Irisquinone's Anti-cancer Potential: Targeting TrxR to Trigger ROS-mediated Apoptosis and Pyroptosis


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Irisquinone, an important compound extracted from Semen Irisis, has been used clinically as a radiotherapy sensitizer for lung, oesophageal, head and neck, breast and leukemia cancers. However, the mechanism by which it acts against cancer is still unclear.

Objective:The present study aims to investigate the anti-tumor activity and mechanism of Irisquinone.

Methods:The effect of Irisquinone on cell viability and proliferation was evaluated using the CCK-8 assay. Fluorescence probe (Fast-TRFS) and DTNB assay were used to observe the inhibitory effect of Irisquinone on both intracellular and extracellular thioredoxin reductase (TrxR). The level of reactive oxygen species (ROS) in tumor cells was assessed using the DCFH-DA probe. Annexin V-FITC/PI, staining and microscopy experiments, were used to examine the apoptosis and pyroptosis. Western blotting analyses confirmed that Irisquinone induced apoptosis and pyroptosis in cancer cells by inhibiting TrxR to increase ROS generation

Results:Our research has shown that Irisquinone has anti-proliferative effects on several cancer cell lines while having low toxicity to normal cells. The amount of ROS induced by inhibition of TrxR activated the BAX (proapoptotic protein) and caspase-1(the pro-pyroptotic protein) to induce apoptosis and pyroptosis.

Conclusion:Irisquinone showed anticancer activity through inhibiting TrxR. These results suggested that Irisquinone will be developed to be an anti-tumor drug possibility.

