Exploration of Antileishmanial Compounds Derived from Natural Sources
- Authors: Ghouse Peer G.1, Priyadarshini A.2, Gupta A.1, Vibhuti A.1, Raj V.1, Chang C.3, Pandey R.1
-
Affiliations:
- Centre for Drug Design Discovery and Development (C4D), SRM University
- Centre for Drug Design Discovery and Development (C4D), SRM University,
- Master & Ph.D. program in Biotechnology Industry, Chang Gung University
- Issue: Vol 23, No 1 (2024)
- Pages: 1-13
- Section: Medicine
- URL: https://kld-journal.fedlab.ru/1871-5230/article/view/644621
- DOI: https://doi.org/10.2174/0118715230270724231214112636
- ID: 644621
Cite item
Full Text
Abstract
Aims::Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabo-lites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs.
Materials and Methods:To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmania-sis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis.
Results:This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against pro-mastigote, axenic, and intracellular amastigote forms.
Conclusion:Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.
About the authors
Gajala Ghouse Peer
Centre for Drug Design Discovery and Development (C4D), SRM University
Email: info@benthamscience.net
Anjali Priyadarshini
Centre for Drug Design Discovery and Development (C4D), SRM University,
Email: info@benthamscience.net
Archana Gupta
Centre for Drug Design Discovery and Development (C4D), SRM University
Email: info@benthamscience.net
Arpana Vibhuti
Centre for Drug Design Discovery and Development (C4D), SRM University
Email: info@benthamscience.net
Vethakkani Raj
Centre for Drug Design Discovery and Development (C4D), SRM University
Email: info@benthamscience.net
Chung-Ming Chang
Master & Ph.D. program in Biotechnology Industry, Chang Gung University
Author for correspondence.
Email: info@benthamscience.net
Ramendra Pandey
Centre for Drug Design Discovery and Development (C4D), SRM University
Author for correspondence.
Email: info@benthamscience.net
References
- Ogden, G.B.; Melby, P.C. Leishmania. Encycl. Microbiol., 2009, (Jan), 663-673. doi: 10.1016/B978-012373944-5.00195-4
- Gossage, S.M.; Rogers, M.E.; Bates, P.A. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int. J. Parasitol., 2003, 33(10), 1027-1034. doi: 10.1016/S0020-7519(03)00142-5 PMID: 13129524
- Leishmaniasis. Available from: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis (Accessed Jun. 17, 2022).
- Khan, M.; Bhaskar, K.; Kikuchi, M. Comparison of PCR-based diagnoses for visceral leishmaniasis in Bangladesh. Parasitol. Int., 2014, 63(2), 327-331.
- Hosseininejad, M.; Mohebali, M.; Hosseini, F.; Karimi, S. Seroprevalence of canine visceral leishmaniasis in asymptomatic dogs in Iran. Iran. J. Vet. Res., 2012, 13(1), 54-57.
- WHO. Control of the leishmaniases: Report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases., 2010. Available from: https://apps.who.int/iris/handle/10665/44412?locale-attribute =ar&utm_source=transaction&utm_medium=email (Accessed: Jul. 01, 2022).
- Handman, E. Cell biology of Leishmania. Adv. Parasitol., 1999, 44, 1-39. doi: 10.1016/S0065-308X(08)60229-8 PMID: 10563394
- Oryan, A.; Mehrabani, D.; Owji, S.M.; Motazedian, M.H.; Hatam, G.H.; Asgari, Q. Morphologic changes due to cutaneous leishmaniosis in BALB/c mice experimentally infected with leishmania major. J. Appl. Anim. Res., 2011, 34(1), 87-92. doi: 10.1080/09712119.2008.9706946
- ODempsey, T. Topical treatment modalities for old world cutaneous leishmaniasis: A review. Prague Med. Rep., 2012, 113(2), 105-118.
