CD36 as a Therapeutic Target in Tumor Microenvironment and Lipid Metabolism
- 作者: Li J.1, Chen J.1, Yang G.1, Zhang S.2, Li P.1, Ye L.1
-
隶属关系:
- Cancer Center, The Second Hospital of Shandong University
- School of Clinical Medicine, Tsinghua University
- 期: 卷 25, 编号 7 (2025)
- 页面: 447-459
- 栏目: Chemistry
- URL: https://kld-journal.fedlab.ru/1871-5206/article/view/694504
- DOI: https://doi.org/10.2174/0118715206353634241111113338
- ID: 694504
如何引用文章
全文:
详细
Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME. CD36, a key lipid transporter, plays a crucial role in regulating fatty acid sensing and lipid metabolism, and its dysregulated expression has been associated with poor prognosis in several cancers. Studies have demonstrated that elevated CD 36 expression in the TME is closely linked to abnormal lipid metabolism, promoting tumor growth, migration, and metastasis. In recent years, significant progress has been made in developing CD36-targeted therapies, including small-molecule inhibitors, antibodies, and nanoparticle-based drugs, with many entering experimental or preclinical stages. This review comprehensively summarizes the latest advances in understanding the role of CD36 in the TME, focusing on its metabolic regulatory mechanisms in tumor cells, immune cells, and stromal cells. Additionally, it highlights the contribution of CD36 to immune evasion, drug resistance, and cancer stem cell maintenance while discussing several therapeutic strategies targeting CD36, including novel therapies currently in clinical trials. By exploring the therapeutic potential of CD36, this review provides critical insights for the future development of CD36-targeted cancer therapies.
作者简介
Jiaxuan Li
Cancer Center, The Second Hospital of Shandong University
Email: info@benthamscience.net
Jiaqi Chen
Cancer Center, The Second Hospital of Shandong University
Email: info@benthamscience.net
Guang Yang
Cancer Center, The Second Hospital of Shandong University
Email: info@benthamscience.net
Shulin Zhang
School of Clinical Medicine, Tsinghua University
Email: info@benthamscience.net
Peiyao Li
Cancer Center, The Second Hospital of Shandong University
Email: info@benthamscience.net
Lan Ye
Cancer Center, The Second Hospital of Shandong University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Li, Y.; Huang, X.; Yang, G.; Xu, K.; Yin, Y.; Brecchia, G.; Yin, J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog. Lipid Res., 2022, 88, 101193. doi: 10.1016/j.plipres.2022.101193 PMID: 36055468
- Wang, J.; Li, Y. CD36 tango in cancer: Signaling pathways and functions. Theranostics, 2019, 9(17), 4893-4908. doi: 10.7150/thno.36037 PMID: 31410189
- Feng, W.W.; Zuppe, H.T.; Kurokawa, M. The role of CD36 in cancer progression and its value as a therapeutic target. Cells, 2023, 12(12), 1605. doi: 10.3390/cells12121605 PMID: 37371076
- Luiken, J.J.F.P.; Chanda, D.; Nabben, M.; Neumann, D.; Glatz, J.F.C. Post-translational modifications of CD36 (SR-B2): Implications for regulation of myocellular fatty acid uptake. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(12), 2253-2258. doi: 10.1016/j.bbadis.2016.09.004 PMID: 27615427
- Ding, Z.; Liu, S.; Wang, X.; Theus, S.; Deng, X.; Fan, Y.; Zhou, S.; Mehta, J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res., 2018, 114(8), 1145-1153. doi: 10.1093/cvr/cvy079 PMID: 29617722
- Jay, A.G.; Chen, A.N.; Paz, M.A.; Hung, J.P.; Hamilton, J.A. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding. J. Biol. Chem., 2015, 290(8), 4590-4603. doi: 10.1074/jbc.M114.627026 PMID: 25555908
- Neubauer, E.F.; Poole, A.Z.; Weis, V.M.; Davy, S.K. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ, 2016, 4, e2692. doi: 10.7717/peerj.2692 PMID: 27896028
- Neculai, D.; Schwake, M.; Ravichandran, M.; Zunke, F.; Collins, R.F.; Peters, J.; Neculai, M.; Plumb, J.; Loppnau, P.; Pizarro, J.C.; Seitova, A.; Trimble, W.S.; Saftig, P.; Grinstein, S.; Dhe-Paganon, S. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature, 2013, 504(7478), 172-176. doi: 10.1038/nature12684 PMID: 24162852
- Kuda, O.; Pietka, T.A.; Demianova, Z.; Kudova, E.; Cvacka, J.; Kopecky, J.; Abumrad, N.A. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J. Biol. Chem., 2013, 288(22), 15547-15555. doi: 10.1074/jbc.M113.473298 PMID: 23603908
- Conrad, K.S.; Cheng, T.W.; Ysselstein, D.; Heybrock, S.; Hoth, L.R.; Chrunyk, B.A.; am Ende, C.W.; Krainc, D.; Schwake, M.; Saftig, P.; Liu, S.; Qiu, X.; Ehlers, M.D. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat. Commun., 2017, 8(1), 1908. doi: 10.1038/s41467-017-02044-8 PMID: 29199275
- Glatz, J.C.; Luiken, J.F.P. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J. Lipid Res., 2018, 59(7), 1084-1093. doi: 10.1194/jlr.R082933 PMID: 29627764
- Heybrock, S.; Kanerva, K.; Meng, Y.; Ing, C.; Liang, A.; Xiong, Z.J.; Weng, X.; Ah Kim, Y.; Collins, R.; Trimble, W.; Pomès, R.; Privé, G.G.; Annaert, W.; Schwake, M.; Heeren, J.; Lüllmann-Rauch, R.; Grinstein, S.; Ikonen, E.; Saftig, P.; Neculai, D. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat. Commun., 2019, 10(1), 3521. doi: 10.1038/s41467-019-11425-0 PMID: 31387993
- Yu, M.; Lau, T.Y.; Carr, S.A.; Krieger, M. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI. Biochemistry, 2012, 51(50), 10044-10055. doi: 10.1021/bi301203x PMID: 23205738
- Armesilla, A.L.; Vega, M.A. Structural organization of the gene for human CD36 glycoprotein. J. Biol. Chem., 1994, 269(29), 18985-18991. doi: 10.1016/S0021-9258(17)32263-9 PMID: 7518447
- Hale, J.S.; Otvos, B.; Sinyuk, M.; Alvarado, A.G.; Hitomi, M.; Stoltz, K.; Wu, Q.; Flavahan, W.; Levison, B.; Johansen, M.L.; Schmitt, D.; Neltner, J.M.; Huang, P.; Ren, B.; Sloan, A.E.; Silverstein, R.L.; Gladson, C.L.; DiDonato, J.A.; Brown, J.M.; McIntyre, T.; Hazen, S.L.; Horbinski, C.; Rich, J.N.; Lathia, J.D. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells, 2014, 32(7), 1746-1758. doi: 10.1002/stem.1716 PMID: 24737733
- Park, Y.M.; Febbraio, M.; Silverstein, R.L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest., 2009, 119(1), 136-145. PMID: 19065049
- Stuart, L.M.; Bell, S.A.; Stewart, C.R.; Silver, J.M.; Richard, J.; Goss, J.L.; Tseng, A.A.; Zhang, A.; Khoury, J.B.E.; Moore, K.J. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J. Biol. Chem., 2007, 282(37), 27392-27401. doi: 10.1074/jbc.M702887200 PMID: 17623670
- Pan, J.; Fan, Z.; Wang, Z.; Dai, Q.; Xiang, Z.; Yuan, F.; Yan, M.; Zhu, Z.; Liu, B.; Li, C. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 52. doi: 10.1186/s13046-019-1049-7 PMID: 30717785
- Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther., 2021, 221, 107753. doi: 10.1016/j.pharmthera.2020.107753 PMID: 33259885
- Li, J.; Byrne, K.T.; Yan, F.; Yamazoe, T.; Chen, Z.; Baslan, T.; Richman, L.P.; Lin, J.H.; Sun, Y.H.; Rech, A.J.; Balli, D.; Hay, C.A.; Sela, Y.; Merrell, A.J.; Liudahl, S.M.; Gordon, N.; Norgard, R.J.; Yuan, S.; Yu, S.; Chao, T.; Ye, S.; Eisinger-Mathason, T.S.K.; Faryabi, R.B.; Tobias, J.W.; Lowe, S.W.; Coussens, L.M.; Wherry, E.J.; Vonderheide, R.H.; Stanger, B.Z. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity, 2018, 49(1), 178-193.e7. doi: 10.1016/j.immuni.2018.06.006 PMID: 29958801
- Ma, W.; Zhang, K.; Bao, Z.; Jiang, T.; Zhang, Y. SAMD9 is relating with M2 macrophage and remarkable malignancy characters in low-grade glioma. Front. Immunol., 2021, 12, 659659. doi: 10.3389/fimmu.2021.659659 PMID: 33936093
- Cortese, N.; Carriero, R.; Laghi, L.; Mantovani, A.; Marchesi, F. Prognostic significance of tumor-associated macrophages: past, present and future. Semin. Immunol., 2020, 48, 101408. doi: 10.1016/j.smim.2020.101408 PMID: 32943279
- Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204. doi: 10.1186/s13046-020-01709-5 PMID: 32993787
- Gyamfi, J.; Kim, J.; Choi, J. Cancer as a metabolic disorder. Int. J. Mol. Sci., 2022, 23(3), 1155. doi: 10.3390/ijms23031155 PMID: 35163079
- Brooks, J.M.; Menezes, A.N.; Ibrahim, M.; Archer, L.; Lal, N.; Bagnall, C.J.; von Zeidler, S.V.; Valentine, H.R.; Spruce, R.J.; Batis, N.; Bryant, J.L.; Hartley, M.; Kaul, B.; Ryan, G.B.; Bao, R.; Khattri, A.; Lee, S.P.; Ogbureke, K.U.E.; Middleton, G.; Tennant, D.A.; Beggs, A.D.; Deeks, J.; West, C.M.L.; Cazier, J.B.; Willcox, B.E.; Seiwert, T.Y.; Mehanna, H. Development and validation of a combined hypoxia and immune prognostic classifier for head and neck cancer. Clin. Cancer Res., 2019, 25(17), 5315-5328. doi: 10.1158/1078-0432.CCR-18-3314 PMID: 31182433
- Woods, D.M.; Sodré, A.L.; Villagra, A.; Sarnaik, A.; Sotomayor, E.M.; Weber, J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res., 2015, 3(12), 1375-1385. doi: 10.1158/2326-6066.CIR-15-0077-T PMID: 26297712
- Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med., 2021, 218(1), e20201606. doi: 10.1084/jem.20201606 PMID: 33601415
- Kim, D.H.; Song, N.Y.; Yim, H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch. Pharm. Res., 2023, 46(11-12), 855-881. doi: 10.1007/s12272-023-01473-y PMID: 38060103
- Yu, W.; Lei, Q.; Yang, L.; Qin, G.; Liu, S.; Wang, D.; Ping, Y.; Zhang, Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol., 2021, 14(1), 187. doi: 10.1186/s13045-021-01200-4 PMID: 34742349
- Pitt, J.M.; Marabelle, A.; Eggermont, A.; Soria, J.C.; Kroemer, G.; Zitvogel, L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann. Oncol., 2016, 27(8), 1482-1492. doi: 10.1093/annonc/mdw168 PMID: 27069014
- Murai, H.; Kodama, T.; Maesaka, K.; Tange, S.; Motooka, D.; Suzuki, Y.; Shigematsu, Y.; Inamura, K.; Mise, Y.; Saiura, A.; Ono, Y.; Takahashi, Y.; Kawasaki, Y.; Iino, S.; Kobayashi, S.; Idogawa, M.; Tokino, T.; Hashidate-Yoshida, T.; Shindou, H.; Miyazaki, M.; Imai, Y.; Tanaka, S.; Mita, E.; Ohkawa, K.; Hikita, H.; Sakamori, R.; Tatsumi, T.; Eguchi, H.; Morii, E.; Takehara, T. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology, 2023, 77(1), 77-91. doi: 10.1002/hep.32573 PMID: 35567547
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; Signori, E.; Honoki, K.; Georgakilas, A.G.; Amin, A.; Helferich, W.G.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Chen, S.; Mohammed, S.I.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; Aquilano, K.; Ashraf, S.S.; Nowsheen, S.; Yang, X.; Choi, B.K.; Kwon, B.S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35(Suppl.), S185-S198. doi: 10.1016/j.semcancer.2015.03.004 PMID: 25818339
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 2023, 41(3), 374-403. doi: 10.1016/j.ccell.2023.02.016 PMID: 36917948
- Jiang, M.; Wu, N.; Xu, B.; Chu, Y.; Li, X.; Su, S.; Chen, D.; Li, W.; Shi, Y.; Gao, X.; Zhang, H.; Zhang, Z.; Du, W.; Nie, Y.; Liang, J.; Fan, D. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics, 2019, 9(18), 5359-5373. doi: 10.7150/thno.34024 PMID: 31410220
- Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45. doi: 10.1038/nature20791 PMID: 27974793
- Yang, P.; Su, C.; Luo, X.; Zeng, H.; Zhao, L.; Wei, L.; Zhang, X.; Varghese, Z.; Moorhead, J.F.; Chen, Y.; Ruan, X.Z. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett., 2018, 438, 76-85. doi: 10.1016/j.canlet.2018.09.006 PMID: 30213558
- Liu, L.Z.; Wang, B.; Zhang, R.; Wu, Z.; Huang, Y.; Zhang, X.; Zhou, J.; Yi, J.; Shen, J.; Li, M.Y.; Dong, M. The activated CD36-Src axis promotes lung adenocarcinoma cell proliferation and actin remodeling-involved metastasis in high-fat environment. Cell Death Dis., 2023, 14(8), 548. doi: 10.1038/s41419-023-06078-3 PMID: 37612265
- Ladanyi, A.; Mukherjee, A.; Kenny, H.A.; Johnson, A.; Mitra, A.K.; Sundaresan, S.; Nieman, K.M.; Pascual, G.; Benitah, S.A.; Montag, A.; Yamada, S.D.; Abumrad, N.A.; Lengyel, E. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 2018, 37(17), 2285-2301. doi: 10.1038/s41388-017-0093-z PMID: 29398710
- Brat, D.J.; Castellano-Sanchez, A.A.; Hunter, S.B.; Pecot, M.; Cohen, C.; Hammond, E.H.; Devi, S.N.; Kaur, B.; Van Meir, E.G. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res., 2004, 64(3), 920-927. doi: 10.1158/0008-5472.CAN-03-2073 PMID: 14871821
- Taïb, B.; Aboussalah, A.M.; Moniruzzaman, M.; Chen, S.; Haughey, N.J.; Kim, S.F.; Ahima, R.S. Lipid accumulation and oxidation in glioblastoma multiforme. Sci. Rep., 2019, 9(1), 19593. doi: 10.1038/s41598-019-55985-z PMID: 31863022
- Shakya, S.; Gromovsky, A.D.; Hale, J.S.; Knudsen, A.M.; Prager, B.; Wallace, L.C.; Penalva, L.O.F.; Brown, H.A.; Kristensen, B.W.; Rich, J.N.; Lathia, J.D.; Brown, J.M.; Hubert, C.G. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun., 2021, 9(1), 101. doi: 10.1186/s40478-021-01205-7 PMID: 34059134
- Tanase, C.; Enciu, A.M.; Codrici, E.; Popescu, I.D.; Dudau, M.; Dobri, A.M.; Pop, S.; Mihai, S.; Gheorghișan-Gălățeanu, A.A.; Hinescu, M.E. Fatty acids, CD36, thrombospondin-1, and CD47 in glioblastoma: together and/or separately? Int. J. Mol. Sci., 2022, 23(2), 604. doi: 10.3390/ijms23020604 PMID: 35054787
- You, Z.; Hu, Z.; Hou, C.; Ma, C.; Xu, X.; Zheng, Y.; Sun, X.; Ke, Y.; Liang, J.; Xie, Z.; Shu, L.; Liu, Y. FABP4 facilitates epithelial-mesenchymal transition via elevating CD36 expression in glioma cells. Neoplasia, 2024, 57, 101050. doi: 10.1016/j.neo.2024.101050 PMID: 39243502
- Zaoui, M.; Morel, M.; Ferrand, N.; Fellahi, S.; Bastard, J.P.; Lamazière, A.; Larsen, A.K.; Béréziat, V.; Atlan, M.; Sabbah, M. Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel), 2019, 11(12), 2012. doi: 10.3390/cancers11122012 PMID: 31847105
- Casciano, J.C.; Perry, C.; Cohen-Nowak, A.J.; Miller, K.D.; Vande Voorde, J.; Zhang, Q.; Chalmers, S.; Sandison, M.E.; Liu, Q.; Hedley, A.; McBryan, T.; Tang, H.Y.; Gorman, N.; Beer, T.; Speicher, D.W.; Adams, P.D.; Liu, X.; Schlegel, R.; McCarron, J.G.; Wakelam, M.J.O.; Gottlieb, E.; Kossenkov, A.V.; Schug, Z.T. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. Br. J. Cancer, 2020, 122(6), 868-884. doi: 10.1038/s41416-019-0711-3 PMID: 31942031
- Wang, C.; Han, J.; Chen, Y. Inhibition of CD36 and Nogo-B expression inhibited the proliferation and migration of triple negative breast cancer cells. Chin. J. Biotechnol., 2023, 39(10), 4168-4188. PMID: 37877398
- Rybinska, I.; Mangano, N.; Romero-Cordoba, S.L.; Regondi, V.; Ciravolo, V.; De Cecco, L.; Maffioli, E.; Paolini, B.; Bianchi, F.; Sfondrini, L.; Tedeschi, G.; Agresti, R.; Tagliabue, E.; Triulzi, T. SAA1 ‐dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. Int. J. Cancer, 2024, 154(10), 1842-1856. doi: 10.1002/ijc.34859 PMID: 38289016
- Ye, H.; Adane, B.; Khan, N.; Sullivan, T.; Minhajuddin, M.; Gasparetto, M.; Stevens, B.; Pei, S.; Balys, M.; Ashton, J.M.; Klemm, D.J.; Woolthuis, C.M.; Stranahan, A.W.; Park, C.Y.; Jordan, C.T. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell, 2016, 19(1), 23-37. doi: 10.1016/j.stem.2016.06.001 PMID: 27374788
- Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; Scotland, S.; Larrue, C.; Boutzen, H.; Féliu, V.; Nicolau-Travers, M.L.; Cassant-Sourdy, S.; Broin, N.; David, M.; Serhan, N.; Sarry, A.; Tavitian, S.; Kaoma, T.; Vallar, L.; Iacovoni, J.; Linares, L.K.; Montersino, C.; Castellano, R.; Griessinger, E.; Collette, Y.; Duchamp, O.; Barreira, Y.; Hirsch, P.; Palama, T.; Gales, L.; Delhommeau, F.; Garmy-Susini, B.H.; Portais, J.C.; Vergez, F.; Selak, M.; Danet-Desnoyers, G.; Carroll, M.; Récher, C.; Sarry, J.E. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov., 2017, 7(7), 716-735. doi: 10.1158/2159-8290.CD-16-0441 PMID: 28416471
- Zhang, Y.; Guo, H.; Zhang, Z.; Lu, W.; Zhu, J.; Shi, J. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Exp. Cell Res., 2022, 415(1), 113112. doi: 10.1016/j.yexcr.2022.113112 PMID: 35346671
- Feng, W.W.; Wilkins, O.; Bang, S.; Ung, M.; Li, J.; An, J.; del Genio, C.; Canfield, K.; DiRenzo, J.; Wells, W.; Gaur, A.; Robey, R.B.; Guo, J.Y.; Powles, R.L.; Sotiriou, C.; Pusztai, L.; Febbraio, M.; Cheng, C.; Kinlaw, W.B.; Kurokawa, M. CD36-mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies. Cell Rep., 2019, 29(11), 3405-3420.e5. doi: 10.1016/j.celrep.2019.11.008 PMID: 31825825
- Yang, L.; Sun, J.; Li, M.; Long, Y.; Zhang, D.; Guo, H.; Huang, R.; Yan, J. Oxidized low-density lipoprotein links hypercholesterolemia and bladder cancer aggressiveness by promoting cancer stemness. Cancer Res., 2021, 81(22), 5720-5732. doi: 10.1158/0008-5472.CAN-21-0646 PMID: 34479964
- Gyamfi, J.; Yeo, J.H.; Kwon, D.; Min, B.S.; Cha, Y.J.; Koo, J.S.; Jeong, J.; Lee, J.; Choi, J. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer, 2021, 7(1), 129. doi: 10.1038/s41523-021-00324-7 PMID: 34561446
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer, 2012, 12(4), 298-306. doi: 10.1038/nrc3245 PMID: 22419253
- Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol., 2019, 234(6), 8509-8521. doi: 10.1002/jcp.27782 PMID: 30520029
- Chow, A.; Perica, K.; Klebanoff, C.A.; Wolchok, J.D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol., 2022, 19(12), 775-790. doi: 10.1038/s41571-022-00689-z PMID: 36216928
- Manzo, T.; Prentice, B.M.; Anderson, K.G.; Raman, A.; Schalck, A.; Codreanu, G.S.; Nava Lauson, C.B.; Tiberti, S.; Raimondi, A.; Jones, M.A.; Reyzer, M.; Bates, B.M.; Spraggins, J.M.; Patterson, N.H.; McLean, J.A.; Rai, K.; Tacchetti, C.; Tucci, S.; Wargo, J.A.; Rodighiero, S.; Clise-Dwyer, K.; Sherrod, S.D.; Kim, M.; Navin, N.E.; Caprioli, R.M.; Greenberg, P.D.; Draetta, G.; Nezi, L. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med., 2020, 217(8), e20191920. doi: 10.1084/jem.20191920 PMID: 32491160
- Ao, Y.Q.; Gao, J.; Zhang, L.X.; Deng, J.; Wang, S.; Lin, M.; Wang, H.K.; Ding, J.Y.; Jiang, J.H. Tumor-infiltrating CD36+CD8+T cells determine exhausted tumor microenvironment and correlate with inferior response to chemotherapy in non-small cell lung cancer. BMC Cancer, 2023, 23(1), 367. doi: 10.1186/s12885-023-10836-z PMID: 37085798
- Xu, S.; Chaudhary, O.; Rodríguez-Morales, P.; Sun, X.; Chen, D.; Zappasodi, R.; Xu, Z.; Pinto, A.F.M.; Williams, A.; Schulze, I.; Farsakoglu, Y.; Varanasi, S.K.; Low, J.S.; Tang, W.; Wang, H.; McDonald, B.; Tripple, V.; Downes, M.; Evans, R.M.; Abumrad, N.A.; Merghoub, T.; Wolchok, J.D.; Shokhirev, M.N.; Ho, P.C.; Witztum, J.L.; Emu, B.; Cui, G.; Kaech, S.M. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity, 2021, 54(7), 1561-1577.e7. doi: 10.1016/j.immuni.2021.05.003 PMID: 34102100
- Ma, X.; Xiao, L.; Liu, L.; Ye, L.; Su, P.; Bi, E.; Wang, Q.; Yang, M.; Qian, J.; Yi, Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab., 2021, 33(5), 1001-1012.e5. doi: 10.1016/j.cmet.2021.02.015 PMID: 33691090
- CD36 activity causes ferroptosis in tumor-infiltrating CD8+ T cells. Cancer Discov., 2021, 11(5), OF24. doi: 10.1158/2159-8290.CD-RW2021-039 PMID: 33741707
- Kolonin, M.G. Bad cholesterol uptake by CD36 in T-cells cripples anti-tumor immune response. Immunometabolism (Cobham), 2021, 3(4), e210028. doi: 10.20900/immunometab20210028 PMID: 34603769
- Orange, J.S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol., 2008, 8(9), 713-725. doi: 10.1038/nri2381 PMID: 19172692
- Schimmer, S.; Mittermüller, D.; Werner, T.; Görs, P.E.; Meckelmann, S.W.; Finlay, D.K.; Dittmer, U.; Littwitz-Salomon, E. Fatty acids are crucial to fuel NK cells upon acute retrovirus infection. Front. Immunol., 2023, 14, 1296355. doi: 10.3389/fimmu.2023.1296355 PMID: 38094304
- Hu, X.; Jia, X.; Xu, C.; Wei, Y.; Wang, Z.; Liu, G.; You, Q.; Lu, G.; Gong, W. Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metabolism, 2021, 120, 154800. doi: 10.1016/j.metabol.2021.154800 PMID: 34051224
- Gowda, N.M.; Wu, X.; Kumar, S.; Febbraio, M.; Gowda, D.C. CD36 contributes to malaria parasite-induced pro-inflammatory cytokine production and NK and T cell activation by dendritic cells. PLoS One, 2013, 8(10), e77604. doi: 10.1371/journal.pone.0077604 PMID: 24204889
- Niavarani, S.R.; Lawson, C.; Bakos, O.; Boudaud, M.; Batenchuk, C.; Rouleau, S.; Tai, L.H. Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer, 2019, 19(1), 823. doi: 10.1186/s12885-019-6045-y PMID: 31429730
- Savage, P.A.; Klawon, D.E.J.; Miller, C.H. Regulatory T cell development. Annu. Rev. Immunol., 2020, 38(1), 421-453. doi: 10.1146/annurev-immunol-100219-020937 PMID: 31990619
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723. doi: 10.1016/j.cell.2017.01.017 PMID: 28187290
- Rech, A.J.; Mick, R.; Martin, S.; Recio, A.; Aqui, N.A.; Powell, D.J., Jr; Colligon, T.A.; Trosko, J.A.; Leinbach, L.I.; Pletcher, C.H.; Tweed, C.K.; DeMichele, A.; Fox, K.R.; Domchek, S.M.; Riley, J.L.; Vonderheide, R.H. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci. Transl. Med., 2012, 4(134), 134ra62. doi: 10.1126/scitranslmed.3003330 PMID: 22593175
- Sutmuller, R.P.M.; van Duivenvoorde, L.M.; van Elsas, A.; Schumacher, T.N.M.; Wildenberg, M.E.; Allison, J.P.; Toes, R.E.M.; Offringa, R.; Melief, C.J.M. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med., 2001, 194(6), 823-832. doi: 10.1084/jem.194.6.823 PMID: 11560997
- Wang, H.; Franco, F.; Tsui, Y.C.; Xie, X.; Trefny, M.P.; Zappasodi, R.; Mohmood, S.R.; Fernández-García, J.; Tsai, C.H.; Schulze, I.; Picard, F.; Meylan, E.; Silverstein, R.; Goldberg, I.; Fendt, S.M.; Wolchok, J.D.; Merghoub, T.; Jandus, C.; Zippelius, A.; Ho, P.C. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol., 2020, 21(3), 298-308. doi: 10.1038/s41590-019-0589-5 PMID: 32066953
- Miao, Y.; Zhang, C.; Yang, L.; Zeng, X.; Hu, Y.; Xue, X.; Dai, Y.; Wei, Z. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα. Cell Commun. Signal., 2022, 20(1), 48. doi: 10.1186/s12964-022-00849-9 PMID: 35392915
- Geys, L.; Vranckx, C.; Lijnen, H.R.; Scroyen, I. CD36 deficiency blunts effects of diet on regulatory T cells in murine gonadal adipose tissue and mesenteric lymph nodes. Cell. Immunol., 2015, 298(1-2), 33-36. doi: 10.1016/j.cellimm.2015.08.006 PMID: 26344897
- Salmaninejad, A.; Valilou, S.F.; Soltani, A.; Ahmadi, S.; Abarghan, Y.J.; Rosengren, R.J.; Sahebkar, A. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol. (Dordr.), 2019, 42(5), 591-608. doi: 10.1007/s13402-019-00453-z PMID: 31144271
- Gao, J.; Liang, Y.; Wang, L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front. Immunol., 2022, 13, 888713. doi: 10.3389/fimmu.2022.888713 PMID: 35844605
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol., 2020, 11, 583084. doi: 10.3389/fimmu.2020.583084 PMID: 33365025
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969. doi: 10.1038/nri2448 PMID: 19029990
- Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res., 2020, 80, 101055. doi: 10.1016/j.plipres.2020.101055 PMID: 32791170
- Huang, S.C.C.; Everts, B.; Ivanova, Y.; O’Sullivan, D.; Nascimento, M.; Smith, A.M.; Beatty, W.; Love-Gregory, L.; Lam, W.Y.; O’Neill, C.M.; Yan, C.; Du, H.; Abumrad, N.A.; Urban, J.F., Jr; Artyomov, M.N.; Pearce, E.L.; Pearce, E.J. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol., 2014, 15(9), 846-855. doi: 10.1038/ni.2956 PMID: 25086775
- Chen, Y.; Yang, M.; Huang, W.; Chen, W.; Zhao, Y.; Schulte, M.L.; Volberding, P.; Gerbec, Z.; Zimmermann, M.T.; Zeighami, A.; Demos, W.; Zhang, J.; Knaack, D.A.; Smith, B.C.; Cui, W.; Malarkannan, S.; Sodhi, K.; Shapiro, J.I.; Xie, Z.; Sahoo, D.; Silverstein, R.L. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ. Res., 2019, 125(12), 1087-1102. doi: 10.1161/CIRCRESAHA.119.315833 PMID: 31625810
- Su, P.; Wang, Q.; Bi, E.; Ma, X.; Liu, L.; Yang, M.; Qian, J.; Yi, Q. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res., 2020, 80(7), 1438-1450. doi: 10.1158/0008-5472.CAN-19-2994 PMID: 32015091
- Albakri, M.M.; Huang, S.C.C.; Tashkandi, H.N.; Sieg, S.F. Fatty acids secreted from head and neck cancer induce M2-like Macrophages. J. Leukoc. Biol., 2022, 112(4), 617-628. doi: 10.1002/JLB.1A0521-251R PMID: 35213745
- Yang, P.; Qin, H.; Li, Y.; Xiao, A.; Zheng, E.; Zeng, H.; Su, C.; Luo, X.; Lu, Q.; Liao, M.; Zhao, L.; Wei, L.; Varghese, Z.; Moorhead, J.F.; Chen, Y.; Ruan, X.Z. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat. Commun., 2022, 13(1), 5782. doi: 10.1038/s41467-022-33349-y PMID: 36184646
- Aguirre, L.A.; Montalbán-Hernández, K.; Avendaño-Ortiz, J.; Marín, E.; Lozano, R.; Toledano, V.; Sánchez-Maroto, L.; Terrón, V.; Valentín, J.; Pulido, E.; Casalvilla, J.C.; Rubio, C.; Diekhorst, L.; Laso-García, F.; del Fresno, C.; Collazo-Lorduy, A.; Jiménez-Munarriz, B.; Gómez-Campelo, P.; Llanos-González, E.; Fernández-Velasco, M.; Rodríguez-Antolín, C.; Pérez de Diego, R.; Cantero-Cid, R.; Hernádez-Jimenez, E.; Álvarez, E.; Rosas, R.; dies López-Ayllón, B.; de Castro, J.; Wculek, S.K.; Cubillos-Zapata, C.; Ibáñez de Cáceres, I.; Díaz-Agero, P.; Gutiérrez Fernández, M.; Paz de Miguel, M.; Sancho, D.; Schulte, L.; Perona, R.; Belda-Iniesta, C.; Boscá, L.; López-Collazo, E. Tumor stem cells fuse with monocytes to form highly invasive tumor-hybrid cells. OncoImmunology, 2020, 9(1), 1773204. doi: 10.1080/2162402X.2020.1773204 PMID: 32923132
- Dorhoi, A.; Du Plessis, N. Monocytic myeloid-derived suppressor cells in chronic infections. Front. Immunol., 2018, 8, 1895. doi: 10.3389/fimmu.2017.01895 PMID: 29354120
- Christofides, A.; Strauss, L.; Yeo, A.; Cao, C.; Charest, A.; Boussiotis, V.A. The complex role of tumor-infiltrating macrophages. Nat. Immunol., 2022, 23(8), 1148-1156. doi: 10.1038/s41590-022-01267-2 PMID: 35879449
- Parker, K.H.; Beury, D.W.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cells. Adv. Cancer Res., 2015, 128, 95-139. doi: 10.1016/bs.acr.2015.04.002 PMID: 26216631
- Sica, A.; Massarotti, M. Myeloid suppressor cells in cancer and autoimmunity. J. Autoimmun., 2017, 85, 117-125. doi: 10.1016/j.jaut.2017.07.010 PMID: 28728794
- Adeshakin, A.O.; Liu, W.; Adeshakin, F.O.; Afolabi, L.O.; Zhang, M.; Zhang, G.; Wang, L.; Li, Z.; Lin, L.; Cao, Q.; Yan, D.; Wan, X. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell. Immunol., 2021, 362, 104286. doi: 10.1016/j.cellimm.2021.104286 PMID: 33524739
- Al-Khami, A.A.; Zheng, L.; Del Valle, L.; Hossain, F.; Wyczechowska, D.; Zabaleta, J.; Sanchez, M.D.; Dean, M.J.; Rodriguez, P.C.; Ochoa, A.C. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. OncoImmunology, 2017, 6(10), e1344804. doi: 10.1080/2162402X.2017.1344804 PMID: 29123954
- Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer, 2016, 16(9), 582-598. doi: 10.1038/nrc.2016.73 PMID: 27550820
- Öhlund, D.; Elyada, E.; Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med., 2014, 211(8), 1503-1523. doi: 10.1084/jem.20140692 PMID: 25071162
- Ma, C.; Yang, C.; Peng, A.; Sun, T.; Ji, X.; Mi, J.; Wei, L.; Shen, S.; Feng, Q. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol. Cancer, 2023, 22(1), 170. doi: 10.1186/s12943-023-01876-x PMID: 37833788
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer, 2021, 20(1), 131. doi: 10.1186/s12943-021-01428-1 PMID: 34635121
- Nath, A.; Chan, C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci. Rep., 2016, 6(1), 18669. doi: 10.1038/srep18669 PMID: 26725848
- Xiao, Z.; Todd, L.; Huang, L.; Noguera-Ortega, E.; Lu, Z.; Huang, L.; Kopp, M.; Li, Y.; Pattada, N.; Zhong, W.; Guo, W.; Scholler, J.; Liousia, M.; Assenmacher, C.A.; June, C.H.; Albelda, S.M.; Puré, E. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat. Commun., 2023, 14(1), 5110. doi: 10.1038/s41467-023-40850-5 PMID: 37607999
- Zhu, G.Q.; Tang, Z.; Huang, R.; Qu, W.F.; Fang, Y.; Yang, R.; Tao, C.Y.; Gao, J.; Wu, X.L.; Sun, H.X.; Zhou, Y.F.; Song, S.S.; Ding, Z.B.; Dai, Z.; Zhou, J.; Ye, D.; Wu, D.J.; Liu, W.R.; Fan, J.; Shi, Y.H. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov., 2023, 9(1), 25. doi: 10.1038/s41421-023-00529-z PMID: 36878933
- Gong, J.; Lin, Y.; Zhang, H.; Liu, C.; Cheng, Z.; Yang, X.; Zhang, J.; Xiao, Y.; Sang, N.; Qian, X.; Wang, L.; Cen, X.; Du, X.; Zhao, Y. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis., 2020, 11(4), 267. doi: 10.1038/s41419-020-2434-z PMID: 32327627
- Nan, P.; Dong, X.; Bai, X.; Lu, H.; Liu, F.; Sun, Y.; Zhao, X. Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway. Cancer Lett., 2022, 528, 59-75. doi: 10.1016/j.canlet.2021.12.025 PMID: 34958892
- Zhang, L.; Billet, S.; Gonzales, G.; Rohena-Rivera, K.; Muranaka, H.; Chu, G.; Yang, Q.; Kim, H.; Bhowmick, N.; Smith, B. Fatty acid signaling impacts prostate cancer lineage plasticity in an autocrine and paracrine manner. Cancers (Basel), 2022, 14(14), 3449. doi: 10.3390/cancers14143449 PMID: 35884514
- Jayawardhana, A.M.D.S.; Stilgenbauer, M.; Datta, P.; Qiu, Z.; Mckenzie, S.; Wang, H.; Bowers, D.; Kurokawa, M.; Zheng, Y.R. Fatty acid-like Pt(IV) prodrugs overcome cisplatin resistance in ovarian cancer by harnessing CD36. Chem. Commun. (Camb.), 2020, 56(73), 10706-10709. doi: 10.1039/D0CC02174A PMID: 32789350
- Wang, B.; Yan, N.; Wu, D.; Dou, Y.; Liu, Z.; Hu, X.; Chen, C. Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. Nanotechnology, 2021, 32(39), 395101. doi: 10.1088/1361-6528/ac0d1e PMID: 34153956
- Sp, N.; Kang, D.; Kim, D.; Park, J.; Lee, H.; Kim, H.; Darvin, P.; Park, Y.M.; Yang, Y. Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Κb signaling axis. Nutrients, 2018, 10(6), 772. doi: 10.3390/nu10060772 PMID: 29914089
- Chen, L.; Xia, J.S.; Wu, J.H.; Chen, Y.G.; Qiu, C.J. Quercetin suppresses cell survival and invasion in oral squamous cell carcinoma via the miR-1254/CD36 cascade in vitro. Hum. Exp. Toxicol., 2021, 40(9), 1413-1421. doi: 10.1177/0960327121991912 PMID: 33686878
- Pang, B.; Xu, X.; Lu, Y.; Jin, H.; Yang, R.; Jiang, C.; Shao, D.; Liu, Y.; Shi, J. Prediction of new targets and mechanisms for quercetin in the treatment of pancreatic cancer, colon cancer, and rectal cancer. Food Funct., 2019, 10(9), 5339-5349. doi: 10.1039/C9FO01168D PMID: 31393490
- Chen, X.; Wang, L.; Wu, Y.; Song, S.; Min, H.; Yang, Y.; He, X.; Liang, Q.; Yi, L.; Wang, Y.; Gao, Q. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr. Diabetes, 2018, 8(1), 1. doi: 10.1038/s41387-017-0009-6 PMID: 29330446
- Mahalingam, D.; Harb, W.; Patnaik, A.; Bullock, A.; Watnick, R.S.; Vincent, M.Y.; Chen, J.J.; Wang, S.; Pestana, H.; Chao, J.; Mahoney, J.; Cieslewicz, M.; Watnick, J. First-in-human phase I dose escalation trial of the first-in-class tumor microenvironment modulator VT1021 in advanced solid tumors. Commun. Med., 2024, 4(1), 10. doi: 10.1038/s43856-024-00433-x PMID: 38218979
- Chen, J.J.; Vincent, M.Y.; Shepard, D.; Peereboom, D.; Mahalingam, D.; Battiste, J.; Patel, M.R.; Juric, D.; Wen, P.Y.; Bullock, A.; Selfridge, J.E.; Pant, S.; Liu, J.; Li, W.; Fyfe, S.; Wang, S.; Zota, V.; Mahoney, J.; Watnick, R.S.; Cieslewicz, M.; Watnick, J. Phase 1 dose expansion and biomarker study assessing first-in-class tumor microenvironment modulator VT1021 in patients with advanced solid tumors. Commun. Med., 2024, 4(1), 95. doi: 10.1038/s43856-024-00520-z PMID: 38773224
- Febbraio, M.; Abumrad, N.A.; Hajjar, D.P.; Sharma, K.; Cheng, W.; Pearce, S.F.A.; Silverstein, R.L. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem., 1999, 274(27), 19055-19062. doi: 10.1074/jbc.274.27.19055 PMID: 10383407
- Kajihara, S.; Hisatomi, A.; Ogawa, Y.; Yasutake, T.; Yoshimura, T.; Hara, T.; Mizuta, T.; Ozaki, I.; Iwamoto, N.; Yamamoto, K. Association of the Pro90Ser CD36 mutation with elevated free fatty acid concentrations but not with insulin resistance syndrome in Japanese. Clin. Chim. Acta, 2001, 314(1-2), 125-130. doi: 10.1016/S0009-8981(01)00658-1 PMID: 11718687
- Miyaoka, K.; Kuwasako, T.; Hirano, K.; Nozaki, S.; Yamashita, S.; Matsuzawa, Y. CD36 deficiency associated with insulin resistance. Lancet, 2001, 357(9257), 686-687. doi: 10.1016/S0140-6736(00)04138-6 PMID: 11247555
- Kuwasako, T.; Hirano, K.; Sakai, N.; Ishigami, M.; Hiraoka, H.; Yakub, M.J.; Yamauchi-Takihara, K.; Yamashita, S.; Matsuzawa, Y. Lipoprotein abnormalities in human genetic CD36 deficiency associated with insulin resistance and abnormal fatty acid metabolism. Diabetes Care, 2003, 26(5), 1647-1648. doi: 10.2337/diacare.26.5.1647-a PMID: 12716848
- Hirano, K.; Kuwasako, T.; Nakagawa-Toyama, Y.; Janabi, M.; Yamashita, S.; Matsuzawa, Y. Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc. Med., 2003, 13(4), 136-141. doi: 10.1016/S1050-1738(03)00026-4 PMID: 12732446
- Yamashita, S.; Hirano, K.I.; Kuwasako, T.; Janabi, M.; Toyama, Y.; Ishigami, M.; Sakai, N. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; Insights from CD36-deficient patients. Mol. Cell. Biochem., 2007, 299(1-2), 19-22. doi: 10.1007/s11010-005-9031-4 PMID: 16670819
- Domínguez, D.J.; Enríquez, S.; Alba, G.; Garnacho, C.; Cortegana, C.; Campos, R.; Merino, L.; Hajji, N.; Sánchez-Margalet, V.; Prieto, L. Cancer nano-immunotherapy: The novel and promising weapon to fight cancer. Int. J. Mol. Sci., 2024, 25(2), 1195. doi: 10.3390/ijms25021195 PMID: 38256268
- Guo, S.; Feng, J.; Li, Z.; Yang, S.; Qiu, X.; Xu, Y.; Shen, Z. Improved cancer immunotherapy strategies by nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(3), e1873. doi: 10.1002/wnan.1873 PMID: 36576112
- Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res., 2019, 52(6), 1543-1554. doi: 10.1021/acs.accounts.9b00148 PMID: 31120725
- Bai, Y.; Nan, Y.; Wu, T.; Zhu, A.; Xie, X.; Sun, Y.; Deng, Y.; Dou, Z.; Hu, X.; Zhou, R.; Xu, S.; Zhang, Y.; Fan, J.; Ju, D. Lipid nanoparticle‐mediated delivery of CRISPR‐Cas9 against rubicon ameliorates nafld by modulating CD36 along with glycerophospholipid metabolism. Adv. Sci., 2024, 11(31), 2400493. doi: 10.1002/advs.202400493 PMID: 38894572
- Zhao, N.; Francis, N.L.; Song, S.; Kholodovych, V.; Calvelli, H.R.; Hoop, C.L.; Pang, Z.P.; Baum, J.; Uhrich, K.E.; Moghe, P.V. CD36‐binding amphiphilic nanoparticles for attenuation of α‐synuclein‐induced microglial activation. Adv. NanoBiomed Res., 2022, 2(6), 2100120. doi: 10.1002/anbr.202100120 PMID: 36051821
- Zhang, J.; Nie, S.; Zu, Y.; Abbasi, M.; Cao, J.; Li, C.; Wu, D.; Labib, S.; Brackee, G.; Shen, C.L.; Wang, S. Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. J. Control. Release, 2019, 303, 263-273. doi: 10.1016/j.jconrel.2019.04.018 PMID: 30999008
- Cui, K.; Gao, X.; Wang, B.; Wu, H.; Arulsamy, K.; Dong, Y.; Xiao, Y.; Jiang, X.; Malovichko, M.V.; Li, K.; Peng, Q.; Lu, Y.W.; Zhu, B.; Zheng, R.; Wong, S.; Cowan, D.B.; Linton, M.; Srivastava, S.; Shi, J.; Chen, K.; Chen, H. Epsin nanotherapy regulates cholesterol transport to fortify atheroma regression. Circ. Res., 2023, 132(1), e22-e42. doi: 10.1161/CIRCRESAHA.122.321723 PMID: 36444722
- Gao, C.; Huang, Q.; Liu, C.; Kwong, C.H.T.; Yue, L.; Wan, J.B.; Lee, S.M.Y.; Wang, R. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun., 2020, 11(1), 2622. doi: 10.1038/s41467-020-16439-7 PMID: 32457361
- Wilson, C.G.; Tran, J.L.; Erion, D.M.; Vera, N.B.; Febbraio, M.; Weiss, E.J. Hepatocyte-specific disruption of cd36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology, 2016, 157(2), 570-585. doi: 10.1210/en.2015-1866 PMID: 26650570
- Marleau, S.; Harb, D.; Bujold, K.; Avallone, R.; Iken, K.; Wang, Y.; Demers, A.; Sirois, M.G.; Febbraio, M.; Silverstein, R.L.; Tremblay, A.; Ong, H. EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E‐deficient mice from developing atherosclerotic lesions. FASEB J., 2005, 19(13), 1869-1871. doi: 10.1096/fj.04-3253fje PMID: 16123174
- Bujold, K.; Mellal, K.; Zoccal, K.F.; Rhainds, D.; Brissette, L.; Febbraio, M.; Marleau, S.; Ong, H. EP 80317, a CD36 selective ligand, promotes reverse cholesterol transport in apolipoprotein E-deficient mice. Atherosclerosis, 2013, 229(2), 408-414. doi: 10.1016/j.atherosclerosis.2013.05.031 PMID: 23880196
- Geloen, A.; Helin, L.; Geeraert, B.; Malaud, E.; Holvoet, P.; Marguerie, G. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One, 2012, 7(5), e37633. doi: 10.1371/journal.pone.0037633 PMID: 22662181
补充文件