Авторлар туралы

Qifeng Zhang

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Xinyan Wang

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Gegen Tana

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Guodong Liang

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Yuheng Ma

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Ren Bu

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Lu Ga

Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 2001, 31(11), 1287-1312. doi: 10.1016/S0891-5849(01)00724-9 PMID: 11728801
  2. Cortassa, S.; O’Rourke, B.; Aon, M.A. Redox-Optimized ROS Balance and the relationship between mitochondrial respiration and ROS. Biochim. Biophys. Acta Bioenerg., 2014, 1837(2), 287-295. doi: 10.1016/j.bbabio.2013.11.007 PMID: 24269780
  3. Mohammadi, F.; Soltani, A.; Ghahremanloo, A.; Javid, H.; Hashemy, S.I. The thioredoxin system and cancer therapy: A review. Cancer Chemother. Pharmacol., 2019, 84(5), 925-935. doi: 10.1007/s00280-019-03912-4 PMID: 31367788
  4. Peng, S.; Yu, S.; Zhang, J.; Zhang, J. 6-shogaol as a novel thioredoxin reductase inhibitor induces oxidative-stress-mediated apoptosis in HeLa cells. Int. J. Mol. Sci., 2023, 24(5), 4966. doi: 10.3390/ijms24054966 PMID: 36902397
  5. Zhang, J.; Li, Y.; Duan, D.; Yao, J.; Gao, K.; Fang, J. Inhibition of thioredoxin reductase by alantolactone prompts oxidative stress-mediated apoptosis of HeLa cells. Biochem. Pharmacol., 2016, 102, 34-44. doi: 10.1016/j.bcp.2015.12.004 PMID: 26686580
  6. Arnér, E.S.J. Focus on mammalian thioredoxin reductases — Important selenoproteins with versatile functions. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(6), 495-526. doi: 10.1016/j.bbagen.2009.01.014 PMID: 19364476
  7. Zhang, J.; Zhang, B.; Li, X.; Han, X.; Liu, R.; Fang, J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med. Res. Rev., 2019, 39(1), 5-39. doi: 10.1002/med.21507 PMID: 29727025
  8. Johnson, S.S.; Liu, D.; Ewald, J.T.; Robles-Planells, C.; Pulliam, C.; Christensen, K.A.; Bayanbold, K.; Wels, B.R.; Solst, S.R.; O’Dorisio, M.S.; Menda, Y.; Spitz, D.R.; Fath, M.A. Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth. Cancer Biol. Ther., 2024, 25(1), 2382524. doi: 10.1080/15384047.2024.2382524 PMID: 39054566
  9. Jia, J.; Xu, G.; Zhu, D.; Liu, H.; Zeng, X.; Li, L. Advances in the functions of thioredoxin system in central nervous system diseases. Antioxid. Redox Signal., 2022, 38(4-6), ars.2022.0079. doi: 10.1089/ars.2022.0079 PMID: 35761787
  10. Söderberg, A.; Sahaf, B.; Rosén, A. Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res., 2000, 60(8), 2281-2289. PMID: 10786696
  11. Hellfritsch, J.; Kirsch, J.; Schneider, M.; Fluege, T.; Wortmann, M.; Frijhoff, J.; Dagnell, M.; Fey, T.; Esposito, I.; Kölle, P.; Pogoda, K.; Angeli, J.P.F.; Ingold, I.; Kuhlencordt, P.; Östman, A.; Pohl, U.; Conrad, M.; Beck, H. Knockout of mitochondrial thioredoxin reductase stabilizes prolyl hydroxylase 2 and inhibits tumor growth and tumor-derived angiogenesis. Antioxid. Redox Signal., 2015, 22(11), 938-950. doi: 10.1089/ars.2014.5889 PMID: 25647640
  12. Welsh, S.J.; Bellamy, W.T.; Briehl, M.M.; Powis, G. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res., 2002, 62(17), 5089-5095. PMID: 12208766
  13. Chen, Y.; Cai, J.; Jones, D.P. Mitochondrial thioredoxin in regulation of oxidant‐induced cell death. FEBS Lett., 2006, 580(28-29), 6596-6602. doi: 10.1016/j.febslet.2006.11.007 PMID: 17113580
