Irisquinone's Anti-cancer Potential: Targeting TrxR to Trigger ROS-mediated Apoptosis and Pyroptosis
- Авторлар: Zhang Q.1, Wang X.1, Tana G.1, Liang G.1, Ma Y.1, Bu R.1, Ga L.1
-
Мекемелер:
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
- Шығарылым: Том 25, № 9 (2025)
- Беттер: 620-629
- Бөлім: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694518
- DOI: https://doi.org/10.2174/0118715206339230241202062826
- ID: 694518
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:Irisquinone, an important compound extracted from Semen Irisis, has been used clinically as a radiotherapy sensitizer for lung, oesophageal, head and neck, breast and leukemia cancers. However, the mechanism by which it acts against cancer is still unclear.
Objective:The present study aims to investigate the anti-tumor activity and mechanism of Irisquinone.
Methods:The effect of Irisquinone on cell viability and proliferation was evaluated using the CCK-8 assay. Fluorescence probe (Fast-TRFS) and DTNB assay were used to observe the inhibitory effect of Irisquinone on both intracellular and extracellular thioredoxin reductase (TrxR). The level of reactive oxygen species (ROS) in tumor cells was assessed using the DCFH-DA probe. Annexin V-FITC/PI, staining and microscopy experiments, were used to examine the apoptosis and pyroptosis. Western blotting analyses confirmed that Irisquinone induced apoptosis and pyroptosis in cancer cells by inhibiting TrxR to increase ROS generation
Results:Our research has shown that Irisquinone has anti-proliferative effects on several cancer cell lines while having low toxicity to normal cells. The amount of ROS induced by inhibition of TrxR activated the BAX (proapoptotic protein) and caspase-1(the pro-pyroptotic protein) to induce apoptosis and pyroptosis.
Conclusion:Irisquinone showed anticancer activity through inhibiting TrxR. These results suggested that Irisquinone will be developed to be an anti-tumor drug possibility.
Негізгі сөздер
Авторлар туралы
Qifeng Zhang
Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Xinyan Wang
Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Gegen Tana
Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Guodong Liang
Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Yuheng Ma
Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Ren Bu
Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
Email: info@benthamscience.net
Lu Ga
Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 2001, 31(11), 1287-1312. doi: 10.1016/S0891-5849(01)00724-9 PMID: 11728801
- Cortassa, S.; O’Rourke, B.; Aon, M.A. Redox-Optimized ROS Balance and the relationship between mitochondrial respiration and ROS. Biochim. Biophys. Acta Bioenerg., 2014, 1837(2), 287-295. doi: 10.1016/j.bbabio.2013.11.007 PMID: 24269780
- Mohammadi, F.; Soltani, A.; Ghahremanloo, A.; Javid, H.; Hashemy, S.I. The thioredoxin system and cancer therapy: A review. Cancer Chemother. Pharmacol., 2019, 84(5), 925-935. doi: 10.1007/s00280-019-03912-4 PMID: 31367788
- Peng, S.; Yu, S.; Zhang, J.; Zhang, J. 6-shogaol as a novel thioredoxin reductase inhibitor induces oxidative-stress-mediated apoptosis in HeLa cells. Int. J. Mol. Sci., 2023, 24(5), 4966. doi: 10.3390/ijms24054966 PMID: 36902397
