Inhibition of Ribonucleotide Reductase Induces Endoplasmic Reticulum Stress and Apoptosis, Leading to the Death of Docetaxel-resistant Prostate Cancer Cells


Citar

Texto integral

Resumo

Background: The development of chemotherapy resistance in prostate cancer (PCa) patients poses a significant obstacle to disease progression. Ribonucleotide reductase is a crucial enzyme for cell division and tumor growth. Triapine, an inhibitor of ribonucleotide reductase, has shown strong anti-tumor activity in various types of cancers. However, the effect of triapine on docetaxel-resistant (DR) human PCa cells has not been explored previously.

Aim:This study aimed to examine the potential anti-proliferative effects of triapine in PC3-DR (docetaxel-resistant) cells.

Methods: Cell viability was determined by the MTT test, and apoptosis and cell cycle progression were analyzed by image-based cytometer. mRNA and protein expression were assessed by RT-qPCR and western blot, respectively.

Results: Triapine administration significantly reduced PC3 and PC3-DR cells' survival, while the cytotoxic effect was higher in PC3-DR cells. Cell death resulting from inhibition of ribonucleotide reductase was mediated by endoplasmic reticulum stress, induction of apoptosis, and cell cycle arrest. The findings were supported by the upregulation of caspases, Bax, Bak, P21, P27, P53, TNF-α, FAS, and FASL, and downregulation of Bcl2, Bcl-XL, cyclin-dependent kinase 2 (CDK2), CDK4, cyclins, and heat shock proteins expression. According to the data, the reduction of ABC transporter proteins and NF-ĸB expression may play a role in triapine-mediated cytotoxicity in docetaxel-resistant cells.

Conclusion: Based on our findings, triapine emerges as a promising chemotherapeutic approach for combating docetaxel- resistant prostate cancer.

Sobre autores

Riza Serttas

Department of Medical Biology, School of Medicine, Trakya University

Email: info@benthamscience.net

Suat Erdogan

Department of Medical Biology, School of Medicine, Trakya University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Cindolo, L.; Natoli, C.; De Nunzio, C.; De Tursi, M.; Valeriani, M.; Giacinti, S.; Micali, S.; Rizzo, M.; Bianchi, G.; Martorana, E.; Scarcia, M.; Ludovico, G.M.; Bove, P.; Laudisi, A.; Selvaggio, O.; Carrieri, G.; Bada, M.; Castellan, P.; Boccasile, S.; Ditonno, P.; Chiodini, P.; Verze, P.; Mirone, V.; Schips, L. Safety and efficacy of abiraterone acetate in chemotherapy-naive patients with metastatic castration-resistant prostate cancer: An Italian multicenter "real life" study. BMC Cancer, 2017, 17(1), 753. doi: 10.1186/s12885-017-3755-x PMID: 29126389
  2. Bozkurt, Y.; Atar, M.; Pisters, L.L. Early experience with salvage robotic-assisted radical prostatectomy in proton beam radiotherapy failures. Balkan Med. J., 2021, 38(5), 310-315. doi: 10.5152/balkanmedj.2021.21174 PMID: 34462255
  3. Kroon, J.; Kooijman, S.; Cho, N.J.; Storm, G.; van der Pluijm, G. Improving taxane-based chemotherapy in castration-resistant prostate cancer. Trends Pharmacol. Sci., 2016, 37(6), 451-462. doi: 10.1016/j.tips.2016.03.003 PMID: 27068431
  4. Huff, S.E.; Winter, J.M.; Dealwis, C.G. Inhibitors of the cancer target ribonucleotide reductase, past and present. Biomolecules, 2022, 12(6), 815. doi: 10.3390/biom12060815 PMID: 35740940
  5. Wang, N.; Li, Y.; Zhou, J. Downregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells. Oncol. Lett., 2018, 15(3), 3719-3725. doi: 10.3892/ol.2018.7806 PMID: 29556274
  6. Alvero, A.B.; Chen, W.; Sartorelli, A.C.; Schwartz, P.; Rutherford, T.; Mor, G. Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) induces apoptosis in ovarian cancer cells. J. Soc. Gynecol. Investig., 2006, 13(2), 145-152. doi: 10.1016/j.jsgi.2005.11.004 PMID: 16443509
  7. Wright, P.S.; Cross-Doersen, D.; Th'ng, J.P.H.; Guo, X.W.; Crissman, H.A.; Bradbury, E.M.; Montgomery, L.R.; Thompson, F.Y.; Loudy, D.E.; Johnston, J.O.N.; Bitonti, A.J. A ribonucleotide reductase inhibitor, MDL 101,731, induces apoptosis and elevates TRPM-2 mRNA levels in human prostate tumor xenografts. Exp. Cell Res., 1996, 222(1), 54-60. doi: 10.1006/excr.1996.0007 PMID: 8549673
  8. Plunkett, W.; Huang, P.; Gandhi, V. Preclinical characteristics of gemcitabine. Anticancer Drugs, 1995, 6(Suppl. 6), 7-13. doi: 10.1097/00001813-199512006-00002 PMID: 8718419
  9. Trondl, R.; Flocke, L.S.; Kowol, C.R.; Heffeter, P.; Jungwirth, U.; Mair, G.E.; Steinborn, R.; Enyedy, É.A.; Jakupec, M.A.; Berger, W.; Keppler, B.K. Triapine and a more potent dimethyl derivative induce endoplasmic reticulum stress in cancer cells. Mol. Pharmacol., 2014, 85(3), 451-459. doi: 10.1124/mol.113.090605 PMID: 24378333
  10. Ratner, E.S.; Zhu, Y.L.; Penketh, P.G.; Berenblum, J.; Whicker, M.E.; Huang, P.H.; Lee, Y.; Ishiguro, K.; Zhu, R.; Sartorelli, A.C.; Lin, Z.P. Triapine potentiates platinum-based combination therapy by disruption of homologous recombination repair. Br. J. Cancer, 2016, 114(7), 777-786. doi: 10.1038/bjc.2016.54 PMID: 26964031
  11. Mandula, J.K.; Chang, S.; Mohamed, E.; Jimenez, R.; Sierra-Mondragon, R.A.; Chang, D.C.; Obermayer, A.N.; Moran-Segura, C.M.; Das, S.; Vazquez-Martinez, J.A.; Prieto, K.; Chen, A.; Smalley, K.S.M.; Czerniecki, B.; Forsyth, P.; Koya, R.C.; Ruffell, B.; Cubillos-Ruiz, J.R.; Munn, D.H.; Shaw, T.I.; Conejo-Garcia, J.R.; Rodriguez, P.C. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell, 2022, 40(10), 1145-1160.e9. doi: 10.1016/j.ccell.2022.08.016 PMID: 36150390
