transwell migration, and Boyden invasion assay. Finally, it was also verified whether the treatment of NPC cells by GLS inhibitor CB-839 can change various biological functions and protein expression to achieve the purpose of blocking tumor progression.

Results: GLS was remarkably overexpressed in NPC cells and tissues, predicting a poor overall survival of NPC patients. GLS promoted cell cycle, proliferation, colony formation, migratory, and invasive capacities by regulating Cyclin D2 (CCND2) via PI3K/AKT/mTOR pathway in NPC in vitro and in vivo. Notably, CB-839 showed an effective anti-NPC tumor effect by blocking the biological functions of the tumor.

Conclusion: The first innovative proof is that GLS promotes cell proliferation by regulating CCND2 via PI3K/AKT/mTOR pathway in NPC, and GLS inhibitor CB-839 may serve as a new potential therapeutic target for NPC treatment.

Sobre autores

Chang Su

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital,, Southern Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Minghan Li

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Yuxin Yang

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical Universit

Email: info@benthamscience.net

Ziying Wang

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Qianru Wang

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Weijia Wang

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Xuemin Ma

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital,, Southern Medical University

Email: info@benthamscience.net

Rongrong Jie

Department of Health Management, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Huaihong Chen

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University,

Autor responsável pela correspondência
Email: info@benthamscience.net

Xiangping Li

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Juan Lu

Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital,, Southern Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424. doi: 10.3322/caac.21492 PMID: 30207593
  2. Wong, K.C.W.; Hui, E.P.; Lo, K.W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.F.; King, A.D.; Ma, B.B.Y.; Chan, A.T.C. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol., 2021, 18(11), 679-695. doi: 10.1038/s41571-021-00524-x PMID: 34194007
  3. Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet, 2019, 394(10192), 64-80. doi: 10.1016/S0140-6736(19)30956-0 PMID: 31178151
  4. Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634. doi: 10.1038/nrc.2016.71 PMID: 27492215
  5. Masisi, B.K.; El Ansari, R.; Alfarsi, L.; Rakha, E.A.; Green, A.R.; Craze, M.L. The role of glutaminase in cancer. Histopathology, 2020, 76(4), 498-508. doi: 10.1111/his.14014 PMID: 31596504
  6. Xiang, L.; Mou, J.; Shao, B.; Wei, Y.; Liang, H.; Takano, N.; Semenza, G.L.; Xie, G. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis., 2019, 10(2), 40. doi: 10.1038/s41419-018-1291-5 PMID: 30674873
  7. Li, B.; Cao, Y.; Meng, G.; Qian, L.; Xu, T.; Yan, C.; Luo, O.; Wang, S.; Wei, J.; Ding, Y.; Yu, D. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine, 2019, 39, 239-254. doi: 10.1016/j.ebiom.2018.11.063 PMID: 30555042
  8. Edwards, D.N.; Ngwa, V.M.; Raybuck, A.L.; Wang, S.; Hwang, Y.; Kim, L.C.; Cho, S.H.; Paik, Y.; Wang, Q.; Zhang, S.; Manning, H.C.; Rathmell, J.C.; Cook, R.S.; Boothby, M.R.; Chen, J. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Invest., 2021, 131(4), e140100. doi: 10.1172/JCI140100 PMID: 33320840
  9. Wu, S.; Fukumoto, T.; Lin, J.; Nacarelli, T.; Wang, Y.; Ong, D.; Liu, H.; Fatkhutdinov, N.; Zundell, J.A.; Karakashev, S.; Zhou, W.; Schwartz, L.E.; Tang, H.Y.; Drapkin, R.; Liu, Q.; Huntsman, D.G.; Kossenkov, A.V.; Speicher, D.W.; Schug, Z.T.; Van Dang, C.; Zhang, R. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat. Can., 2021, 2(2), 189-200. doi: 10.1038/s43018-020-00160-x PMID: 34085048