- Oryan, A.; Shirian, S.; Tabandeh, M.R.; Hatam, G.R.; Kalantari, M.; Daneshbod, Y. Molecular, cytological, and immunocytochemical study and kDNA sequencing of laryngeal Leishmania infantum infection. Parasitol. Res., 2013, 112(4), 1799-1804. doi: 10.1007/s00436-012-3240-z PMID: 23263387
- Al-Hajj, M.M.; Al-Shamahy, H.A.; Moharram, B. In vitro anti-leishmanial activity against cutaneous leishmania parasites and preliminary phytochemical analysis of four yemeni medicinal plants. Artic. Univers. J. Pharm. Res., 2018, 3(4) doi: 10.22270/ujpr.v3i4.183
- Gutiérrez-Rebolledo, G.A.; Drier-Jonas, S.; Jiménez-Arellanes, M.A. Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. Asian Pac. J. Trop. Med., 2017, 10(12), 1105-1110. doi: 10.1016/j.apjtm.2017.10.016 PMID: 29268964
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392(10151), 951-970. doi: 10.1016/S0140-6736(18)31204-2 PMID: 30126638
- Kimutai, R.; Musa, A.M.; Njoroge, S.; Omollo, R.; Alves, F.; Hailu, A.; Khalil, E.A.G.; Diro, E.; Soipei, P.; Musa, B.; Salman, K.; Ritmeijer, K.; Chappuis, F.; Rashid, J.; Mohammed, R.; Jameneh, A.; Makonnen, E.; Olobo, J.; Okello, L.; Sagaki, P.; Strub, N.; Ellis, S.; Alvar, J.; Balasegaram, M.; Alirol, E.; Wasunna, M. Safety and effectiveness of sodium stibogluconate and paromomycin combination for the treatment of visceral leishmaniasis in eastern Africa: Results from a pharmacovigilance programme. Clin. Drug Investig., 2017, 37(3), 259-272. doi: 10.1007/s40261-016-0481-0 PMID: 28066878
- Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.K.; Murray, H.W. Failure of pentavalent antimony in visceral leishmaniasis in India: Report from the center of the Indian epidemic. Clin. Infect. Dis., 2000, 31(4), 1104-1107. doi: 10.1086/318121 PMID: 11049798
- Dorlo, T.P.C.; Huitema, A.D.R.; Beijnen, J.H.; de Vries, P.J. Optimal dosing of miltefosine in children and adults with visceral leishmaniasis. Antimicrob. Agents Chemother., 2012, 56(7), 3864-3872. doi: 10.1128/AAC.00292-12 PMID: 22585212
- Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807. doi: 10.1016/j.ejmech.2011.07.057 PMID: 21889825
- Cragg, G.M.; Newman, D. J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem., 2005, 77(1), 7-24. doi: 10.1351/pac200577010007
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19(14), 2176-2228. doi: 10.2174/092986712800229087 PMID: 22414104
- Sajjadi, S. Natural anti-leishmaniasis compounds in traditional iranian medicine. JIITM, 2012, 3(1), 41-50.
- da Silva, R.R.P.; da Silva, B.J.M.; Rodrigues, A.P.D.; Farias, L.H.S.; da Silva, M.N.; Alves, D.T.V.; Bastos, G.N.T.; do Nascimento, J.L.M.; Silva, E.O. In vitro biological action of aqueous extract from roots of Physalis angulata against Leishmania (Leishmania) amazonensis. BMC Complement. Altern. Med., 2015, 15(1), 249. doi: 10.1186/s12906-015-0717-1 PMID: 26205771
- Badirzadeh, A.; Heidari-Kharaji, M.; Fallah-Omrani, V.; Dabiri, H.; Araghi, A.; Salimi Chirani, A. Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Negl. Trop. Dis., 2020, 14(1), e0007843. doi: 10.1371/journal.pntd.0007843 PMID: 31929528
- Greve, H.L.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Boswellic acids show in vitro activity against leishmania donovani. Molecules, 2021, 26(12), 3651. doi: 10.3390/molecules26123651 PMID: 34203815
- Boswellia serrata-frankincense (A Jesus Gifted Herb); An Updated Pharmacological Profile. Available from: https://scialert.net/abstract/?doi=pharmacologia.2013.457.463 (Accessed Jun. 21, 2022).