  12. Barker, C.A.; Burgan, W.E.; Carter, D.J.; Cerna, D.; Gius, D.; Hollingshead, M.G.; Camphausen, K.; Tofilon, P.J. In vitro and in vivo radiosensitization induced by the ribonucleotide reductase inhibitor Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone). Clin. Cancer Res., 2006, 12(9), 2912-2918. doi: 10.1158/1078-0432.CCR-05-2860 PMID: 16675588
  13. Ma, Z.; Zhang, W.; Dong, B.; Xin, Z.; Ji, Y.; Su, R.; Shen, K.; Pan, J.; Wang, Q.; Xue, W. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics, 2022, 12(11), 4965-4979. doi: 10.7150/thno.73152 PMID: 35836810
  14. Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol., 2015, 4(3), 365-380. PMID: 26814148
  15. Mazzu, Y.Z.; Armenia, J.; Nandakumar, S.; Chakraborty, G.; Yoshikawa, Y.; Jehane, L.E.; Lee, G.S.M.; Atiq, M.; Khan, N.; Schultz, N.; Kantoff, P.W. Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer. Mol. Oncol., 2020, 14(8), 1881-1897. doi: 10.1002/1878-0261.12706 PMID: 32385899
  16. Mazzu, Y.Z.; Armenia, J.; Chakraborty, G.; Yoshikawa, Y.; Coggins, S.A.A.; Nandakumar, S.; Gerke, T.A.; Pomerantz, M.M.; Qiu, X.; Zhao, H.; Atiq, M.; Khan, N.; Komura, K.; Lee, G.S.M.; Fine, S.W.; Bell, C.; O'Connor, E.; Long, H.W.; Freedman, M.L.; Kim, B.; Kantoff, P.W. A novel mechanism driving poor-prognosis prostate cancer: Overexpression of the DNA repair gene, ribonucleotide reductase small subunit M2 (RRM2). Clin. Cancer Res., 2019, 25(14), 4480-4492. doi: 10.1158/1078-0432.CCR-18-4046 PMID: 30996073
  17. Takeda, M.; Mizokami, A.; Mamiya, K.; Li, Y.Q.; Zhang, J.; Keller, E.T.; Namiki, M. The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate, 2007, 67(9), 955-967. doi: 10.1002/pros.20581 PMID: 17440963
  18. Erdogan, S.; Genc, F.; Atabey, U.S.; Serttas, R. Abiraterone acetate, in combination with apigenin, attenuates the survival of human castration-sensitive prostate cancer cells. Anticancer. Agents Med. Chem., 2022, 22(18), 3148-3156. doi: 10.2174/1871520622666220426095257 PMID: 35473536
  19. Finch, R.A.; Liu, M.C.; Grill, S.P.; Rose, W.C.; Loomis, R.; Vasquez, K.M.; Cheng, Y.C.; Sartorelli, A.C. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem. Pharmacol., 2000, 59(8), 983-991. doi: 10.1016/S0006-2952(99)00419-0 PMID: 10692563
  20. Rasmussen, R.D.; Gajjar, M.K.; Tuckova, L.; Jensen, K.E.; Maya-Mendoza, A.; Holst, C.B.; Møllgaard, K.; Rasmussen, J.S.; Brennum, J.; Bartek, J., Jr; Syrucek, M.; Sedlakova, E.; Andersen, K.K.; Frederiksen, M.H.; Bartek, J.; Hamerlik, P. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat. Commun., 2016, 7(1), 13398. doi: 10.1038/ncomms13398 PMID: 27845331
  21. Limonta, P.; Moretti, R.; Marzagalli, M.; Fontana, F.; Raimondi, M.; Montagnani, M.M. Role of endoplasmic reticulum stress in the anticancer activity of natural compounds. Int. J. Mol. Sci., 2019, 20(4), 961. doi: 10.3390/ijms20040961 PMID: 30813301
  22. Önay, U. E.; Şengelen, A.; Mertoğlu, K E. Hsp27, Hsp60, Hsp70, or Hsp90 depletion enhances the antitumor effects of resveratrol via oxidative and ER stress response in human glioblastoma cells. Biochem. Pharmacol., 2023, 208, 115409. doi: 10.1016/j.bcp.2022.115409 PMID: 36603687
  23. Lang, B.J.; Guerrero-Giménez, M.E.; Prince, T.L.; Ackerman, A.; Bonorino, C.; Calderwood, S.K. Heat shock proteins are essential components in transformation and tumor progression: Cancer cell intrinsic pathways and beyond. Int. J. Mol. Sci., 2019, 20(18), 4507. doi: 10.3390/ijms20184507 PMID: 31514477