  14. Duan, D.; Guo, X.; Tian, J.; Li, M.; Jin, X.; Wang, Z.; Wang, L.; Yan, Y.; Xiao, J.; Song, P.; Wang, X. Targeting thioredoxin reductase by eupalinilide B promotes apoptosis of colorectal cancer cells in vitro and in vivo. Chem. Biol. Interact., 2024, 399, 111137. doi: 10.1016/j.cbi.2024.111137 PMID: 38977166
  15. Wang, X.; Li, X.; Zhang, X.; Wang, X.; Yang, J.; Liu, G. Design, synthesis and biological evaluation of novel curcumin-fluorouracil hybrids as potential anti-cancer agents. Biochem. Pharmacol., 2024, 230(Pt 1), 116559. doi: 10.1016/j.bcp.2024.116559 PMID: 39326677
  16. Seitz, R.; Tümen, D.; Kunst, C.; Heumann, P.; Schmid, S.; Kandulski, A.; Müller, M.; Gülow, K. Exploring the thioredoxin system as a therapeutic target in cancer: Mechanisms and implications. Antioxidants, 2024, 13(9), 1078. doi: 10.3390/antiox13091078 PMID: 39334737
  17. Chen, Y.; Yin, H.; Sun, J.; Zhang, G.; Zhang, Y.; Zeng, H. TrxR/Trx inhibitor butaselen ameliorates pulmonary fibrosis by suppressing NF-κB/TGF-β1/Smads signaling. Biomed. Pharmacother., 2023, 169, 115822. doi: 10.1016/j.biopha.2023.115822 PMID: 37944440
  18. Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854. doi: 10.1016/j.phrs.2021.105854 PMID: 34455077
  19. Lei, H.; Wang, G.; Zhang, J.; Han, Q. Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol. Rep., 2018, 40(6), 3447-3457. doi: 10.3892/or.2018.6740 PMID: 30272318
  20. Mukherjee, A.; Martin, S.G. The thioredoxin system: A key target in tumour and endothelial cells. Br. J. Radiol., 2008, 81(special_issue_1), S57-S68. doi: 10.1259/bjr/34180435 PMID: 18819999
  21. Kim, S.J.; Miyoshi, Y.; Taguchi, T.; Tamaki, Y.; Nakamura, H.; Yodoi, J.; Kato, K.; Noguchi, S. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin. Cancer Res., 2005, 11(23), 8425-8430. doi: 10.1158/1078-0432.CCR-05-0449 PMID: 16322305
  22. Tonissen, K.F.; Di Trapani, G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol. Nutr. Food Res., 2009, 53(1), 87-103. doi: 10.1002/mnfr.200700492 PMID: 18979503
  23. Javvadi, P.; Hertan, L.; Kosoff, R.; Datta, T.; Kolev, J.; Mick, R.; Tuttle, S.W.; Koumenis, C. Thioredoxin reductase-1 mediates curcumin-induced radiosensitization of squamous carcinoma cells. Cancer Res., 2010, 70(5), 1941-1950. doi: 10.1158/0008-5472.CAN-09-3025 PMID: 20160040
  24. Zhang, B.; Zhang, J.; Peng, S.; Liu, R.; Li, X.; Hou, Y.; Han, X.; Fang, J. Thioredoxin reductase inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(5), 547-556. doi: 10.1080/13543776.2017.1272576 PMID: 27977313
  25. Chinese Medicine In: Chinese Matea Medica; Shanghai Science and Technology Press: Shanghai, China, 1999.
  26. Luobusan, Mongolian Pharmacy; Inner Mongolia People's Publishing House: Hohhot, 2006.
  27. Zhai, R.X.; Fu, X.J.; Ren, X. Malinzi, a traditional medicinal plants: Comprehensive review of botany, medical application, chemical composition, and pharmacology. Heliyon, 2024, 10(3), e24986.https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e24986 doi: 10.1016/j.heliyon.2024.e24986 PMID: 38333853
  28. Li Dongyue, H.L. Progress on the pharmacological activity of Irisquinone; Heilongjiang Science and Technology Information, 2017, p. 18.
  29. Lin, B.; Wang, G.; Wang, Q.; Ge, C.; Qin, M. A new belamcandaquinone from the seeds of Iris bungei Maxim. Fitoterapia, 2011, 82(7), 1137-1139. doi: 10.1016/j.fitote.2011.07.016 PMID: 21820495
  30. Xu, H.; Sun, G.; Wang, H.; Yue, Q.; Tang, H.; Wu, Q. Dynamic observation of the radiosensitive effect of irisquinone on rabbit VX2 lung transplant tumors by using fluorine-18-deoxyglucose positron emission tomography/computed tomography. Nucl. Med. Commun., 2013, 34(3), 220-228. doi: 10.1097/MNM.0b013e32835d3730 PMID: 23276827
  31. Hong, Y.; Sengupta, S.; Hur, W.; Sim, T. Identification of novel ROS inducers: Quinone derivatives tethered to long hydrocarbon chains. J. Med. Chem., 2015, 58(9), 3739-3750. doi: 10.1021/jm501846y PMID: 25826398
  32. D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824. doi: 10.1038/nrm2256 PMID: 17848967
  33. Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313. doi: 10.1152/physrev.00044.2005 PMID: 17237347
  34. Gasmi, A.; Peana, M.; Arshad, M.; Butnariu, M.; Menzel, A.; Bjørklund, G. Krebs cycle: Activators, inhibitors and their roles in the modulation of carcinogenesis. Arch. Toxicol., 2021, 95(4), 1161-1178. doi: 10.1007/s00204-021-02974-9 PMID: 33649975
  35. Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947. doi: 10.1038/nrd4002 PMID: 24287781
  36. Xu, Q.; Zhang, J.; Zhao, Z.; Chu, Y.; Fang, J. Revealing PACMA 31 as a new chemical type TrxR inhibitor to promote cancer cell apoptosis. Biochimica. Biophys. Acta., 2022, 1869, 119323. doi: 10.1016/j.bbamcr.2022.119323
  37. Zheng, K.; Zhang, Q.; Ga, L.; Ma, Y.; Liang, G.; Zhao, Y. Development of an efficient synthetic process for irisquinone. Synlett, 2024, 35(15), 1795-1798. doi: 10.1055/s-0042-1751560
  38. Zhu, P.; Qian, J.; Xu, Z.; Meng, C.; Liu, J.; Shan, W.; Zhu, W.; Wang, Y.; Yang, Y.; Zhang, W.; Zhang, Y.; Ling, Y. Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling. J. Nat. Prod., 2020, 83(10), 3041-3049. doi: 10.1021/acs.jnatprod.0c00599 PMID: 33026807
  39. Cai, L.; Qin, X.; Xu, Z.; Song, Y.; Jiang, H.; Wu, Y.; Ruan, H.; Chen, J. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega, 2019, 4(7), 12036-12042. doi: 10.1021/acsomega.9b01142 PMID: 31460316
  40. Wang, X.; Qian, J.; Zhu, P.; Hua, R.; Liu, J.; Hang, J.; Meng, C.; Shan, W.; Miao, J.; Ling, Y. Novel phenylmethylenecyclohexenone derivatives as potent TrxR inhibitors display high antiproliferative activity and induce ROS, apoptosis, and DNA damage. ChemMedChem, 2021, 16(4), 702-712. doi: 10.1002/cmdc.202000660 PMID: 33085980
  41. Zhou, M.; Ma, W.; Zhang, Y.; Wang, W.; Xiao, G.; Ye, S.; Chen, X.; Zeng, H.; Yang, N. Plasma thioredoxin reductase activity, a diagnostic biomarker, is up-regulated in resectable non-small cell lung cancers. Transl. Cancer Res., 2017, 6(2), 383-392. doi: 10.21037/tcr.2017.03.39
  42. Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Sun, J.; Ge, C.; Peng, S.; Fang, J. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic. Biol. Med., 2014, 69, 15-25. doi: 10.1016/j.freeradbiomed.2013.12.027 PMID: 24407164
  43. Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Fang, J. Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic. Biol. Med., 2014, 70, 182-193. doi: 10.1016/j.freeradbiomed.2014.02.016 PMID: 24583460
  44. Zhao, Y.; Zuo, X.; Liu, S.; Qian, W.; Tang, X.; Lu, J. A fluorescent probe to detect quick disulfide reductase activity in bacteria. Antioxidants, 2022, 11(2), 377. doi: 10.3390/antiox11020377 PMID: 35204259
  45. Li, X.; Zhang, B.; Yan, C.; Li, J.; Wang, S.; Wei, X.; Jiang, X.; Zhou, P.; Fang, J. A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nat. Commun., 2019, 10(1), 2745. doi: 10.1038/s41467-019-10807-8 PMID: 31227705
  46. Guo, Y.; Zhang, Q.; Zhu, Q.; Gao, J.; Zhu, X.; Yu, H.; Li, Y.; Zhang, C. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Sci. Adv., 2022, 8(16), eabn2941. doi: 10.1126/sciadv.abn2941 PMID: 35442728
  47. Xiong, J.; He, J.; Zhu, J.; Pan, J.; Liao, W.; Ye, H.; Wang, H.; Song, Y.; Du, Y.; Cui, B.; Xue, M.; Zheng, W.; Kong, X.; Jiang, K.; Ding, K.; Lai, L.; Wang, Q. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell, 2022, 82, 1660-1677. doi: 10.1016/j.molcel.2022.02.033
  48. Wang, Z.; Chen, G.; Li, H.; Liu, J.; Yang, Y.; Zhao, C.; Li, Y.; Shi, J.; Chen, H.; Chen, G. Zotarolimus alleviates post-trabeculectomy fibrosis via dual functions of anti-inflammation and regulating AMPK/mTOR axis. Int. Immunopharmacol., 2024, 142(Pt B), 113176. doi: 10.1016/j.intimp.2024.113176 PMID: 39303539
  49. Wang, W.; Yang, J.; Liao, Y.Y.; Cheng, G.; Chen, J.; Mo, S.; Yuan, L.; Cheng, X.D.; Qin, J.J.; Shao, Z.; Aspeterreurone, A. Aspeterreurone A, a cytotoxic dihydrobenzofuran–phenyl acrylate hybrid from the deep-sea-derived fungus Aspergillus terreus CC-S06-18. J. Nat. Prod., 2020, 83(6), 1998-2003. doi: 10.1021/acs.jnatprod.0c00189 PMID: 32489099
  50. Chen, C.; Chen, B.; Lin, Y.; He, Q.; Yang, J.; Xiao, J.; Pan, Z.; Li, S.; Li, M.; Wang, F.; Zhang, H.; Wang, X.; Zeng, J.; Chi, W.; Meng, K.; Wang, H.; Chen, P. Cardamonin attenuates iron overload-induced osteoblast oxidative stress through the HIF-1α/ROS pathway. Int. Immunopharmacol., 2024, 142(Pt A), 112893. doi: 10.1016/j.intimp.2024.112893 PMID: 39217878
  51. Zhang, Y.; Jia, Q.; Li, J.; Wang, J.; Liang, K.; Xue, X.; Chen, T.; Kong, L.; Ren, H.; Liu, W.; Wang, P.; Ge, J. Copper‐bacteriochlorin nanosheet as a specific pyroptosis inducer for robust tumor immunotherapy. Adv. Mater., 2023, 35(44), 2305073. doi: 10.1002/adma.202305073 PMID: 37421648
  52. Zhuang, J.; Wen, X.; Zhang, Y.; Shan, Q.; Zhang, Z.; Zheng, G.; Fan, S.; Li, M.; Wu, D.; Hu, B.; Lu, J.; Zheng, Y. TDP-43 upregulation mediated by the NLRP3 inflammasome induces cognitive impairment in 2 2′,4,4′-tetrabromodiphenyl ether (BDE-47)-treated mice. Brain Behav. Immun., 2017, 65, 99-110. doi: 10.1016/j.bbi.2017.05.014 PMID: 28532818
  53. Bian, M.; Sun, Y.; Liu, Y.; Xu, Z.; Fan, R.; Liu, Z.; Liu, W.; Gold, A. A gold(I) complex containing an oleanolic acid derivative as a potential anti‐ovarian‐cancer agent by inhibiting TrxR and activating ROS‐mediated ERS. Chemistry, 2020, 26(31), 7092-7108. doi: 10.1002/chem.202000045 PMID: 32037581
  54. Pillai-Kastoori, L.; Schutz-Geschwender, A.R.; Harford, J.A. A systematic approach to quantitative Western blot analysis. Anal. Biochem., 2020, 593, 113608. doi: 10.1016/j.ab.2020.113608 PMID: 32007473
  55. Qian, J.; Xu, Z.; Meng, C.; Liu, J.; Hsu, P.L.; Li, Y.; Zhu, W.; Yang, Y.; Morris-Natschke, S.L.; Lee, K.H.; Zhang, Y.; Ling, Y. Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur. J. Med. Chem., 2020, 204, 112610. doi: 10.1016/j.ejmech.2020.112610 PMID: 32736231
  56. Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87. doi: 10.1016/j.freeradbiomed.2013.07.036 PMID: 23899494
  57. Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
  58. Yang, S.; Lian, G. ROS and diseases: role in metabolism and energy supply. Mol. Cell. Biochem., 2020, 467(1-2), 1-12. doi: 10.1007/s11010-019-03667-9 PMID: 31813106
  59. D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592. doi: 10.1002/cbin.11137 PMID: 30958602
  60. Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
  61. Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619. doi: 10.18632/aging.100934 PMID: 27019364