  10. Xu, L.; Yin, Y.; Li, Y.; Chen, X.; Chang, Y.; Zhang, H.; Liu, J.; Beasley, J.; McCaw, P.; Zhang, H.; Young, S.; Groth, J.; Wang, Q.; Locasale, J.W.; Gao, X.; Tang, D.G.; Dong, X.; He, Y.; George, D.; Hu, H.; Huang, J. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proc. Natl. Acad. Sci. USA, 2021, 118(13), e2012748118. doi: 10.1073/pnas.2012748118 PMID: 33753479
  11. Li, L.; Meng, Y.; Li, Z.; Dai, W.; Xu, X.; Bi, X.; Bian, J. Discovery and development of small molecule modulators targeting glutamine metabolism. Eur. J. Med. Chem., 2019, 163, 215-242. doi: 10.1016/j.ejmech.2018.11.066 PMID: 30522056
  12. Varghese, S.; Pramanik, S.; Williams, L.J.; Hodges, H.R.; Hudgens, C.W.; Fischer, G.M.; Luo, C.K.; Knighton, B.; Tan, L.; Lorenzi, P.L.; Mackinnon, A.L.; McQuade, J.L.; Hailemichael, Y.; Roszik, J.; Peng, W.; Vashisht Gopal, Y.N. The glutaminase inhibitor CB-839 (Telaglenastat) enhances the antimelanoma activity of T-cell–mediated immunotherapies. Mol. Cancer Ther., 2021, 20(3), 500-511. doi: 10.1158/1535-7163.MCT-20-0430 PMID: 33361272
  13. Zhao, Y.; Feng, X.; Chen, Y.; Selfridge, J.E.; Gorityala, S.; Du, Z.; Wang, J.M.; Hao, Y.; Cioffi, G.; Conlon, R.A.; Barnholtz-Sloan, J.S.; Saltzman, J.; Krishnamurthi, S.S.; Vinayak, S.; Veigl, M.; Xu, Y.; Bajor, D.L.; Markowitz, S.D.; Meropol, N.J.; Eads, J.R.; Wang, Z. 5-fluorouracil enhances the antitumor activity of the glutaminase inhibitor CB-839 against PIK3CA -mutant colorectal cancers. Cancer Res., 2020, 80(21), 4815-4827. doi: 10.1158/0008-5472.CAN-20-0600 PMID: 32907836
  14. Jin, H.; Wang, S.; Zaal, E.A.; Wang, C.; Wu, H.; Bosma, A.; Jochems, F.; Isima, N.; Jin, G.; Lieftink, C.; Beijersbergen, R.; Berkers, C.R.; Qin, W.; Bernards, R. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer. eLife, 2020, 9, e56749. doi: 10.7554/eLife.56749 PMID: 33016874
  15. Wicker, C.A.; Hunt, B.G.; Krishnan, S.; Aziz, K.; Parajuli, S.; Palackdharry, S.; Elaban, W.R.; Wise-Draper, T.M.; Mills, G.B.; Waltz, S.E.; Takiar, V. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett., 2021, 502, 180-188. doi: 10.1016/j.canlet.2020.12.038 PMID: 33450358
  16. Xu, X.; Meng, Y.; Li, L.; Xu, P.; Wang, J.; Li, Z.; Bian, J. Overview of the development of glutaminase inhibitors: Achievements and future directions. J. Med. Chem., 2019, 62(3), 1096-1115. doi: 10.1021/acs.jmedchem.8b00961 PMID: 30148361
  17. Song, M.; Bode, A.M.; Dong, Z.; Lee, M.H. AKT as a therapeutic target for cancer. Cancer Res., 2019, 79(6), 1019-1031. doi: 10.1158/0008-5472.CAN-18-2738 PMID: 30808672
  18. Chang, F.; Lee, J.T.; Navolanic, P.M.; Steelman, L.S.; Shelton, J.G.; Blalock, W.L.; Franklin, R.A.; McCubrey, J.A. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia, 2003, 17(3), 590-603. doi: 10.1038/sj.leu.2402824 PMID: 12646949
  19. Lee, A.W.M.; Ng, W.T.; Chan, J.Y.W.; Corry, J.; Mäkitie, A.; Mendenhall, W.M.; Rinaldo, A.; Rodrigo, J.P.; Saba, N.F.; Strojan, P.; Suárez, C.; Vermorken, J.B.; Yom, S.S.; Ferlito, A. Management of locally recurrent nasopharyngeal carcinoma. Cancer Treat. Rev., 2019, 79, 101890. doi: 10.1016/j.ctrv.2019.101890 PMID: 31470314
  20. Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308. doi: 10.1016/j.ccr.2012.02.014 PMID: 22439925
  21. Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359. doi: 10.1038/ncb3124 PMID: 25774832
  22. Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, 123(9), 3678-3684. doi: 10.1172/JCI69600 PMID: 23999442
  23. Matés, J.M.; Campos-Sandoval, J.A.; Márquez, J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 158-164. doi: 10.1016/j.bbcan.2018.07.007 PMID: 30053497