- Zhang, J.; Li, Y.; Duan, D.; Yao, J.; Gao, K.; Fang, J. Inhibition of thioredoxin reductase by alantolactone prompts oxidative stress-mediated apoptosis of HeLa cells. Biochem. Pharmacol., 2016, 102, 34-44. doi: 10.1016/j.bcp.2015.12.004 PMID: 26686580
- Arnér, E.S.J. Focus on mammalian thioredoxin reductases — Important selenoproteins with versatile functions. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(6), 495-526. doi: 10.1016/j.bbagen.2009.01.014 PMID: 19364476
- Zhang, J.; Zhang, B.; Li, X.; Han, X.; Liu, R.; Fang, J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med. Res. Rev., 2019, 39(1), 5-39. doi: 10.1002/med.21507 PMID: 29727025
- Johnson, S.S.; Liu, D.; Ewald, J.T.; Robles-Planells, C.; Pulliam, C.; Christensen, K.A.; Bayanbold, K.; Wels, B.R.; Solst, S.R.; O’Dorisio, M.S.; Menda, Y.; Spitz, D.R.; Fath, M.A. Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth. Cancer Biol. Ther., 2024, 25(1), 2382524. doi: 10.1080/15384047.2024.2382524 PMID: 39054566
- Jia, J.; Xu, G.; Zhu, D.; Liu, H.; Zeng, X.; Li, L. Advances in the functions of thioredoxin system in central nervous system diseases. Antioxid. Redox Signal., 2022, 38(4-6), ars.2022.0079. doi: 10.1089/ars.2022.0079 PMID: 35761787
- Söderberg, A.; Sahaf, B.; Rosén, A. Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res., 2000, 60(8), 2281-2289. PMID: 10786696
- Hellfritsch, J.; Kirsch, J.; Schneider, M.; Fluege, T.; Wortmann, M.; Frijhoff, J.; Dagnell, M.; Fey, T.; Esposito, I.; Kölle, P.; Pogoda, K.; Angeli, J.P.F.; Ingold, I.; Kuhlencordt, P.; Östman, A.; Pohl, U.; Conrad, M.; Beck, H. Knockout of mitochondrial thioredoxin reductase stabilizes prolyl hydroxylase 2 and inhibits tumor growth and tumor-derived angiogenesis. Antioxid. Redox Signal., 2015, 22(11), 938-950. doi: 10.1089/ars.2014.5889 PMID: 25647640
- Welsh, S.J.; Bellamy, W.T.; Briehl, M.M.; Powis, G. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res., 2002, 62(17), 5089-5095. PMID: 12208766
- Chen, Y.; Cai, J.; Jones, D.P. Mitochondrial thioredoxin in regulation of oxidant‐induced cell death. FEBS Lett., 2006, 580(28-29), 6596-6602. doi: 10.1016/j.febslet.2006.11.007 PMID: 17113580
- Duan, D.; Guo, X.; Tian, J.; Li, M.; Jin, X.; Wang, Z.; Wang, L.; Yan, Y.; Xiao, J.; Song, P.; Wang, X. Targeting thioredoxin reductase by eupalinilide B promotes apoptosis of colorectal cancer cells in vitro and in vivo. Chem. Biol. Interact., 2024, 399, 111137. doi: 10.1016/j.cbi.2024.111137 PMID: 38977166
- Wang, X.; Li, X.; Zhang, X.; Wang, X.; Yang, J.; Liu, G. Design, synthesis and biological evaluation of novel curcumin-fluorouracil hybrids as potential anti-cancer agents. Biochem. Pharmacol., 2024, 230(Pt 1), 116559. doi: 10.1016/j.bcp.2024.116559 PMID: 39326677
- Seitz, R.; Tümen, D.; Kunst, C.; Heumann, P.; Schmid, S.; Kandulski, A.; Müller, M.; Gülow, K. Exploring the thioredoxin system as a therapeutic target in cancer: Mechanisms and implications. Antioxidants, 2024, 13(9), 1078. doi: 10.3390/antiox13091078 PMID: 39334737
- Chen, Y.; Yin, H.; Sun, J.; Zhang, G.; Zhang, Y.; Zeng, H. TrxR/Trx inhibitor butaselen ameliorates pulmonary fibrosis by suppressing NF-κB/TGF-β1/Smads signaling. Biomed. Pharmacother., 2023, 169, 115822. doi: 10.1016/j.biopha.2023.115822 PMID: 37944440
- Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854. doi: 10.1016/j.phrs.2021.105854 PMID: 34455077
- Lei, H.; Wang, G.; Zhang, J.; Han, Q. Inhibiting TrxR suppresses liver cancer by inducing apoptosis and eliciting potent antitumor immunity. Oncol. Rep., 2018, 40(6), 3447-3457. doi: 10.3892/or.2018.6740 PMID: 30272318
- Mukherjee, A.; Martin, S.G. The thioredoxin system: A key target in tumour and endothelial cells. Br. J. Radiol., 2008, 81(special_issue_1), S57-S68. doi: 10.1259/bjr/34180435 PMID: 18819999
- Kim, S.J.; Miyoshi, Y.; Taguchi, T.; Tamaki, Y.; Nakamura, H.; Yodoi, J.; Kato, K.; Noguchi, S. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin. Cancer Res., 2005, 11(23), 8425-8430. doi: 10.1158/1078-0432.CCR-05-0449 PMID: 16322305
- Tonissen, K.F.; Di Trapani, G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol. Nutr. Food Res., 2009, 53(1), 87-103. doi: 10.1002/mnfr.200700492 PMID: 18979503
- Javvadi, P.; Hertan, L.; Kosoff, R.; Datta, T.; Kolev, J.; Mick, R.; Tuttle, S.W.; Koumenis, C. Thioredoxin reductase-1 mediates curcumin-induced radiosensitization of squamous carcinoma cells. Cancer Res., 2010, 70(5), 1941-1950. doi: 10.1158/0008-5472.CAN-09-3025 PMID: 20160040
- Zhang, B.; Zhang, J.; Peng, S.; Liu, R.; Li, X.; Hou, Y.; Han, X.; Fang, J. Thioredoxin reductase inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(5), 547-556. doi: 10.1080/13543776.2017.1272576 PMID: 27977313
- Chinese Medicine In: Chinese Matea Medica; Shanghai Science and Technology Press: Shanghai, China, 1999.
- Luobusan, Mongolian Pharmacy; Inner Mongolia People's Publishing House: Hohhot, 2006.
- Zhai, R.X.; Fu, X.J.; Ren, X. Malinzi, a traditional medicinal plants: Comprehensive review of botany, medical application, chemical composition, and pharmacology. Heliyon, 2024, 10(3), e24986.https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e24986 doi: 10.1016/j.heliyon.2024.e24986 PMID: 38333853
- Li Dongyue, H.L. Progress on the pharmacological activity of Irisquinone; Heilongjiang Science and Technology Information, 2017, p. 18.
- Lin, B.; Wang, G.; Wang, Q.; Ge, C.; Qin, M. A new belamcandaquinone from the seeds of Iris bungei Maxim. Fitoterapia, 2011, 82(7), 1137-1139. doi: 10.1016/j.fitote.2011.07.016 PMID: 21820495
- Xu, H.; Sun, G.; Wang, H.; Yue, Q.; Tang, H.; Wu, Q. Dynamic observation of the radiosensitive effect of irisquinone on rabbit VX2 lung transplant tumors by using fluorine-18-deoxyglucose positron emission tomography/computed tomography. Nucl. Med. Commun., 2013, 34(3), 220-228. doi: 10.1097/MNM.0b013e32835d3730 PMID: 23276827
- Hong, Y.; Sengupta, S.; Hur, W.; Sim, T. Identification of novel ROS inducers: Quinone derivatives tethered to long hydrocarbon chains. J. Med. Chem., 2015, 58(9), 3739-3750. doi: 10.1021/jm501846y PMID: 25826398
- D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824. doi: 10.1038/nrm2256 PMID: 17848967
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313. doi: 10.1152/physrev.00044.2005 PMID: 17237347