  24. Serttas, R.; Erdogan, S. Pretreatment of prostate cancer cells with salinomycin and Wnt inhibitor increases the efficacy of cabazitaxel by inducing apoptosis and decreasing cancer stem cells. Med. Oncol., 2023, 40(7), 194. doi: 10.1007/s12032-023-02062-1 PMID: 37264204
  25. Sinniah, S.K.; Tan, K.W.; Ng, S.W.; Sim, K.S. Thiosemicarbazone derivative induces in vitro apoptosis in metastatic PC-3 cells via activation of mitochondrial pathway. Anticancer. Agents Med. Chem., 2017, 17(5), 741-753. doi: 10.2174/1871520616666160926110929 PMID: 27671302
  26. Kazan, H.H.; Urfali-Mamatoglu, C.; Gunduz, U. Iron metabolism and drug resistance in cancer. Biometals, 2017, 30(5), 629-641. doi: 10.1007/s10534-017-0037-7 PMID: 28766192
  27. Ibrahim, O.; O'Sullivan, J. Iron chelators in cancer therapy. Biometals, 2020, 33(4-5), 201-215. doi: 10.1007/s10534-020-00243-3 PMID: 32757166
  28. Zhao, Y.; Zheng, Y.; Zhu, Y.; Ding, K.; Zhou, M.; Liu, T. Co-delivery of gemcitabine and Triapine by calcium carbonate nanoparticles against chemoresistant pancreatic cancer. Int. J. Pharm., 2023, 636, 122844. doi: 10.1016/j.ijpharm.2023.122844 PMID: 36925025
  29. Lin, Z.P.; Zhu, Y.L.; Lo, Y.C.; Moscarelli, J.; Xiong, A.; Korayem, Y.; Huang, P.H.; Giri, S.; LoRusso, P.; Ratner, E.S. Combination of triapine, olaparib, and cediranib suppresses progression of BRCA-wild type and PARP inhibitor-resistant epithelial ovarian cancer. PLoS One, 2018, 13(11), e0207399. doi: 10.1371/journal.pone.0207399 PMID: 30444904
  30. Kunos, C.A.; Ivy, S.P. Triapine radiochemotherapy in advanced stage cervical cancer. Front. Oncol., 2018, 8, 149. doi: 10.3389/fonc.2018.00149 PMID: 29868473
  31. Kunos, C.A.; Chu, E.; Beumer, J.H.; Sznol, M.; Ivy, S.P. Phase I trial of daily triapine in combination with cisplatin chemotherapy for advanced-stage malignancies. Cancer Chemother. Pharmacol., 2017, 79(1), 201-207. doi: 10.1007/s00280-016-3200-x PMID: 27878356
  32. Schelman, W.R.; Morgan-Meadows, S.; Marnocha, R.; Lee, F.; Eickhoff, J.; Huang, W.; Pomplun, M.; Jiang, Z.; Alberti, D.; Kolesar, J.M.; Ivy, P.; Wilding, G.; Traynor, A.M. A phase I study of Triapine® in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2009, 63(6), 1147-1156. doi: 10.1007/s00280-008-0890-8 PMID: 19082825
  33. Kunos, C.A.; Chiu, S.; Pink, J.; Kinsella, T.J. Modulating radiation resistance by inhibiting ribonucleotide reductase in cancers with virally or mutationally silenced p53 protein. Radiat. Res., 2009, 172(6), 666-676. doi: 10.1667/RR1858.1 PMID: 19929413
  34. Fletcher, J.I.; Williams, R.T.; Henderson, M.J.; Norris, M.D.; Haber, M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016, 26, 1-9. doi: 10.1016/j.drup.2016.03.001 PMID: 27180306
  35. Zhu, Y.; Liu, C.; Nadiminty, N.; Lou, W.; Tummala, R.; Evans, C.P.; Gao, A.C. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol. Cancer Ther., 2013, 12(9), 1829-1836. doi: 10.1158/1535-7163.MCT-13-0208 PMID: 23861346
  36. O'Neill, A.J.; Prencipe, M.; Dowling, C.; Fan, Y.; Mulrane, L.; Gallagher, W.M.; O'Connor, D.; O'Connor, R.; Devery, A.; Corcoran, C.; Rani, S.; O'Driscoll, L.; Fitzpatrick, J.M.; Watson, R.W.G. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol. Cancer, 2011, 10(1), 126. doi: 10.1186/1476-4598-10-126 PMID: 21982118
  37. Codony-Servat, J.; Marín-Aguilera, M.; Visa, L.; García-Albéniz, X.; Pineda, E.; Fernández, P.L.; Filella, X.; Gascón, P.; Mellado, B. Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate, 2013, 73(5), 512-521. doi: 10.1002/pros.22591 PMID: 23038213

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2023