CD36 as a Therapeutic Target in Tumor Microenvironment and Lipid Metabolism


Дәйексөз келтіру

Толық мәтін

Аннотация

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME. CD36, a key lipid transporter, plays a crucial role in regulating fatty acid sensing and lipid metabolism, and its dysregulated expression has been associated with poor prognosis in several cancers. Studies have demonstrated that elevated CD 36 expression in the TME is closely linked to abnormal lipid metabolism, promoting tumor growth, migration, and metastasis. In recent years, significant progress has been made in developing CD36-targeted therapies, including small-molecule inhibitors, antibodies, and nanoparticle-based drugs, with many entering experimental or preclinical stages. This review comprehensively summarizes the latest advances in understanding the role of CD36 in the TME, focusing on its metabolic regulatory mechanisms in tumor cells, immune cells, and stromal cells. Additionally, it highlights the contribution of CD36 to immune evasion, drug resistance, and cancer stem cell maintenance while discussing several therapeutic strategies targeting CD36, including novel therapies currently in clinical trials. By exploring the therapeutic potential of CD36, this review provides critical insights for the future development of CD36-targeted cancer therapies.

Авторлар туралы

Jiaxuan Li

Cancer Center, The Second Hospital of Shandong University

Email: info@benthamscience.net

Jiaqi Chen

Cancer Center, The Second Hospital of Shandong University

Email: info@benthamscience.net

Guang Yang

Cancer Center, The Second Hospital of Shandong University

Email: info@benthamscience.net

Shulin Zhang

School of Clinical Medicine, Tsinghua University

Email: info@benthamscience.net

Peiyao Li

Cancer Center, The Second Hospital of Shandong University

Email: info@benthamscience.net

Lan Ye

Cancer Center, The Second Hospital of Shandong University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Li, Y.; Huang, X.; Yang, G.; Xu, K.; Yin, Y.; Brecchia, G.; Yin, J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog. Lipid Res., 2022, 88, 101193. doi: 10.1016/j.plipres.2022.101193 PMID: 36055468
  2. Wang, J.; Li, Y. CD36 tango in cancer: Signaling pathways and functions. Theranostics, 2019, 9(17), 4893-4908. doi: 10.7150/thno.36037 PMID: 31410189
  3. Feng, W.W.; Zuppe, H.T.; Kurokawa, M. The role of CD36 in cancer progression and its value as a therapeutic target. Cells, 2023, 12(12), 1605. doi: 10.3390/cells12121605 PMID: 37371076
  4. Luiken, J.J.F.P.; Chanda, D.; Nabben, M.; Neumann, D.; Glatz, J.F.C. Post-translational modifications of CD36 (SR-B2): Implications for regulation of myocellular fatty acid uptake. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(12), 2253-2258. doi: 10.1016/j.bbadis.2016.09.004 PMID: 27615427
  5. Ding, Z.; Liu, S.; Wang, X.; Theus, S.; Deng, X.; Fan, Y.; Zhou, S.; Mehta, J.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc. Res., 2018, 114(8), 1145-1153. doi: 10.1093/cvr/cvy079 PMID: 29617722
  6. Jay, A.G.; Chen, A.N.; Paz, M.A.; Hung, J.P.; Hamilton, J.A. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding. J. Biol. Chem., 2015, 290(8), 4590-4603. doi: 10.1074/jbc.M114.627026 PMID: 25555908
  7. Neubauer, E.F.; Poole, A.Z.; Weis, V.M.; Davy, S.K. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ, 2016, 4, e2692. doi: 10.7717/peerj.2692 PMID: 27896028
  8. Neculai, D.; Schwake, M.; Ravichandran, M.; Zunke, F.; Collins, R.F.; Peters, J.; Neculai, M.; Plumb, J.; Loppnau, P.; Pizarro, J.C.; Seitova, A.; Trimble, W.S.; Saftig, P.; Grinstein, S.; Dhe-Paganon, S. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature, 2013, 504(7478), 172-176. doi: 10.1038/nature12684 PMID: 24162852
  9. Kuda, O.; Pietka, T.A.; Demianova, Z.; Kudova, E.; Cvacka, J.; Kopecky, J.; Abumrad, N.A. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J. Biol. Chem., 2013, 288(22), 15547-15555. doi: 10.1074/jbc.M113.473298 PMID: 23603908
  10. Conrad, K.S.; Cheng, T.W.; Ysselstein, D.; Heybrock, S.; Hoth, L.R.; Chrunyk, B.A.; am Ende, C.W.; Krainc, D.; Schwake, M.; Saftig, P.; Liu, S.; Qiu, X.; Ehlers, M.D. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat. Commun., 2017, 8(1), 1908. doi: 10.1038/s41467-017-02044-8 PMID: 29199275
  11. Glatz, J.C.; Luiken, J.F.P. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J. Lipid Res., 2018, 59(7), 1084-1093. doi: 10.1194/jlr.R082933 PMID: 29627764