- Gasmi, A.; Peana, M.; Arshad, M.; Butnariu, M.; Menzel, A.; Bjørklund, G. Krebs cycle: Activators, inhibitors and their roles in the modulation of carcinogenesis. Arch. Toxicol., 2021, 95(4), 1161-1178. doi: 10.1007/s00204-021-02974-9 PMID: 33649975
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947. doi: 10.1038/nrd4002 PMID: 24287781
- Xu, Q.; Zhang, J.; Zhao, Z.; Chu, Y.; Fang, J. Revealing PACMA 31 as a new chemical type TrxR inhibitor to promote cancer cell apoptosis. Biochimica. Biophys. Acta., 2022, 1869, 119323. doi: 10.1016/j.bbamcr.2022.119323
- Zheng, K.; Zhang, Q.; Ga, L.; Ma, Y.; Liang, G.; Zhao, Y. Development of an efficient synthetic process for irisquinone. Synlett, 2024, 35(15), 1795-1798. doi: 10.1055/s-0042-1751560
- Zhu, P.; Qian, J.; Xu, Z.; Meng, C.; Liu, J.; Shan, W.; Zhu, W.; Wang, Y.; Yang, Y.; Zhang, W.; Zhang, Y.; Ling, Y. Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling. J. Nat. Prod., 2020, 83(10), 3041-3049. doi: 10.1021/acs.jnatprod.0c00599 PMID: 33026807
- Cai, L.; Qin, X.; Xu, Z.; Song, Y.; Jiang, H.; Wu, Y.; Ruan, H.; Chen, J. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega, 2019, 4(7), 12036-12042. doi: 10.1021/acsomega.9b01142 PMID: 31460316
- Wang, X.; Qian, J.; Zhu, P.; Hua, R.; Liu, J.; Hang, J.; Meng, C.; Shan, W.; Miao, J.; Ling, Y. Novel phenylmethylenecyclohexenone derivatives as potent TrxR inhibitors display high antiproliferative activity and induce ROS, apoptosis, and DNA damage. ChemMedChem, 2021, 16(4), 702-712. doi: 10.1002/cmdc.202000660 PMID: 33085980
- Zhou, M.; Ma, W.; Zhang, Y.; Wang, W.; Xiao, G.; Ye, S.; Chen, X.; Zeng, H.; Yang, N. Plasma thioredoxin reductase activity, a diagnostic biomarker, is up-regulated in resectable non-small cell lung cancers. Transl. Cancer Res., 2017, 6(2), 383-392. doi: 10.21037/tcr.2017.03.39
- Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Sun, J.; Ge, C.; Peng, S.; Fang, J. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic. Biol. Med., 2014, 69, 15-25. doi: 10.1016/j.freeradbiomed.2013.12.027 PMID: 24407164
- Duan, D.; Zhang, B.; Yao, J.; Liu, Y.; Fang, J. Shikonin targets cytosolic thioredoxin reductase to induce ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Free Radic. Biol. Med., 2014, 70, 182-193. doi: 10.1016/j.freeradbiomed.2014.02.016 PMID: 24583460
- Zhao, Y.; Zuo, X.; Liu, S.; Qian, W.; Tang, X.; Lu, J. A fluorescent probe to detect quick disulfide reductase activity in bacteria. Antioxidants, 2022, 11(2), 377. doi: 10.3390/antiox11020377 PMID: 35204259
- Li, X.; Zhang, B.; Yan, C.; Li, J.; Wang, S.; Wei, X.; Jiang, X.; Zhou, P.; Fang, J. A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage. Nat. Commun., 2019, 10(1), 2745. doi: 10.1038/s41467-019-10807-8 PMID: 31227705
- Guo, Y.; Zhang, Q.; Zhu, Q.; Gao, J.; Zhu, X.; Yu, H.; Li, Y.; Zhang, C. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Sci. Adv., 2022, 8(16), eabn2941. doi: 10.1126/sciadv.abn2941 PMID: 35442728
- Xiong, J.; He, J.; Zhu, J.; Pan, J.; Liao, W.; Ye, H.; Wang, H.; Song, Y.; Du, Y.; Cui, B.; Xue, M.; Zheng, W.; Kong, X.; Jiang, K.; Ding, K.; Lai, L.; Wang, Q. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell, 2022, 82, 1660-1677. doi: 10.1016/j.molcel.2022.02.033