  62. Mortezaee, K.; Salehi, E.; Mirtavoos-mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550. doi: 10.1002/jcp.28122 PMID: 30623450
  63. Morana, O.; Wood, W.; Gregory, C.D. The apoptosis paradox in cancer. Int. J. Mol. Sci., 2022, 23(3), 1328. doi: 10.3390/ijms23031328 PMID: 35163253
  64. Jiang, H.; Niu, C.; Guo, Y.; Liu, Z.; Jiang, Y. Wedelolactone induces apoptosis and pyroptosis in retinoblastoma through promoting ROS generation. Int. Immunopharmacol., 2022, 111, 108855. doi: 10.1016/j.intimp.2022.108855 PMID: 35905560
  65. Alam, M.; Alam, S.; Shamsi, A.; Adnan, M.; Elasbali, A.M.; Al-Soud, W.A.; Alreshidi, M.; Hawsawi, Y.M.; Tippana, A.; Pasupuleti, V.R.; Hassan, M.I. Bax/Bcl-2 cascade is regulated by the EGFR pathway: Therapeutic targeting of non-small cell lung cancer. Front. Oncol., 2022, 12, 869672. doi: 10.3389/fonc.2022.869672 PMID: 35402265
  66. Wang, Y.; Zhang, R.; Huang, X.; He, X.; Geng, S.; Pan, S.; Guo, W.; Liu, X.; Dang, Y.; Qu, J.; Ma, H.; Zhao, X. CD39 inhibitor (POM-1) enhances radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells by promoting apoptosis through the Bax/Bcl-2/Caspase 9/Caspase 3 pathway. Int. Immunopharmacol., 2024, 142(Pt B), 113242. doi: 10.1016/j.intimp.2024.113242 PMID: 39321701
  67. Li, D.; Yang, C.; Sun, L.; Zhao, Z.; Liu, J.; Zhang, C.; Sun, D.; Zhang, Q. High fluoride aggravates cadmium-mediated nephrotoxicity of renal tubular epithelial cells through ROS-PINK1/Parkin pathway. Sci. Total Environ., 2024, 953, 175927. doi: 10.1016/j.scitotenv.2024.175927 PMID: 39236818
  68. Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; Shu, Y. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother., 2020, 121, 109595. doi: 10.1016/j.biopha.2019.109595 PMID: 31710896
  69. Kovacs, S.B.; Miao, E.A. Gasdermins: Effectors of pyroptosis. Trends Cell Biol., 2017, 27(9), 673-684. doi: 10.1016/j.tcb.2017.05.005 PMID: 28619472
  70. Tan, Y.; Chen, Q.; Li, X.; Zeng, Z.; Xiong, W.; Li, G.; Li, X.; Yang, J.; Xiang, B.; Yi, M. Pyroptosis: A new paradigm of cell death for fighting against cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 153. doi: 10.1186/s13046-021-01959-x PMID: 33941231
  71. Yang, F.; Bettadapura, S.N.; Smeltzer, M.S.; Zhu, H.; Wang, S. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol. Sin., 2022, 43(10), 2462-2473. doi: 10.1038/s41401-022-00887-6 PMID: 35288674
  72. Du, T.; Gao, J.; Li, P.; Wang, Y.; Qi, Q.; Liu, X.; Li, J.; Wang, C.; Du, L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med., 2021, 11(8), e492. doi: 10.1002/ctm2.492 PMID: 34459122
  73. Loveless, R.; Bloomquist, R.; Teng, Y. Pyroptosis at the forefront of anticancer immunity. J. Exp. Clin. Cancer Res., 2021, 40(1), 264. doi: 10.1186/s13046-021-02065-8 PMID: 34429144
  74. Yang, Z.; Chen, Z.; Wang, Y.; Wang, Z.; Zhang, D.; Yue, X.; Zheng, Y.; Li, L.; Bian, E.; Zhao, B. A novel defined pyroptosis-related gene signature for predicting prognosis and treatment of glioma. Front. Oncol., 2022, 12, 717926. doi: 10.3389/fonc.2022.717926 PMID: 35433410
  75. Muendlein, H.I.; Jetton, D.; Connolly, W.M.; Eidell, K.P.; Magri, Z.; Smirnova, I.; Poltorak, A. cFLIP L protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science, 2020, 367(6484), 1379-1384. doi: 10.1126/science.aay3878 PMID: 32193329
  76. Wang, J.; Wu, Z.; Zhu, M.; Zhao, Y.; Xie, J. ROS induced pyroptosis in inflammatory disease and cancer. Front. Immunol., 2024, 15, 1378990. doi: 10.3389/fimmu.2024.1378990 PMID: 39011036

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025