  24. Matés, J.M.; Di Paola, F.J.; Campos-Sandoval, J.A.; Mazurek, S.; Márquez, J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin. Cell Dev. Biol., 2020, 98, 34-43. doi: 10.1016/j.semcdb.2019.05.012 PMID: 31100352
  25. Mukha, A.; Kahya, U.; Dubrovska, A. Targeting glutamine metabolism and autophagy: The combination for prostate cancer radiosensitization. Autophagy, 2021, 17(11), 3879-3881. doi: 10.1080/15548627.2021.1962682 PMID: 34486482
  26. Zhang, J.; Mao, S.; Guo, Y.; Wu, Y.; Yao, X.; Huang, Y. Inhibition of GLS suppresses proliferation and promotes apoptosis in prostate cancer. Biosci. Rep., 2019, 39(6), BSR20181826. doi: 10.1042/BSR20181826 PMID: 31196962
  27. Yuan, L.; Sheng, X.; Clark, L.H.; Zhang, L.; Guo, H.; Jones, H.M.; Willson, A.K.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. Glutaminase inhibitor compound 968 inhibits cell proliferation and sensitizes paclitaxel in ovarian cancer. Am. J. Transl. Res., 2016, 8(10), 4265-4277. PMID: 27830010
  28. Qie, S.; Diehl, J.A. Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin. Cancer Biol., 2020, 67(Pt 2), 159-170. doi: 10.1016/j.semcancer.2020.01.012 PMID: 32006569
  29. Park, S.Y.; Lee, C.J.; Choi, J.H.; Kim, J.H.; Kim, J.W.; Kim, J.Y.; Nam, J.S. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J. Exp. Clin. Cancer Res., 2019, 38(1), 399. doi: 10.1186/s13046-019-1405-7 PMID: 31511084
  30. Shi, H.; Han, J.; Yue, S.; Zhang, T.; Zhu, W.; Zhang, D. Prognostic significance of combined microRNA-206 and CyclinD2 in gastric cancer patients after curative surgery: A retrospective cohort study. Biomed. Pharmacother., 2015, 71, 210-215. doi: 10.1016/j.biopha.2014.12.037 PMID: 25960238
  31. Wang, S.; Li, X.; Li, Z.G.; Lu, J.; Fang, W.Y.; Ding, Y.Q.; Yao, K.T. Gene expression profile changes and possible molecular subtypes in differentiated-type nonkeratinizing nasopharyngeal carcinoma. Int. J. Cancer, 2011, 128(4), 753-762. doi: 10.1002/ijc.25392 PMID: 20473882
  32. Li, X.; Liu, F.; Lin, B.; Luo, H.; Liu, M.; Wu, J.; Li, C.; Li, R.; Zhang, X.; Zhou, K.; Ren, D. miR-150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int. J. Oncol., 2017, 50(4), 1097-1108. doi: 10.3892/ijo.2017.3909 PMID: 28350089
  33. Lu, J.; He, M.L.; Wang, L.; Chen, Y.; Liu, X.; Dong, Q.; Chen, Y.C.; Peng, Y.; Yao, K.T.; Kung, H.F.; Li, X.P. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res., 2011, 71(1), 225-233. doi: 10.1158/0008-5472.CAN-10-1850 PMID: 21199804
  34. Vadlakonda, L.; Pasupuleti, M.; Pallu, R. Role of PI3K-AKT-mTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 2013, 3, 85. doi: 10.3389/fonc.2013.00085 PMID: 23596569
  35. Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; Cheng, H.; Pollard, J.; Winter, C.; Richon, V.; Garcia-Escheverria, C.; Adrian, F.; Wiederschain, D.; Srinivasan, L. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One, 2017, 12(9), e0185092. doi: 10.1371/journal.pone.0185092 PMID: 28950000
  36. Yuan, L.; Sheng, X.; Willson, A.K.; Roque, D.R.; Stine, J.E.; Guo, H.; Jones, H.M.; Zhou, C.; Bae-Jump, V.L. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr. Relat. Cancer, 2015, 22(4), 577-591. doi: 10.1530/ERC-15-0192 PMID: 26045471
  37. Xi, J.; Sun, Y.; Zhang, M.; Fa, Z.; Wan, Y.; Min, Z.; Xu, H.; Xu, C.; Tang, J. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp. Cell Res., 2019, 381(1), 1-9. doi: 10.1016/j.yexcr.2019.04.005 PMID: 31054856
  38. Yang, W.H.; Qiu, Y.; Stamatatos, O.; Janowitz, T.; Lukey, M.J. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer, 2021, 7(8), 790-804. doi: 10.1016/j.trecan.2021.04.003 PMID: 34020912

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023