- Wang, Z.; Chen, G.; Li, H.; Liu, J.; Yang, Y.; Zhao, C.; Li, Y.; Shi, J.; Chen, H.; Chen, G. Zotarolimus alleviates post-trabeculectomy fibrosis via dual functions of anti-inflammation and regulating AMPK/mTOR axis. Int. Immunopharmacol., 2024, 142(Pt B), 113176. doi: 10.1016/j.intimp.2024.113176 PMID: 39303539
- Wang, W.; Yang, J.; Liao, Y.Y.; Cheng, G.; Chen, J.; Mo, S.; Yuan, L.; Cheng, X.D.; Qin, J.J.; Shao, Z.; Aspeterreurone, A. Aspeterreurone A, a cytotoxic dihydrobenzofuran–phenyl acrylate hybrid from the deep-sea-derived fungus Aspergillus terreus CC-S06-18. J. Nat. Prod., 2020, 83(6), 1998-2003. doi: 10.1021/acs.jnatprod.0c00189 PMID: 32489099
- Chen, C.; Chen, B.; Lin, Y.; He, Q.; Yang, J.; Xiao, J.; Pan, Z.; Li, S.; Li, M.; Wang, F.; Zhang, H.; Wang, X.; Zeng, J.; Chi, W.; Meng, K.; Wang, H.; Chen, P. Cardamonin attenuates iron overload-induced osteoblast oxidative stress through the HIF-1α/ROS pathway. Int. Immunopharmacol., 2024, 142(Pt A), 112893. doi: 10.1016/j.intimp.2024.112893 PMID: 39217878
- Zhang, Y.; Jia, Q.; Li, J.; Wang, J.; Liang, K.; Xue, X.; Chen, T.; Kong, L.; Ren, H.; Liu, W.; Wang, P.; Ge, J. Copper‐bacteriochlorin nanosheet as a specific pyroptosis inducer for robust tumor immunotherapy. Adv. Mater., 2023, 35(44), 2305073. doi: 10.1002/adma.202305073 PMID: 37421648
- Zhuang, J.; Wen, X.; Zhang, Y.; Shan, Q.; Zhang, Z.; Zheng, G.; Fan, S.; Li, M.; Wu, D.; Hu, B.; Lu, J.; Zheng, Y. TDP-43 upregulation mediated by the NLRP3 inflammasome induces cognitive impairment in 2 2′,4,4′-tetrabromodiphenyl ether (BDE-47)-treated mice. Brain Behav. Immun., 2017, 65, 99-110. doi: 10.1016/j.bbi.2017.05.014 PMID: 28532818
- Bian, M.; Sun, Y.; Liu, Y.; Xu, Z.; Fan, R.; Liu, Z.; Liu, W.; Gold, A. A gold(I) complex containing an oleanolic acid derivative as a potential anti‐ovarian‐cancer agent by inhibiting TrxR and activating ROS‐mediated ERS. Chemistry, 2020, 26(31), 7092-7108. doi: 10.1002/chem.202000045 PMID: 32037581
- Pillai-Kastoori, L.; Schutz-Geschwender, A.R.; Harford, J.A. A systematic approach to quantitative Western blot analysis. Anal. Biochem., 2020, 593, 113608. doi: 10.1016/j.ab.2020.113608 PMID: 32007473
- Qian, J.; Xu, Z.; Meng, C.; Liu, J.; Hsu, P.L.; Li, Y.; Zhu, W.; Yang, Y.; Morris-Natschke, S.L.; Lee, K.H.; Zhang, Y.; Ling, Y. Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur. J. Med. Chem., 2020, 204, 112610. doi: 10.1016/j.ejmech.2020.112610 PMID: 32736231
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87. doi: 10.1016/j.freeradbiomed.2013.07.036 PMID: 23899494
- Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
- Yang, S.; Lian, G. ROS and diseases: role in metabolism and energy supply. Mol. Cell. Biochem., 2020, 467(1-2), 1-12. doi: 10.1007/s11010-019-03667-9 PMID: 31813106
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int., 2019, 43(6), 582-592. doi: 10.1002/cbin.11137 PMID: 30958602
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. doi: 10.1080/01926230701320337 PMID: 17562483
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619. doi: 10.18632/aging.100934 PMID: 27019364
- Mortezaee, K.; Salehi, E.; Mirtavoos-mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550. doi: 10.1002/jcp.28122 PMID: 30623450
- Morana, O.; Wood, W.; Gregory, C.D. The apoptosis paradox in cancer. Int. J. Mol. Sci., 2022, 23(3), 1328. doi: 10.3390/ijms23031328 PMID: 35163253