- Mahmoud, A.B.; Danton, O.; Kaiser, M.; Khalid, S.; Hamburger, M.; Mäser, P. HPLC-based activity profiling for antiprotozoal compounds in croton gratissimus and cuscuta hyalina. Front. Pharmacol., 2020, 11, 1246. doi: 10.3389/fphar.2020.01246 PMID: 32922290
- Ngadjui, B.T.; Abegaz, B.M.; Keumedjio, F.; Folefoc, G.N.; Kapche, G.W.F. Diterpenoids from the stem bark of Croton zambesicus. Phytochemistry, 2002, 60(4), 345-349. doi: 10.1016/S0031-9422(02)00034-1 PMID: 12031423
- Aderogba, M.A.; McGaw, L.J.; Bezabih, M.; Abegaz, B.M. Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract. Nat. Prod. Res., 2011, 2513, 1224-1233. doi: 10.1080/14786419.2010.532499
- Antileishmania activity of Levandula officinalis essence against Leishmania major in In vitro media - Shahrekord University Of Medical Sciences. Available from: http://eprints.skums.ac.ir/3619/(accessed Jun. 23, 2022)
- Baloch, N.; Kakar, A.M.; Nabi, S.; Wajid, Z.; Kakar, M.A.; Al-Kahraman, Y.M.S.A. In vitro antimicrobial, insecticidal, antitumor activities and their phytochemical estimation of methanolic extract and its fractions of Medicago lupulina leaves. World Appl. Sci. J., 2013, 23(4), 500-506. doi: 10.5829/IDOSI.WASJ.2013.23.04.368
- Eskandari, E.G.; Doudi, M. International Journal of Farming and Allied Sciences The study of antileishmanial effect of Medicago lupulina leaves essential oil on Leishmania major (MRHO/IR/75/ER) by MTT assay 2016. Available from: www.ijfas.com(Accessed: Jun. 24, 2022)
- Preliminary Phytochemical Analysis and Antimicrobial Activity of Some Weeds collected from Marathwada Region ⋅ Nagesh A Dhole - Academia.edu. Available from: https://www.academia.edu/22336709/Preliminary_Phytochemical_Analysis_and_Antimicrobial_Activity_of_Some_Weeds_collected_from_Marathwada_Region (Accessed Jun. 24, 2022)
- Elham Gharirvand, E. An In vitro study of antileishmanial effect of Portulaca oleracea. Available from: https://www.jvbd.org/temp/JVectorBorneDis534362-6886259_190742.pdf
- Doudi, M.; Shirazi, S. Antileishmanial effect of Crataegus microphylla leaf extract on Leishmania major (MRHO/IR/75/ER) promastigotes. Int. J. Mol. Clin. Microbiol., 2017, 7(1), 761-768.
- Albakhit, S.; Khademvatan, S.; Doudi, M.; Foroutan-Rad, M. Antileishmanial activity of date (phoenix dactylifera l) fruit and pit extracts in vitro. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP98-NP102. doi: 10.1177/2156587216651031 PMID: 27242378
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int., 2011, 44(7), 1812-1822. doi: 10.1016/j.foodres.2010.07.004
- Ljubuncic, P.; Portnaya, I.; Cogan, U.; Azaizeh, H.; Bomzon, A. Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel. J. Ethnopharmacol., 2005, 101(1-3), 153-161. doi: 10.1016/j.jep.2005.04.024 PMID: 15970411
- Rigelsky, J.M.; Sweet, B.V. Hawthorn: Pharmacology and therapeutic uses. Am. J. Health Syst. Pharm., 2002, 59(5), 417-422. doi: 10.1093/ajhp/59.5.417 PMID: 11887407
- Dabirzadeh, M. Effect of methanolic extract of hawthorn (Crataegus aronia) fruit on Leishmania major in vitro. Feyz, 2016, 20(1), 11-15.
- Demarchi, I.G.; Thomazella, M.V.; de Souza Terron, M.; Lopes, L.; Gazim, Z.C.; Cortez, D.A.G.; Donatti, L.; Aristides, S.M.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Antileishmanial activity of essential oil and 6,7-dehydroroyleanone isolated from Tetradenia riparia. Exp. Parasitol., 2015, 157, 128-137. doi: 10.1016/j.exppara.2015.06.014 PMID: 26116864
- Polya, G. Biochemical targets of plant bioactive compounds A pharmacological reference guide to sites of action and biological effects; CRC Press, 2003.
- Shale, T.L.; Stirk, W.A.; van Staden, J. Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity. J. Ethnopharmacol., 1999, 67(3), 347-354. doi: 10.1016/S0378-8741(99)00035-5 PMID: 10617071
- Van Puyvelde, L.; De Kimpe, N.; Ayobangira, F.X.; Costa, J.; Nshimyumukiza, P.; Boily, Y.; Hakizamungu, E.; Schamp, N. Wheat rootlet growth inhibition test of Rwandese medicinal plants: Active principles of Tetradenia riparia and Diplolophium africanum. J. Ethnopharmacol., 1988, 24(2-3), 233-246. doi: 10.1016/0378-8741(88)90156-0 PMID: 3253494
- Gazim, Z.C. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of tetradenia riparia (hochst.) codd in southern brazil. Molecules, 2010, 15(8), 5509-5524. doi: 10.3390/molecules15085509
- Kusumoto, N.; Ashitani, T.; Hayasaka, Y.; Murayama, T.; Ogiyama, K.; Takahashi, K. Antitermitic activities of abietane-type diterpenes from taxodium distichum cones. J. Chem. Ecol., 2009, 35(6), 635-642. doi: 10.1007/s10886-009-9646-0
- Gupta, G.; Peine, K.J.; Abdelhamid, D.; Snider, H.; Shelton, A.B.; Rao, L.; Kotha, S.R.; Huntsman, A.C.; Varikuti, S.; Oghumu, S.; Naman, C.B.; Pan, L.; Parinandi, N.L.; Papenfuss, T.L.; Kinghorn, A.D.; Bachelder, E.M.; Ainslie, K.M.; Fuchs, J.R.; Satoskar, A.R. A novel sterol isolated from a plant used by mayan traditional healers is effective in treatment of visceral leishmaniasis caused by leishmania donovani. ACS Infect. Dis., 2015, 1(10), 497-506. doi: 10.1021/acsinfecdis.5b00081 PMID: 27623316
- Chan-Bacab, M.J.; Balanza, E.; Deharo, E.; Muñoz, V.; García, R.D.; Peña-Rodríguez, L.M. Variation of leishmanicidal activity in four populations of Urechites andrieuxii. J. Ethnopharmacol., 2003, 86(2-3), 243-247. doi: 10.1016/S0378-8741(03)00011-4 PMID: 12738094
- Lezama-Dávila, C.M.; Pan, L.; Isaac-Márquez, A.P.; Terrazas, C.; Oghumu, S.; Isaac-Márquez, R.; Pech-Dzib, M.Y.; Barbi, J.; Calomeni, E.; Parinandi, N.; Kinghorn, A.D.; Satoskar, A.R. Pentalinon andrieuxii root extract is effective in the topical treatment of cutaneous leishmaniasis caused by Leishmania mexicana. Phytother. Res., 2014, 28(6), 909-916. doi: 10.1002/ptr.5079 PMID: 24347110
- Biological activities of the plant‐derived bisindole voacamine with reference to malaria - Ramanitrahasimbola. Phytotherapy Research; Wiley 2001.