  12. Heybrock, S.; Kanerva, K.; Meng, Y.; Ing, C.; Liang, A.; Xiong, Z.J.; Weng, X.; Ah Kim, Y.; Collins, R.; Trimble, W.; Pomès, R.; Privé, G.G.; Annaert, W.; Schwake, M.; Heeren, J.; Lüllmann-Rauch, R.; Grinstein, S.; Ikonen, E.; Saftig, P.; Neculai, D. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat. Commun., 2019, 10(1), 3521. doi: 10.1038/s41467-019-11425-0 PMID: 31387993
  13. Yu, M.; Lau, T.Y.; Carr, S.A.; Krieger, M. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI. Biochemistry, 2012, 51(50), 10044-10055. doi: 10.1021/bi301203x PMID: 23205738
  14. Armesilla, A.L.; Vega, M.A. Structural organization of the gene for human CD36 glycoprotein. J. Biol. Chem., 1994, 269(29), 18985-18991. doi: 10.1016/S0021-9258(17)32263-9 PMID: 7518447
  15. Hale, J.S.; Otvos, B.; Sinyuk, M.; Alvarado, A.G.; Hitomi, M.; Stoltz, K.; Wu, Q.; Flavahan, W.; Levison, B.; Johansen, M.L.; Schmitt, D.; Neltner, J.M.; Huang, P.; Ren, B.; Sloan, A.E.; Silverstein, R.L.; Gladson, C.L.; DiDonato, J.A.; Brown, J.M.; McIntyre, T.; Hazen, S.L.; Horbinski, C.; Rich, J.N.; Lathia, J.D. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells, 2014, 32(7), 1746-1758. doi: 10.1002/stem.1716 PMID: 24737733
  16. Park, Y.M.; Febbraio, M.; Silverstein, R.L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest., 2009, 119(1), 136-145. PMID: 19065049
  17. Stuart, L.M.; Bell, S.A.; Stewart, C.R.; Silver, J.M.; Richard, J.; Goss, J.L.; Tseng, A.A.; Zhang, A.; Khoury, J.B.E.; Moore, K.J. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J. Biol. Chem., 2007, 282(37), 27392-27401. doi: 10.1074/jbc.M702887200 PMID: 17623670
  18. Pan, J.; Fan, Z.; Wang, Z.; Dai, Q.; Xiang, Z.; Yuan, F.; Yan, M.; Zhu, Z.; Liu, B.; Li, C. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3β/β-catenin pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 52. doi: 10.1186/s13046-019-1049-7 PMID: 30717785
  19. Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther., 2021, 221, 107753. doi: 10.1016/j.pharmthera.2020.107753 PMID: 33259885
  20. Li, J.; Byrne, K.T.; Yan, F.; Yamazoe, T.; Chen, Z.; Baslan, T.; Richman, L.P.; Lin, J.H.; Sun, Y.H.; Rech, A.J.; Balli, D.; Hay, C.A.; Sela, Y.; Merrell, A.J.; Liudahl, S.M.; Gordon, N.; Norgard, R.J.; Yuan, S.; Yu, S.; Chao, T.; Ye, S.; Eisinger-Mathason, T.S.K.; Faryabi, R.B.; Tobias, J.W.; Lowe, S.W.; Coussens, L.M.; Wherry, E.J.; Vonderheide, R.H.; Stanger, B.Z. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity, 2018, 49(1), 178-193.e7. doi: 10.1016/j.immuni.2018.06.006 PMID: 29958801
  21. Ma, W.; Zhang, K.; Bao, Z.; Jiang, T.; Zhang, Y. SAMD9 is relating with M2 macrophage and remarkable malignancy characters in low-grade glioma. Front. Immunol., 2021, 12, 659659. doi: 10.3389/fimmu.2021.659659 PMID: 33936093
  22. Cortese, N.; Carriero, R.; Laghi, L.; Mantovani, A.; Marchesi, F. Prognostic significance of tumor-associated macrophages: past, present and future. Semin. Immunol., 2020, 48, 101408. doi: 10.1016/j.smim.2020.101408 PMID: 32943279
  23. Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204. doi: 10.1186/s13046-020-01709-5 PMID: 32993787
  24. Gyamfi, J.; Kim, J.; Choi, J. Cancer as a metabolic disorder. Int. J. Mol. Sci., 2022, 23(3), 1155. doi: 10.3390/ijms23031155 PMID: 35163079
  25. Brooks, J.M.; Menezes, A.N.; Ibrahim, M.; Archer, L.; Lal, N.; Bagnall, C.J.; von Zeidler, S.V.; Valentine, H.R.; Spruce, R.J.; Batis, N.; Bryant, J.L.; Hartley, M.; Kaul, B.; Ryan, G.B.; Bao, R.; Khattri, A.; Lee, S.P.; Ogbureke, K.U.E.; Middleton, G.; Tennant, D.A.; Beggs, A.D.; Deeks, J.; West, C.M.L.; Cazier, J.B.; Willcox, B.E.; Seiwert, T.Y.; Mehanna, H. Development and validation of a combined hypoxia and immune prognostic classifier for head and neck cancer. Clin. Cancer Res., 2019, 25(17), 5315-5328. doi: 10.1158/1078-0432.CCR-18-3314 PMID: 31182433
  26. Woods, D.M.; Sodré, A.L.; Villagra, A.; Sarnaik, A.; Sotomayor, E.M.; Weber, J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res., 2015, 3(12), 1375-1385. doi: 10.1158/2326-6066.CIR-15-0077-T PMID: 26297712
  27. Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med., 2021, 218(1), e20201606. doi: 10.1084/jem.20201606 PMID: 33601415
  28. Kim, D.H.; Song, N.Y.; Yim, H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch. Pharm. Res., 2023, 46(11-12), 855-881. doi: 10.1007/s12272-023-01473-y PMID: 38060103
  29. Yu, W.; Lei, Q.; Yang, L.; Qin, G.; Liu, S.; Wang, D.; Ping, Y.; Zhang, Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol., 2021, 14(1), 187. doi: 10.1186/s13045-021-01200-4 PMID: 34742349
  30. Pitt, J.M.; Marabelle, A.; Eggermont, A.; Soria, J.C.; Kroemer, G.; Zitvogel, L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann. Oncol., 2016, 27(8), 1482-1492. doi: 10.1093/annonc/mdw168 PMID: 27069014
  31. Murai, H.; Kodama, T.; Maesaka, K.; Tange, S.; Motooka, D.; Suzuki, Y.; Shigematsu, Y.; Inamura, K.; Mise, Y.; Saiura, A.; Ono, Y.; Takahashi, Y.; Kawasaki, Y.; Iino, S.; Kobayashi, S.; Idogawa, M.; Tokino, T.; Hashidate-Yoshida, T.; Shindou, H.; Miyazaki, M.; Imai, Y.; Tanaka, S.; Mita, E.; Ohkawa, K.; Hikita, H.; Sakamori, R.; Tatsumi, T.; Eguchi, H.; Morii, E.; Takehara, T. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology, 2023, 77(1), 77-91. doi: 10.1002/hep.32573 PMID: 35567547
  32. Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; Signori, E.; Honoki, K.; Georgakilas, A.G.; Amin, A.; Helferich, W.G.; Boosani, C.S.; Guha, G.; Ciriolo, M.R.; Chen, S.; Mohammed, S.I.; Azmi, A.S.; Keith, W.N.; Bilsland, A.; Bhakta, D.; Halicka, D.; Fujii, H.; Aquilano, K.; Ashraf, S.S.; Nowsheen, S.; Yang, X.; Choi, B.K.; Kwon, B.S. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35(Suppl.), S185-S198. doi: 10.1016/j.semcancer.2015.03.004 PMID: 25818339
  33. de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 2023, 41(3), 374-403. doi: 10.1016/j.ccell.2023.02.016 PMID: 36917948
  34. Jiang, M.; Wu, N.; Xu, B.; Chu, Y.; Li, X.; Su, S.; Chen, D.; Li, W.; Shi, Y.; Gao, X.; Zhang, H.; Zhang, Z.; Du, W.; Nie, Y.; Liang, J.; Fan, D. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics, 2019, 9(18), 5359-5373. doi: 10.7150/thno.34024 PMID: 31410220
  35. Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45. doi: 10.1038/nature20791 PMID: 27974793
  36. Yang, P.; Su, C.; Luo, X.; Zeng, H.; Zhao, L.; Wei, L.; Zhang, X.; Varghese, Z.; Moorhead, J.F.; Chen, Y.; Ruan, X.Z. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett., 2018, 438, 76-85. doi: 10.1016/j.canlet.2018.09.006 PMID: 30213558
  37. Liu, L.Z.; Wang, B.; Zhang, R.; Wu, Z.; Huang, Y.; Zhang, X.; Zhou, J.; Yi, J.; Shen, J.; Li, M.Y.; Dong, M. The activated CD36-Src axis promotes lung adenocarcinoma cell proliferation and actin remodeling-involved metastasis in high-fat environment. Cell Death Dis., 2023, 14(8), 548. doi: 10.1038/s41419-023-06078-3 PMID: 37612265
  38. Ladanyi, A.; Mukherjee, A.; Kenny, H.A.; Johnson, A.; Mitra, A.K.; Sundaresan, S.; Nieman, K.M.; Pascual, G.; Benitah, S.A.; Montag, A.; Yamada, S.D.; Abumrad, N.A.; Lengyel, E. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 2018, 37(17), 2285-2301. doi: 10.1038/s41388-017-0093-z PMID: 29398710
  39. Brat, D.J.; Castellano-Sanchez, A.A.; Hunter, S.B.; Pecot, M.; Cohen, C.; Hammond, E.H.; Devi, S.N.; Kaur, B.; Van Meir, E.G. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res., 2004, 64(3), 920-927. doi: 10.1158/0008-5472.CAN-03-2073 PMID: 14871821
  40. Taïb, B.; Aboussalah, A.M.; Moniruzzaman, M.; Chen, S.; Haughey, N.J.; Kim, S.F.; Ahima, R.S. Lipid accumulation and oxidation in glioblastoma multiforme. Sci. Rep., 2019, 9(1), 19593. doi: 10.1038/s41598-019-55985-z PMID: 31863022
  41. Shakya, S.; Gromovsky, A.D.; Hale, J.S.; Knudsen, A.M.; Prager, B.; Wallace, L.C.; Penalva, L.O.F.; Brown, H.A.; Kristensen, B.W.; Rich, J.N.; Lathia, J.D.; Brown, J.M.; Hubert, C.G. Altered lipid metabolism marks glioblastoma stem and non-stem cells in separate tumor niches. Acta Neuropathol. Commun., 2021, 9(1), 101. doi: 10.1186/s40478-021-01205-7 PMID: 34059134
  42. Tanase, C.; Enciu, A.M.; Codrici, E.; Popescu, I.D.; Dudau, M.; Dobri, A.M.; Pop, S.; Mihai, S.; Gheorghișan-Gălățeanu, A.A.; Hinescu, M.E. Fatty acids, CD36, thrombospondin-1, and CD47 in glioblastoma: together and/or separately? Int. J. Mol. Sci., 2022, 23(2), 604. doi: 10.3390/ijms23020604 PMID: 35054787
  43. You, Z.; Hu, Z.; Hou, C.; Ma, C.; Xu, X.; Zheng, Y.; Sun, X.; Ke, Y.; Liang, J.; Xie, Z.; Shu, L.; Liu, Y. FABP4 facilitates epithelial-mesenchymal transition via elevating CD36 expression in glioma cells. Neoplasia, 2024, 57, 101050. doi: 10.1016/j.neo.2024.101050 PMID: 39243502
  44. Zaoui, M.; Morel, M.; Ferrand, N.; Fellahi, S.; Bastard, J.P.; Lamazière, A.; Larsen, A.K.; Béréziat, V.; Atlan, M.; Sabbah, M. Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel), 2019, 11(12), 2012. doi: 10.3390/cancers11122012 PMID: 31847105
  45. Casciano, J.C.; Perry, C.; Cohen-Nowak, A.J.; Miller, K.D.; Vande Voorde, J.; Zhang, Q.; Chalmers, S.; Sandison, M.E.; Liu, Q.; Hedley, A.; McBryan, T.; Tang, H.Y.; Gorman, N.; Beer, T.; Speicher, D.W.; Adams, P.D.; Liu, X.; Schlegel, R.; McCarron, J.G.; Wakelam, M.J.O.; Gottlieb, E.; Kossenkov, A.V.; Schug, Z.T. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. Br. J. Cancer, 2020, 122(6), 868-884. doi: 10.1038/s41416-019-0711-3 PMID: 31942031
  46. Wang, C.; Han, J.; Chen, Y. Inhibition of CD36 and Nogo-B expression inhibited the proliferation and migration of triple negative breast cancer cells. Chin. J. Biotechnol., 2023, 39(10), 4168-4188. PMID: 37877398
  47. Rybinska, I.; Mangano, N.; Romero-Cordoba, S.L.; Regondi, V.; Ciravolo, V.; De Cecco, L.; Maffioli, E.; Paolini, B.; Bianchi, F.; Sfondrini, L.; Tedeschi, G.; Agresti, R.; Tagliabue, E.; Triulzi, T. SAA1 ‐dependent reprogramming of adipocytes by tumor cells is associated with triple negative breast cancer aggressiveness. Int. J. Cancer, 2024, 154(10), 1842-1856. doi: 10.1002/ijc.34859 PMID: 38289016
  48. Ye, H.; Adane, B.; Khan, N.; Sullivan, T.; Minhajuddin, M.; Gasparetto, M.; Stevens, B.; Pei, S.; Balys, M.; Ashton, J.M.; Klemm, D.J.; Woolthuis, C.M.; Stranahan, A.W.; Park, C.Y.; Jordan, C.T. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell, 2016, 19(1), 23-37. doi: 10.1016/j.stem.2016.06.001 PMID: 27374788
  49. Farge, T.; Saland, E.; de Toni, F.; Aroua, N.; Hosseini, M.; Perry, R.; Bosc, C.; Sugita, M.; Stuani, L.; Fraisse, M.; Scotland, S.; Larrue, C.; Boutzen, H.; Féliu, V.; Nicolau-Travers, M.L.; Cassant-Sourdy, S.; Broin, N.; David, M.; Serhan, N.; Sarry, A.; Tavitian, S.; Kaoma, T.; Vallar, L.; Iacovoni, J.; Linares, L.K.; Montersino, C.; Castellano, R.; Griessinger, E.; Collette, Y.; Duchamp, O.; Barreira, Y.; Hirsch, P.; Palama, T.; Gales, L.; Delhommeau, F.; Garmy-Susini, B.H.; Portais, J.C.; Vergez, F.; Selak, M.; Danet-Desnoyers, G.; Carroll, M.; Récher, C.; Sarry, J.E. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov., 2017, 7(7), 716-735. doi: 10.1158/2159-8290.CD-16-0441 PMID: 28416471
  50. Zhang, Y.; Guo, H.; Zhang, Z.; Lu, W.; Zhu, J.; Shi, J. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Exp. Cell Res., 2022, 415(1), 113112. doi: 10.1016/j.yexcr.2022.113112 PMID: 35346671
  51. Feng, W.W.; Wilkins, O.; Bang, S.; Ung, M.; Li, J.; An, J.; del Genio, C.; Canfield, K.; DiRenzo, J.; Wells, W.; Gaur, A.; Robey, R.B.; Guo, J.Y.; Powles, R.L.; Sotiriou, C.; Pusztai, L.; Febbraio, M.; Cheng, C.; Kinlaw, W.B.; Kurokawa, M. CD36-mediated metabolic rewiring of breast cancer cells promotes resistance to HER2-targeted therapies. Cell Rep., 2019, 29(11), 3405-3420.e5. doi: 10.1016/j.celrep.2019.11.008 PMID: 31825825
  52. Yang, L.; Sun, J.; Li, M.; Long, Y.; Zhang, D.; Guo, H.; Huang, R.; Yan, J. Oxidized low-density lipoprotein links hypercholesterolemia and bladder cancer aggressiveness by promoting cancer stemness. Cancer Res., 2021, 81(22), 5720-5732. doi: 10.1158/0008-5472.CAN-21-0646 PMID: 34479964
  53. Gyamfi, J.; Yeo, J.H.; Kwon, D.; Min, B.S.; Cha, Y.J.; Koo, J.S.; Jeong, J.; Lee, J.; Choi, J. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer, 2021, 7(1), 129. doi: 10.1038/s41523-021-00324-7 PMID: 34561446
  54. Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer, 2012, 12(4), 298-306. doi: 10.1038/nrc3245 PMID: 22419253
  55. Farhood, B.; Najafi, M.; Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol., 2019, 234(6), 8509-8521. doi: 10.1002/jcp.27782 PMID: 30520029
  56. Chow, A.; Perica, K.; Klebanoff, C.A.; Wolchok, J.D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol., 2022, 19(12), 775-790. doi: 10.1038/s41571-022-00689-z PMID: 36216928
  57. Manzo, T.; Prentice, B.M.; Anderson, K.G.; Raman, A.; Schalck, A.; Codreanu, G.S.; Nava Lauson, C.B.; Tiberti, S.; Raimondi, A.; Jones, M.A.; Reyzer, M.; Bates, B.M.; Spraggins, J.M.; Patterson, N.H.; McLean, J.A.; Rai, K.; Tacchetti, C.; Tucci, S.; Wargo, J.A.; Rodighiero, S.; Clise-Dwyer, K.; Sherrod, S.D.; Kim, M.; Navin, N.E.; Caprioli, R.M.; Greenberg, P.D.; Draetta, G.; Nezi, L. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med., 2020, 217(8), e20191920. doi: 10.1084/jem.20191920 PMID: 32491160
  58. Ao, Y.Q.; Gao, J.; Zhang, L.X.; Deng, J.; Wang, S.; Lin, M.; Wang, H.K.; Ding, J.Y.; Jiang, J.H. Tumor-infiltrating CD36+CD8+T cells determine exhausted tumor microenvironment and correlate with inferior response to chemotherapy in non-small cell lung cancer. BMC Cancer, 2023, 23(1), 367. doi: 10.1186/s12885-023-10836-z PMID: 37085798
  59. Xu, S.; Chaudhary, O.; Rodríguez-Morales, P.; Sun, X.; Chen, D.; Zappasodi, R.; Xu, Z.; Pinto, A.F.M.; Williams, A.; Schulze, I.; Farsakoglu, Y.; Varanasi, S.K.; Low, J.S.; Tang, W.; Wang, H.; McDonald, B.; Tripple, V.; Downes, M.; Evans, R.M.; Abumrad, N.A.; Merghoub, T.; Wolchok, J.D.; Shokhirev, M.N.; Ho, P.C.; Witztum, J.L.; Emu, B.; Cui, G.; Kaech, S.M. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity, 2021, 54(7), 1561-1577.e7. doi: 10.1016/j.immuni.2021.05.003 PMID: 34102100
  60. Ma, X.; Xiao, L.; Liu, L.; Ye, L.; Su, P.; Bi, E.; Wang, Q.; Yang, M.; Qian, J.; Yi, Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab., 2021, 33(5), 1001-1012.e5. doi: 10.1016/j.cmet.2021.02.015 PMID: 33691090
  61. CD36 activity causes ferroptosis in tumor-infiltrating CD8+ T cells. Cancer Discov., 2021, 11(5), OF24. doi: 10.1158/2159-8290.CD-RW2021-039 PMID: 33741707
  62. Kolonin, M.G. Bad cholesterol uptake by CD36 in T-cells cripples anti-tumor immune response. Immunometabolism (Cobham), 2021, 3(4), e210028. doi: 10.20900/immunometab20210028 PMID: 34603769
  63. Orange, J.S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol., 2008, 8(9), 713-725. doi: 10.1038/nri2381 PMID: 19172692
  64. Schimmer, S.; Mittermüller, D.; Werner, T.; Görs, P.E.; Meckelmann, S.W.; Finlay, D.K.; Dittmer, U.; Littwitz-Salomon, E. Fatty acids are crucial to fuel NK cells upon acute retrovirus infection. Front. Immunol., 2023, 14, 1296355. doi: 10.3389/fimmu.2023.1296355 PMID: 38094304
  65. Hu, X.; Jia, X.; Xu, C.; Wei, Y.; Wang, Z.; Liu, G.; You, Q.; Lu, G.; Gong, W. Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metabolism, 2021, 120, 154800. doi: 10.1016/j.metabol.2021.154800 PMID: 34051224
  66. Gowda, N.M.; Wu, X.; Kumar, S.; Febbraio, M.; Gowda, D.C. CD36 contributes to malaria parasite-induced pro-inflammatory cytokine production and NK and T cell activation by dendritic cells. PLoS One, 2013, 8(10), e77604. doi: 10.1371/journal.pone.0077604 PMID: 24204889
  67. Niavarani, S.R.; Lawson, C.; Bakos, O.; Boudaud, M.; Batenchuk, C.; Rouleau, S.; Tai, L.H. Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer, 2019, 19(1), 823. doi: 10.1186/s12885-019-6045-y PMID: 31429730
  68. Savage, P.A.; Klawon, D.E.J.; Miller, C.H. Regulatory T cell development. Annu. Rev. Immunol., 2020, 38(1), 421-453. doi: 10.1146/annurev-immunol-100219-020937 PMID: 31990619
  69. Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723. doi: 10.1016/j.cell.2017.01.017 PMID: 28187290
  70. Rech, A.J.; Mick, R.; Martin, S.; Recio, A.; Aqui, N.A.; Powell, D.J., Jr; Colligon, T.A.; Trosko, J.A.; Leinbach, L.I.; Pletcher, C.H.; Tweed, C.K.; DeMichele, A.; Fox, K.R.; Domchek, S.M.; Riley, J.L.; Vonderheide, R.H. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci. Transl. Med., 2012, 4(134), 134ra62. doi: 10.1126/scitranslmed.3003330 PMID: 22593175
  71. Sutmuller, R.P.M.; van Duivenvoorde, L.M.; van Elsas, A.; Schumacher, T.N.M.; Wildenberg, M.E.; Allison, J.P.; Toes, R.E.M.; Offringa, R.; Melief, C.J.M. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med., 2001, 194(6), 823-832. doi: 10.1084/jem.194.6.823 PMID: 11560997
  72. Wang, H.; Franco, F.; Tsui, Y.C.; Xie, X.; Trefny, M.P.; Zappasodi, R.; Mohmood, S.R.; Fernández-García, J.; Tsai, C.H.; Schulze, I.; Picard, F.; Meylan, E.; Silverstein, R.; Goldberg, I.; Fendt, S.M.; Wolchok, J.D.; Merghoub, T.; Jandus, C.; Zippelius, A.; Ho, P.C. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol., 2020, 21(3), 298-308. doi: 10.1038/s41590-019-0589-5 PMID: 32066953
  73. Miao, Y.; Zhang, C.; Yang, L.; Zeng, X.; Hu, Y.; Xue, X.; Dai, Y.; Wei, Z. The activation of PPARγ enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TβRII/IL-2Rα. Cell Commun. Signal., 2022, 20(1), 48. doi: 10.1186/s12964-022-00849-9 PMID: 35392915
  74. Geys, L.; Vranckx, C.; Lijnen, H.R.; Scroyen, I. CD36 deficiency blunts effects of diet on regulatory T cells in murine gonadal adipose tissue and mesenteric lymph nodes. Cell. Immunol., 2015, 298(1-2), 33-36. doi: 10.1016/j.cellimm.2015.08.006 PMID: 26344897
  75. Salmaninejad, A.; Valilou, S.F.; Soltani, A.; Ahmadi, S.; Abarghan, Y.J.; Rosengren, R.J.; Sahebkar, A. Tumor-associated macrophages: role in cancer development and therapeutic implications. Cell Oncol. (Dordr.), 2019, 42(5), 591-608. doi: 10.1007/s13402-019-00453-z PMID: 31144271
  76. Gao, J.; Liang, Y.; Wang, L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front. Immunol., 2022, 13, 888713. doi: 10.3389/fimmu.2022.888713 PMID: 35844605
  77. Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol., 2020, 11, 583084. doi: 10.3389/fimmu.2020.583084 PMID: 33365025
  78. Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969. doi: 10.1038/nri2448 PMID: 19029990
  79. Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res., 2020, 80, 101055. doi: 10.1016/j.plipres.2020.101055 PMID: 32791170
  80. Huang, S.C.C.; Everts, B.; Ivanova, Y.; O’Sullivan, D.; Nascimento, M.; Smith, A.M.; Beatty, W.; Love-Gregory, L.; Lam, W.Y.; O’Neill, C.M.; Yan, C.; Du, H.; Abumrad, N.A.; Urban, J.F., Jr; Artyomov, M.N.; Pearce, E.L.; Pearce, E.J. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol., 2014, 15(9), 846-855. doi: 10.1038/ni.2956 PMID: 25086775
  81. Chen, Y.; Yang, M.; Huang, W.; Chen, W.; Zhao, Y.; Schulte, M.L.; Volberding, P.; Gerbec, Z.; Zimmermann, M.T.; Zeighami, A.; Demos, W.; Zhang, J.; Knaack, D.A.; Smith, B.C.; Cui, W.; Malarkannan, S.; Sodhi, K.; Shapiro, J.I.; Xie, Z.; Sahoo, D.; Silverstein, R.L. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ. Res., 2019, 125(12), 1087-1102. doi: 10.1161/CIRCRESAHA.119.315833 PMID: 31625810
  82. Su, P.; Wang, Q.; Bi, E.; Ma, X.; Liu, L.; Yang, M.; Qian, J.; Yi, Q. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res., 2020, 80(7), 1438-1450. doi: 10.1158/0008-5472.CAN-19-2994 PMID: 32015091
  83. Albakri, M.M.; Huang, S.C.C.; Tashkandi, H.N.; Sieg, S.F. Fatty acids secreted from head and neck cancer induce M2-like Macrophages. J. Leukoc. Biol., 2022, 112(4), 617-628. doi: 10.1002/JLB.1A0521-251R PMID: 35213745
  84. Yang, P.; Qin, H.; Li, Y.; Xiao, A.; Zheng, E.; Zeng, H.; Su, C.; Luo, X.; Lu, Q.; Liao, M.; Zhao, L.; Wei, L.; Varghese, Z.; Moorhead, J.F.; Chen, Y.; Ruan, X.Z. CD36-mediated metabolic crosstalk between tumor cells and macrophages affects liver metastasis. Nat. Commun., 2022, 13(1), 5782. doi: 10.1038/s41467-022-33349-y PMID: 36184646
  85. Aguirre, L.A.; Montalbán-Hernández, K.; Avendaño-Ortiz, J.; Marín, E.; Lozano, R.; Toledano, V.; Sánchez-Maroto, L.; Terrón, V.; Valentín, J.; Pulido, E.; Casalvilla, J.C.; Rubio, C.; Diekhorst, L.; Laso-García, F.; del Fresno, C.; Collazo-Lorduy, A.; Jiménez-Munarriz, B.; Gómez-Campelo, P.; Llanos-González, E.; Fernández-Velasco, M.; Rodríguez-Antolín, C.; Pérez de Diego, R.; Cantero-Cid, R.; Hernádez-Jimenez, E.; Álvarez, E.; Rosas, R.; dies López-Ayllón, B.; de Castro, J.; Wculek, S.K.; Cubillos-Zapata, C.; Ibáñez de Cáceres, I.; Díaz-Agero, P.; Gutiérrez Fernández, M.; Paz de Miguel, M.; Sancho, D.; Schulte, L.; Perona, R.; Belda-Iniesta, C.; Boscá, L.; López-Collazo, E. Tumor stem cells fuse with monocytes to form highly invasive tumor-hybrid cells. OncoImmunology, 2020, 9(1), 1773204. doi: 10.1080/2162402X.2020.1773204 PMID: 32923132
  86. Dorhoi, A.; Du Plessis, N. Monocytic myeloid-derived suppressor cells in chronic infections. Front. Immunol., 2018, 8, 1895. doi: 10.3389/fimmu.2017.01895 PMID: 29354120
  87. Christofides, A.; Strauss, L.; Yeo, A.; Cao, C.; Charest, A.; Boussiotis, V.A. The complex role of tumor-infiltrating macrophages. Nat. Immunol., 2022, 23(8), 1148-1156. doi: 10.1038/s41590-022-01267-2 PMID: 35879449
  88. Parker, K.H.; Beury, D.W.; Ostrand-Rosenberg, S. Myeloid-derived suppressor cells. Adv. Cancer Res., 2015, 128, 95-139. doi: 10.1016/bs.acr.2015.04.002 PMID: 26216631
  89. Sica, A.; Massarotti, M. Myeloid suppressor cells in cancer and autoimmunity. J. Autoimmun., 2017, 85, 117-125. doi: 10.1016/j.jaut.2017.07.010 PMID: 28728794
  90. Adeshakin, A.O.; Liu, W.; Adeshakin, F.O.; Afolabi, L.O.; Zhang, M.; Zhang, G.; Wang, L.; Li, Z.; Lin, L.; Cao, Q.; Yan, D.; Wan, X. Regulation of ROS in myeloid-derived suppressor cells through targeting fatty acid transport protein 2 enhanced anti-PD-L1 tumor immunotherapy. Cell. Immunol., 2021, 362, 104286. doi: 10.1016/j.cellimm.2021.104286 PMID: 33524739
  91. Al-Khami, A.A.; Zheng, L.; Del Valle, L.; Hossain, F.; Wyczechowska, D.; Zabaleta, J.; Sanchez, M.D.; Dean, M.J.; Rodriguez, P.C.; Ochoa, A.C. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. OncoImmunology, 2017, 6(10), e1344804. doi: 10.1080/2162402X.2017.1344804 PMID: 29123954
  92. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer, 2016, 16(9), 582-598. doi: 10.1038/nrc.2016.73 PMID: 27550820
  93. Öhlund, D.; Elyada, E.; Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med., 2014, 211(8), 1503-1523. doi: 10.1084/jem.20140692 PMID: 25071162
  94. Ma, C.; Yang, C.; Peng, A.; Sun, T.; Ji, X.; Mi, J.; Wei, L.; Shen, S.; Feng, Q. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol. Cancer, 2023, 22(1), 170. doi: 10.1186/s12943-023-01876-x PMID: 37833788
  95. Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer, 2021, 20(1), 131. doi: 10.1186/s12943-021-01428-1 PMID: 34635121
  96. Nath, A.; Chan, C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci. Rep., 2016, 6(1), 18669. doi: 10.1038/srep18669 PMID: 26725848
  97. Xiao, Z.; Todd, L.; Huang, L.; Noguera-Ortega, E.; Lu, Z.; Huang, L.; Kopp, M.; Li, Y.; Pattada, N.; Zhong, W.; Guo, W.; Scholler, J.; Liousia, M.; Assenmacher, C.A.; June, C.H.; Albelda, S.M.; Puré, E. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat. Commun., 2023, 14(1), 5110. doi: 10.1038/s41467-023-40850-5 PMID: 37607999
  98. Zhu, G.Q.; Tang, Z.; Huang, R.; Qu, W.F.; Fang, Y.; Yang, R.; Tao, C.Y.; Gao, J.; Wu, X.L.; Sun, H.X.; Zhou, Y.F.; Song, S.S.; Ding, Z.B.; Dai, Z.; Zhou, J.; Ye, D.; Wu, D.J.; Liu, W.R.; Fan, J.; Shi, Y.H. CD36+ cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov., 2023, 9(1), 25. doi: 10.1038/s41421-023-00529-z PMID: 36878933
  99. Gong, J.; Lin, Y.; Zhang, H.; Liu, C.; Cheng, Z.; Yang, X.; Zhang, J.; Xiao, Y.; Sang, N.; Qian, X.; Wang, L.; Cen, X.; Du, X.; Zhao, Y. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis., 2020, 11(4), 267. doi: 10.1038/s41419-020-2434-z PMID: 32327627
  100. Nan, P.; Dong, X.; Bai, X.; Lu, H.; Liu, F.; Sun, Y.; Zhao, X. Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway. Cancer Lett., 2022, 528, 59-75. doi: 10.1016/j.canlet.2021.12.025 PMID: 34958892
  101. Zhang, L.; Billet, S.; Gonzales, G.; Rohena-Rivera, K.; Muranaka, H.; Chu, G.; Yang, Q.; Kim, H.; Bhowmick, N.; Smith, B. Fatty acid signaling impacts prostate cancer lineage plasticity in an autocrine and paracrine manner. Cancers (Basel), 2022, 14(14), 3449. doi: 10.3390/cancers14143449 PMID: 35884514
  102. Jayawardhana, A.M.D.S.; Stilgenbauer, M.; Datta, P.; Qiu, Z.; Mckenzie, S.; Wang, H.; Bowers, D.; Kurokawa, M.; Zheng, Y.R. Fatty acid-like Pt(IV) prodrugs overcome cisplatin resistance in ovarian cancer by harnessing CD36. Chem. Commun. (Camb.), 2020, 56(73), 10706-10709. doi: 10.1039/D0CC02174A PMID: 32789350
  103. Wang, B.; Yan, N.; Wu, D.; Dou, Y.; Liu, Z.; Hu, X.; Chen, C. Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. Nanotechnology, 2021, 32(39), 395101. doi: 10.1088/1361-6528/ac0d1e PMID: 34153956
  104. Sp, N.; Kang, D.; Kim, D.; Park, J.; Lee, H.; Kim, H.; Darvin, P.; Park, Y.M.; Yang, Y. Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Κb signaling axis. Nutrients, 2018, 10(6), 772. doi: 10.3390/nu10060772 PMID: 29914089
  105. Chen, L.; Xia, J.S.; Wu, J.H.; Chen, Y.G.; Qiu, C.J. Quercetin suppresses cell survival and invasion in oral squamous cell carcinoma via the miR-1254/CD36 cascade in vitro. Hum. Exp. Toxicol., 2021, 40(9), 1413-1421. doi: 10.1177/0960327121991912 PMID: 33686878
  106. Pang, B.; Xu, X.; Lu, Y.; Jin, H.; Yang, R.; Jiang, C.; Shao, D.; Liu, Y.; Shi, J. Prediction of new targets and mechanisms for quercetin in the treatment of pancreatic cancer, colon cancer, and rectal cancer. Food Funct., 2019, 10(9), 5339-5349. doi: 10.1039/C9FO01168D PMID: 31393490
  107. Chen, X.; Wang, L.; Wu, Y.; Song, S.; Min, H.; Yang, Y.; He, X.; Liang, Q.; Yi, L.; Wang, Y.; Gao, Q. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr. Diabetes, 2018, 8(1), 1. doi: 10.1038/s41387-017-0009-6 PMID: 29330446
  108. Mahalingam, D.; Harb, W.; Patnaik, A.; Bullock, A.; Watnick, R.S.; Vincent, M.Y.; Chen, J.J.; Wang, S.; Pestana, H.; Chao, J.; Mahoney, J.; Cieslewicz, M.; Watnick, J. First-in-human phase I dose escalation trial of the first-in-class tumor microenvironment modulator VT1021 in advanced solid tumors. Commun. Med., 2024, 4(1), 10. doi: 10.1038/s43856-024-00433-x PMID: 38218979
  109. Chen, J.J.; Vincent, M.Y.; Shepard, D.; Peereboom, D.; Mahalingam, D.; Battiste, J.; Patel, M.R.; Juric, D.; Wen, P.Y.; Bullock, A.; Selfridge, J.E.; Pant, S.; Liu, J.; Li, W.; Fyfe, S.; Wang, S.; Zota, V.; Mahoney, J.; Watnick, R.S.; Cieslewicz, M.; Watnick, J. Phase 1 dose expansion and biomarker study assessing first-in-class tumor microenvironment modulator VT1021 in patients with advanced solid tumors. Commun. Med., 2024, 4(1), 95. doi: 10.1038/s43856-024-00520-z PMID: 38773224
  110. Febbraio, M.; Abumrad, N.A.; Hajjar, D.P.; Sharma, K.; Cheng, W.; Pearce, S.F.A.; Silverstein, R.L. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem., 1999, 274(27), 19055-19062. doi: 10.1074/jbc.274.27.19055 PMID: 10383407
  111. Kajihara, S.; Hisatomi, A.; Ogawa, Y.; Yasutake, T.; Yoshimura, T.; Hara, T.; Mizuta, T.; Ozaki, I.; Iwamoto, N.; Yamamoto, K. Association of the Pro90Ser CD36 mutation with elevated free fatty acid concentrations but not with insulin resistance syndrome in Japanese. Clin. Chim. Acta, 2001, 314(1-2), 125-130. doi: 10.1016/S0009-8981(01)00658-1 PMID: 11718687
  112. Miyaoka, K.; Kuwasako, T.; Hirano, K.; Nozaki, S.; Yamashita, S.; Matsuzawa, Y. CD36 deficiency associated with insulin resistance. Lancet, 2001, 357(9257), 686-687. doi: 10.1016/S0140-6736(00)04138-6 PMID: 11247555
  113. Kuwasako, T.; Hirano, K.; Sakai, N.; Ishigami, M.; Hiraoka, H.; Yakub, M.J.; Yamauchi-Takihara, K.; Yamashita, S.; Matsuzawa, Y. Lipoprotein abnormalities in human genetic CD36 deficiency associated with insulin resistance and abnormal fatty acid metabolism. Diabetes Care, 2003, 26(5), 1647-1648. doi: 10.2337/diacare.26.5.1647-a PMID: 12716848
  114. Hirano, K.; Kuwasako, T.; Nakagawa-Toyama, Y.; Janabi, M.; Yamashita, S.; Matsuzawa, Y. Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc. Med., 2003, 13(4), 136-141. doi: 10.1016/S1050-1738(03)00026-4 PMID: 12732446
  115. Yamashita, S.; Hirano, K.I.; Kuwasako, T.; Janabi, M.; Toyama, Y.; Ishigami, M.; Sakai, N. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; Insights from CD36-deficient patients. Mol. Cell. Biochem., 2007, 299(1-2), 19-22. doi: 10.1007/s11010-005-9031-4 PMID: 16670819
  116. Domínguez, D.J.; Enríquez, S.; Alba, G.; Garnacho, C.; Cortegana, C.; Campos, R.; Merino, L.; Hajji, N.; Sánchez-Margalet, V.; Prieto, L. Cancer nano-immunotherapy: The novel and promising weapon to fight cancer. Int. J. Mol. Sci., 2024, 25(2), 1195. doi: 10.3390/ijms25021195 PMID: 38256268
  117. Guo, S.; Feng, J.; Li, Z.; Yang, S.; Qiu, X.; Xu, Y.; Shen, Z. Improved cancer immunotherapy strategies by nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(3), e1873. doi: 10.1002/wnan.1873 PMID: 36576112
  118. Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res., 2019, 52(6), 1543-1554. doi: 10.1021/acs.accounts.9b00148 PMID: 31120725
  119. Bai, Y.; Nan, Y.; Wu, T.; Zhu, A.; Xie, X.; Sun, Y.; Deng, Y.; Dou, Z.; Hu, X.; Zhou, R.; Xu, S.; Zhang, Y.; Fan, J.; Ju, D. Lipid nanoparticle‐mediated delivery of CRISPR‐Cas9 against rubicon ameliorates nafld by modulating CD36 along with glycerophospholipid metabolism. Adv. Sci., 2024, 11(31), 2400493. doi: 10.1002/advs.202400493 PMID: 38894572
  120. Zhao, N.; Francis, N.L.; Song, S.; Kholodovych, V.; Calvelli, H.R.; Hoop, C.L.; Pang, Z.P.; Baum, J.; Uhrich, K.E.; Moghe, P.V. CD36‐binding amphiphilic nanoparticles for attenuation of α‐synuclein‐induced microglial activation. Adv. NanoBiomed Res., 2022, 2(6), 2100120. doi: 10.1002/anbr.202100120 PMID: 36051821
  121. Zhang, J.; Nie, S.; Zu, Y.; Abbasi, M.; Cao, J.; Li, C.; Wu, D.; Labib, S.; Brackee, G.; Shen, C.L.; Wang, S. Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. J. Control. Release, 2019, 303, 263-273. doi: 10.1016/j.jconrel.2019.04.018 PMID: 30999008
  122. Cui, K.; Gao, X.; Wang, B.; Wu, H.; Arulsamy, K.; Dong, Y.; Xiao, Y.; Jiang, X.; Malovichko, M.V.; Li, K.; Peng, Q.; Lu, Y.W.; Zhu, B.; Zheng, R.; Wong, S.; Cowan, D.B.; Linton, M.; Srivastava, S.; Shi, J.; Chen, K.; Chen, H. Epsin nanotherapy regulates cholesterol transport to fortify atheroma regression. Circ. Res., 2023, 132(1), e22-e42. doi: 10.1161/CIRCRESAHA.122.321723 PMID: 36444722
  123. Gao, C.; Huang, Q.; Liu, C.; Kwong, C.H.T.; Yue, L.; Wan, J.B.; Lee, S.M.Y.; Wang, R. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun., 2020, 11(1), 2622. doi: 10.1038/s41467-020-16439-7 PMID: 32457361
  124. Wilson, C.G.; Tran, J.L.; Erion, D.M.; Vera, N.B.; Febbraio, M.; Weiss, E.J. Hepatocyte-specific disruption of cd36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology, 2016, 157(2), 570-585. doi: 10.1210/en.2015-1866 PMID: 26650570
  125. Marleau, S.; Harb, D.; Bujold, K.; Avallone, R.; Iken, K.; Wang, Y.; Demers, A.; Sirois, M.G.; Febbraio, M.; Silverstein, R.L.; Tremblay, A.; Ong, H. EP 80317, a ligand of the CD36 scavenger receptor, protects apolipoprotein E‐deficient mice from developing atherosclerotic lesions. FASEB J., 2005, 19(13), 1869-1871. doi: 10.1096/fj.04-3253fje PMID: 16123174
  126. Bujold, K.; Mellal, K.; Zoccal, K.F.; Rhainds, D.; Brissette, L.; Febbraio, M.; Marleau, S.; Ong, H. EP 80317, a CD36 selective ligand, promotes reverse cholesterol transport in apolipoprotein E-deficient mice. Atherosclerosis, 2013, 229(2), 408-414. doi: 10.1016/j.atherosclerosis.2013.05.031 PMID: 23880196
  127. Geloen, A.; Helin, L.; Geeraert, B.; Malaud, E.; Holvoet, P.; Marguerie, G. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis. PLoS One, 2012, 7(5), e37633. doi: 10.1371/journal.pone.0037633 PMID: 22662181

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2025