- Jiang, H.; Niu, C.; Guo, Y.; Liu, Z.; Jiang, Y. Wedelolactone induces apoptosis and pyroptosis in retinoblastoma through promoting ROS generation. Int. Immunopharmacol., 2022, 111, 108855. doi: 10.1016/j.intimp.2022.108855 PMID: 35905560
- Alam, M.; Alam, S.; Shamsi, A.; Adnan, M.; Elasbali, A.M.; Al-Soud, W.A.; Alreshidi, M.; Hawsawi, Y.M.; Tippana, A.; Pasupuleti, V.R.; Hassan, M.I. Bax/Bcl-2 cascade is regulated by the EGFR pathway: Therapeutic targeting of non-small cell lung cancer. Front. Oncol., 2022, 12, 869672. doi: 10.3389/fonc.2022.869672 PMID: 35402265
- Wang, Y.; Zhang, R.; Huang, X.; He, X.; Geng, S.; Pan, S.; Guo, W.; Liu, X.; Dang, Y.; Qu, J.; Ma, H.; Zhao, X. CD39 inhibitor (POM-1) enhances radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells by promoting apoptosis through the Bax/Bcl-2/Caspase 9/Caspase 3 pathway. Int. Immunopharmacol., 2024, 142(Pt B), 113242. doi: 10.1016/j.intimp.2024.113242 PMID: 39321701
- Li, D.; Yang, C.; Sun, L.; Zhao, Z.; Liu, J.; Zhang, C.; Sun, D.; Zhang, Q. High fluoride aggravates cadmium-mediated nephrotoxicity of renal tubular epithelial cells through ROS-PINK1/Parkin pathway. Sci. Total Environ., 2024, 953, 175927. doi: 10.1016/j.scitotenv.2024.175927 PMID: 39236818
- Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; Shu, Y. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother., 2020, 121, 109595. doi: 10.1016/j.biopha.2019.109595 PMID: 31710896
- Kovacs, S.B.; Miao, E.A. Gasdermins: Effectors of pyroptosis. Trends Cell Biol., 2017, 27(9), 673-684. doi: 10.1016/j.tcb.2017.05.005 PMID: 28619472
- Tan, Y.; Chen, Q.; Li, X.; Zeng, Z.; Xiong, W.; Li, G.; Li, X.; Yang, J.; Xiang, B.; Yi, M. Pyroptosis: A new paradigm of cell death for fighting against cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 153. doi: 10.1186/s13046-021-01959-x PMID: 33941231
- Yang, F.; Bettadapura, S.N.; Smeltzer, M.S.; Zhu, H.; Wang, S. Pyroptosis and pyroptosis-inducing cancer drugs. Acta Pharmacol. Sin., 2022, 43(10), 2462-2473. doi: 10.1038/s41401-022-00887-6 PMID: 35288674
- Du, T.; Gao, J.; Li, P.; Wang, Y.; Qi, Q.; Liu, X.; Li, J.; Wang, C.; Du, L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med., 2021, 11(8), e492. doi: 10.1002/ctm2.492 PMID: 34459122
- Loveless, R.; Bloomquist, R.; Teng, Y. Pyroptosis at the forefront of anticancer immunity. J. Exp. Clin. Cancer Res., 2021, 40(1), 264. doi: 10.1186/s13046-021-02065-8 PMID: 34429144
- Yang, Z.; Chen, Z.; Wang, Y.; Wang, Z.; Zhang, D.; Yue, X.; Zheng, Y.; Li, L.; Bian, E.; Zhao, B. A novel defined pyroptosis-related gene signature for predicting prognosis and treatment of glioma. Front. Oncol., 2022, 12, 717926. doi: 10.3389/fonc.2022.717926 PMID: 35433410
- Muendlein, H.I.; Jetton, D.; Connolly, W.M.; Eidell, K.P.; Magri, Z.; Smirnova, I.; Poltorak, A. cFLIP L protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science, 2020, 367(6484), 1379-1384. doi: 10.1126/science.aay3878 PMID: 32193329
- Wang, J.; Wu, Z.; Zhu, M.; Zhao, Y.; Xie, J. ROS induced pyroptosis in inflammatory disease and cancer. Front. Immunol., 2024, 15, 1378990. doi: 10.3389/fimmu.2024.1378990 PMID: 39011036
Қосымша файлдар