- Chowdhury, S.R.; Kumar, A.; Godinho, J.L.P.; De Macedo Silva, S.T.; Zuma, A.A.; Saha, S.; Kumari, N.; Rodrigues, J.C.F.; Sundar, S.; Dujardin, J.C.; Roy, S.; De Souza, W.; Mukhopadhyay, S.; Majumder, H.K. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochem. Pharmacol., 2017, 138, 19-30. doi: 10.1016/j.bcp.2017.05.002 PMID: 28483460
- Al Nasr, I. In vitro anti-leishmanial assessment of some medicinal plants collected from al qassim, Saudi Arabia. Acta Parasitol., 2020, 65(3), 696-703, 1234. doi: 10.2478/s11686-020-00205-2 PMID: 32347535
- Shah, S.M. Benzoic Acid Derivatives of Ifloga spicata (Forssk.) Sch.Bip. as Potential Anti-Leishmanial against Leishmania tropica. Process, 2019, 7(4), 208. doi: 10.3390/pr7040208
- Hammiche, V.; Maiza, K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili Najjer. J. Ethnopharmacol., 2006, 105(3), 358-367. doi: 10.1016/j.jep.2005.11.028 PMID: 16414225
- Abouri, M.; El Mousadik, A.; Msanda, F. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. 2012. Available from: https://www.academia.edu/download/65902670/An_ethnobotanical_survey_of_medicinal_pl20210305-15320-1rd0ng9.pdf
- Ayrom, F.; Rasouli, S.; Shemshadi, B. In vitro antileishmanial activity of achillea santolina essential oil against leishmania infantum Promastigote by Methylthiazole Tetrazolium (MTT) and trypan blue colorimetric methods. Arch. Razi Inst., 2021, 76(3), 529-536. doi: 10.22092/ARI.2020.352245.1555 PMID: 34824746
- Nayebpour, M.; Golalipour, M.J.; Khori, V.; Azarhoush, R.; Azadbakht, M. Effect of Achillea santolina on mice spermatogenesis. DARU J. Pharmaceut. Sci, 2004, 12(1)
- Nemeth, E.; Bernath, J. Biological activities of yarrow species (Achillea spp.). Curr. Pharm. Des., 2008, 14(29), 3151-3167. doi: 10.2174/138161208786404281 PMID: 19075697
- Rottini, M.M. Endlicheria bracteolata (meisn.) essential oil as a weapon against leishmania amazonensis: In vitro assay. Molecules, 2019, 24(14), 2525. doi: 10.3390/molecules24142525
- Pramanik, P.K.; Paik, D.; Pramanik, A.; Chakraborti, T. White jute (Corchorus capsularis L.) leaf extract has potent leishmanicidal activity against Leishmania donovani. Parasitol. Int., 2019, 71, 41-45. doi: 10.1016/j.parint.2019.03.012 PMID: 30890371
- Islam, M.S.; Alfasane, M.A.; Khondker, M. Planktonic primary productivity of a eutrophic water body of Dhaka Metropolis, Bangladesh. Bangladesh J. Bot., 2013, 41(2), 135-142. doi: 10.3329/bjb.v41i2.13437
- Zakaria, Z.A.; Sulaiman, M.R.; Gopalan, H.K.; Abdul Ghani, Z.D.; Raden Mohd Nor, R.N.; Mat Jais, A.M.; Abdullah, F.C. Antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract in experimental animal models. Yakugaku Zasshi, 2007, 127(2), 359-365. doi: 10.1248/yakushi.127.359 PMID: 17268156
- Kharat, M.; Kharat, K.; Sundar, S.; Pai, K. Metabolomic approach to study the Aerva sanguinolenta plant extract mechanism of action in Leishmania parasite. Int. J. Infect. Dis., 2018, 73, 144. doi: 10.1016/j.ijid.2018.04.3740
- Sarker, J.; Ali, M.R.; Khan, M.A.; Rahman, M.M.; Hossain, A.S.M.S.; Alam, A.H.M.K. The plant aerva sanguinolenta: A review on traditional uses, phytoconstituents and pharmacological activities. Pharmacogn. Rev., 2021, 13(26), 89-92. doi: 10.5530/phrev.2019.2.9
- Sahid, E.D.N.; Claudino, J.C.; Oda, F.B.; Carvalho, F.A.; Santos, A.G.; Graminha, M.A.S.; Clementino, L.C. Baccharis trimera (Less.) DC leaf derivatives and eupatorin activities against Leishmania amazonensis. Nat. Prod. Res., 2022, 36(6), 1599-1603. doi: 10.1080/14786419.2021.1887175 PMID: 33586545
- Menezes, A.P.S.; da Silva, J.; Fisher, C.; da Silva, F.R.; Reyes, J.M.; Picada, J.N.; Ferraz, A.G.; Corrêa, D.S.; Premoli, S.M.; Dias, J.F.; de Souza, C.T.; Ferraz, A.B.F. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area. Chemosphere, 2016, 146, 396-404. doi: 10.1016/j.chemosphere.2015.12.028 PMID: 26741544
- Pádua, B.C.; Silva, L.D.; Rossoni, J.V.; Humberto, J.L.; Chaves, M.M.; Silva, M.E.; Pedrosa, M.L.; