PHD-BAH Domain in ASH1L Could Recognize H3K4 Methylation and Regulate the Malignant Behavior of Cholangiocarcinoma
- 作者: Zhang X.1, Li Y.2
-
隶属关系:
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- External Cooperation Liaison Office, The Second Affiliated Hospital of Zhengzhou University
- 期: 卷 24, 编号 17 (2024)
- 页面: 1264-1274
- 栏目: Oncology
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/643937
- DOI: https://doi.org/10.2174/0118715206312004240712072532
- ID: 643937
如何引用文章
全文:
详细
Background:Histone methyltransferase absent, small, or homeotic discs1-like (ASH1L) is composed of su(var)3-9, enhancer of zeste, trithorax (SET) domain, pleckstrin homology domain (PHD) domain, middle (MID) domain, and bromo adjacent homology (BAH) domain. The SET domain of ASH1L is known to mediate mediate H3K36 dimethylation (H3K36me2) modification. However, the specific functions of the PHD-BAH domain remain largely unexplored. This study aimed to explore the biological function of the PHD-BAH domain in ASH1L.
Methods:We employed a range of techniques, including a prokaryotic fusion protein expression purification system, pull-down assay, Isothermal Titration Calorimetry (ITC), polymerase chain reaction (PCR), and sitedirected mutagenesis, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) gene editing, cell culture experiment, western blot, cell proliferation assay, and cell apoptosis test.
Results:The PHD-BAH domain in ASH1L preferentially binds to the H3K4me2 peptide over H3K4 monomethylation (H3K4me1) and H3K4 trimethylation (H3K4me3) peptide. Notably, the W2603A mutation within the PHD-BAH domain could disrupt the interaction with H3K4me2 in vitro. Compared with wild-type Cholangiocarcinoma (CHOL) cells, deletion of the PHD-BAH domain in ASH1L led to increased CHOL cell apoptosis and reduced cell proliferation (p < 0.001). Additionally, the W2603A mutation affected the regulation of the proteasome 20S subunit beta (PSMB) family gene set.
Conclusion::W2603A mutation was crucial for the interaction between the PHD-BAH domain and the H3K4me2 peptide. ASH1L regulated CHOL cell survival and proliferation through its PHD-BAH domain by modulating the expression of the PSMB family gene set.
作者简介
Xiang-Yu Zhang
Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Yue Li
External Cooperation Liaison Office, The Second Affiliated Hospital of Zhengzhou University
Email: info@benthamscience.net
参考
- Dai, X.; Ren, T.; Zhang, Y.; Nan, N. Methylation multiplicity and its clinical values in cancer. Expert Rev. Mol. Med., 2021, 23, e2. doi: 10.1017/erm.2021.4 PMID: 33787478
- Yang, B.; Wang, J.Q.; Tan, Y.; Yuan, R.; Chen, Z.S.; Zou, C. RNA methylation and cancer treatment. Pharmacol. Res., 2021, 174, 105937. doi: 10.1016/j.phrs.2021.105937 PMID: 34648969
- Wagner, E.J.; Carpenter, P.B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol., 2012, 13(2), 115-126. doi: 10.1038/nrm3274 PMID: 22266761
- Zhang, C.; Xu, L.; Zheng, X.; Liu, S.; Che, F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev. Neurobiol., 2021, 81(2), 79-91. doi: 10.1002/dneu.22795 PMID: 33258273
- Ma, Q.; Song, C.; Yin, B.; Shi, Y.; Ye, L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif., 2022, 55(5), e13233. doi: 10.1111/cpr.13233 PMID: 35481717
- Yancoskie, M.N.; Maritz, C.; van Eijk, P.; Reed, S.H.; Naegeli, H. To incise or not and where: SET-domain methyltransferases know. Trends Biochem. Sci., 2023, 48(4), 321-330. doi: 10.1016/j.tibs.2022.10.003 PMID: 36357311
- Vettese-Dadey, M.; Grant, P.A.; Hebbes, T.R. Crane- Robinson, C.; Allis, C.D.; Workman, J.L. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J., 1996, 15(10), 2508-2518. doi: 10.1002/j.1460-2075.1996.tb00608.x PMID: 8665858
- Tachibana, M.; Sugimoto, K.; Fukushima, T.; Shinkai, Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem., 2001, 276(27), 25309-25317. doi: 10.1074/jbc.M101914200 PMID: 11316813
- Lam, U.T.F.; Tan, B.K.Y.; Poh, J.J.X.; Chen, E.S. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin, 2022, 15(1), 17. doi: 10.1186/s13072-022-00446-7 PMID: 35581654
- Collins, B.E.; Greer, C.B.; Coleman, B.C.; Sweatt, J.D. Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin, 2019, 12(1), 7. doi: 10.1186/s13072-018-0251-8 PMID: 30616667
- Xiao, C.; Fan, T.; Zheng, Y.; Tian, H.; Deng, Z.; Liu, J.; Li, C.; He, J. H3K4 trimethylation regulates cancer immunity: A promising therapeutic target in combination with immunotherapy. J. Immunother. Cancer, 2023, 11(8), e005693. doi: 10.1136/jitc-2022-005693 PMID: 37553181
- Hou, P.; Huang, C.; Liu, C.P.; Yang, N.; Yu, T.; Yin, Y.; Zhu, B.; Xu, R.M. Structural insights into stimulation of Ash1Ls H3K36 methyltransferase activity through Mrg15 binding. Structure, 2019, 27(5), 837-845.e3. doi: 10.1016/j.str.2019.01.015 PMID: 30827843
- Yu, M.; Jia, Y.; Ma, Z.; Ji, D.; Wang, C.; Liang, Y.; Zhang, Q.; Yi, H.; Zeng, L. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front. Oncol., 2022, 12, 906807. doi: 10.3389/fonc.2022.906807 PMID: 36033518
- Lee, Y.; Yoon, E.; Cho, S.; Schmähling, S.; Müller, J.; Song, J.J. Structural basis of MRG15-mediated activation of the ASH1L histone methyltransferase by releasing an autoinhibitory loop. Structure, 2019, 27(5), 846-852.e3. doi: 10.1016/j.str.2019.01.016 PMID: 30827841
- Qian, S.; Lv, X.; Scheid, R.N.; Lu, L.; Yang, Z.; Chen, W.; Liu, R.; Boersma, M.D.; Denu, J.M.; Zhong, X.; Du, J. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL. Nat. Commun., 2018, 9(1), 2425. doi: 10.1038/s41467-018-04836-y PMID: 29930355
- Yang, N.; Xu, R.M. Structure and function of the BAH domain in chromatin biology. Crit. Rev. Biochem. Mol. Biol., 2013, 48(3), 211-221. doi: 10.3109/10409238.2012.742035 PMID: 23181513
- Xu, B.; Qin, T.; Yu, J.; Giordano, T.J.; Sartor, M.A.; Koenig, R.J. Novel role of ASH1L histone methyltransferase in anaplastic thyroid carcinoma. J. Biol. Chem., 2020, 295(26), 8834-8845. doi: 10.1074/jbc.RA120.013530 PMID: 32398261
- Rogawski, D.S.; Deng, J.; Li, H.; Miao, H.; Borkin, D.; Purohit, T.; Song, J.; Chase, J.; Li, S.; Ndoj, J.; Klossowski, S.; Kim, E.; Mao, F.; Zhou, B.; Ropa, J.; Krotoska, M.Z.; Jin, Z.; Ernst, P.; Feng, X.; Huang, G.; Nishioka, K.; Kelly, S.; He, M.; Wen, B.; Sun, D.; Muntean, A.; Dou, Y.; Maillard, I.; Cierpicki, T.; Grembecka, J. Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity. Nat. Commun., 2021, 12(1), 2792. doi: 10.1038/s41467-021-23152-6 PMID: 33990599
- Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelsen, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; Zhang, F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014, 343(6166), 84-87. doi: 10.1126/science.1247005 PMID: 24336571
- Sanjana, N.E.; Shalem, O.; Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods, 2014, 11(8), 783-784. doi: 10.1038/nmeth.3047 PMID: 25075903
- Li, C.; Tang, Z.; Zhang, W.; Ye, Z.; Liu, F. GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res., 2021, 49(W1), W242-W246. doi: 10.1093/nar/gkab418 PMID: 34050758
- Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res., 2018, 46(D1), D956-D963. doi: 10.1093/nar/gkx1090 PMID: 29136207
- Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of histone modification. Adv. Exp. Med. Biol., 2021, 1283, 1-16. doi: 10.1007/978-981-15-8104-5_1 PMID: 33155134
- Xiao, C.; Fan, T.; Tian, H.; Zheng, Y.; Zhou, Z.; Li, S.; Li, C.; He, J. H3K36 trimethylation-mediated biological functions in cancer. Clin. Epigenetics, 2021, 13(1), 199. doi: 10.1186/s13148-021-01187-2 PMID: 34715919
- Hughes, A.L.; Kelley, J.R.; Klose, R.J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochim. Biophys. Acta. Gene Regul. Mech., 2020, 1863(8), 194567. doi: 10.1016/j.bbagrm.2020.194567 PMID: 32360393
- Serrano-Quílez, J.; Roig-Soucase, S.; Rodríguez-Navarro, S. Sharing marks: H3K4 methylation and H2B ubiquitination as features of meiotic recombination and transcription. Int. J. Mol. Sci., 2020, 21(12), 4510. doi: 10.3390/ijms21124510 PMID: 32630409
- Al-Harthi, S.; Li, H.; Winkler, A.; Szczepski, K.; Deng, J.; Grembecka, J.; Cierpicki, T.; Jaremko, Ł. MRG15 activates histone methyltransferase activity of ASH1L by recruiting it to the nucleosomes. Structure, 2023, 31(10), 1200-1207.e5. doi: 10.1016/j.str.2023.07.001 PMID: 37527654
- Schmähling, S.; Meiler, A.; Lee, Y.; Mohammed, A.; Finkl, K.; Tauscher, K.; Israel, L.; Wirth, M.; Philippou-Massier, J.; Blum, H.; Habermann, B.; Imhof, A.; Song, J.J.; Müller, J. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development, 2018, 145(7), dev163808. doi: 10.1242/dev.163808 PMID: 29540501
- Dorafshan, E.; Kahn, T.G.; Glotov, A.; Savitsky, M.; Schwartz, Y.B. Genetic dissection reveals the role of ash1 domains in counteracting polycomb repression. G3 (Bethesda), 2019, 9(11), 3801-3812. doi: 10.1534/g3.119.400579 PMID: 31540973
- Dorafshan, E.; Kahn, T.G.; Glotov, A.; Savitsky, M.; Walther, M.; Reuter, G.; Schwartz, Y.B. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation. EMBO Rep., 2019, 20(4), e46762. doi: 10.15252/embr.201846762 PMID: 30833342
- Lee, F.S. Substrates of PHD. Cell Metab., 2019, 30(4), 626-627. doi: 10.1016/j.cmet.2019.08.008 PMID: 31577931
- Chambers, A.L.; Pearl, L.H.; Oliver, A.W.; Downs, J.A. The BAH domain of Rsc2 is a histone H3 binding domain. Nucleic Acids Res., 2013, 41(19), 9168-9182. doi: 10.1093/nar/gkt662 PMID: 23907388
- Miao, F.; Natarajan, R. Mapping global histone methylation patterns in the coding regions of human genes. Mol. Cell. Biol., 2005, 25(11), 4650-4661. doi: 10.1128/MCB.25.11.4650-4661.2005 PMID: 15899867
- Richart, L.; Margueron, R. Drugging histone methyltransferases in cancer. Curr. Opin. Chem. Biol., 2020, 56, 51-62. doi: 10.1016/j.cbpa.2019.11.009 PMID: 31981999
- Fuziwara, C.S.; de Mello, D.C.; Kimura, E.T. Gene editing with CRISPR/Cas methodology and thyroid cancer: Where are we? Cancers (Basel), 2022, 14(3), 844. doi: 10.3390/cancers14030844 PMID: 35159110
- Taylor-Papadimitriou, J.; Burchell, J.M. Histone methylases and demethylases regulating antagonistic methyl marks: Changes occurring in cancer. Cells, 2022, 11(7), 1113. doi: 10.3390/cells11071113 PMID: 35406676
- Demelash, A.; Rudrabhatla, P.; Pant, H.C.; Wang, X.; Amin, N.D.; McWhite, C.D.; Naizhen, X.; Linnoila, R.I. Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway. Mol. Biol. Cell, 2012, 23(15), 2856-2866. doi: 10.1091/mbc.e10-12-1010 PMID: 22696682
- Xie, M.; Zhang, L.; Han, L.; Huang, L.; Huang, Y.; Yang, M.; Zhang, N. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene, 2023, 42(46), 3435-3445. doi: 10.1038/s41388-023-02855-8 PMID: 37805663
- Nakaoka, T.; Saito, Y.; Saito, H. Aberrant DNA methylation as a biomarker and a therapeutic target of cholangiocarcinoma. Int. J. Mol. Sci., 2017, 18(6), 1111. doi: 10.3390/ijms18061111 PMID: 28545228
- Lv, Y.; Hu, Q.; Shi, M.; Wang, W.; Zheng, Y.; Yang, Z.; Peng, L.; Bi, D.; Zhang, A.; Hu, Y. The role of PSMB5 in sodium arseniteinduced oxidative stress in L-02 cells. Cell Stress Chaperones, 2020, 25(3), 533-540. doi: 10.1007/s12192-020-01104-1 PMID: 32301004
- Kwon, C.H.; Park, H.J.; Choi, Y.R.; Kim, A.; Kim, H.W.; Choi, J.H.; Hwang, C.S.; Lee, S.J.; Choi, C.I.; Jeon, T.Y.; Kim, D.H.; Kim, G.H.; Park, D.Y. PSMB8 and PBK as potential gastric cancer subtype-specific biomarkers associated with prognosis. Oncotarget, 2016, 7(16), 21454-21468. doi: 10.18632/oncotarget.7411 PMID: 26894977
- Bruzzoni-Giovanelli, H.; González, J.R.; Sigaux, F.; Villoutreix, B.O.; Cayuela, J.M.; Guilhot, J.; Preudhomme, C.; Guilhot, F.; Poyet, J.L.; Rousselot, P. Genetic polymorphisms associated with increased risk of developing chronic myelogenous leukemia. Oncotarget, 2015, 6(34), 36269-36277. doi: 10.18632/oncotarget.5915 PMID: 26474455
- Liu, J.; Mi, J.; Liu, S.; Chen, H.; Jiang, L. PSMB5 overexpression is correlated with tumor proliferation and poor prognosis in hepatocellular carcinoma. FEBS Open Bio, 2022, 12(11), 2025-2041. doi: 10.1002/2211-5463.13479 PMID: 36062301
- Guo, J.Y.; Jing, Z.; Li, X.; Liu, L. Bioinformatic Analysis Identifying PSMB 1/2/3/4/6/8/9/10 as Prognostic Indicators in Clear Cell Renal Cell Carcinoma. Int. J. Med. Sci., 2022, 19(5), 796-812. doi: 10.7150/ijms.71152 PMID: 35693739
- Liew, P.L.; Huang, R.L.; Weng, Y.C.; Fang, C.L.; Hui-Ming Huang, T.; Lai, H.C. Distinct methylation profile of mucinous ovarian carcinoma reveals susceptibility to proteasome inhibitors. Int. J. Cancer, 2018, 143(2), 355-367. doi: 10.1002/ijc.31324 PMID: 29451304
补充文件
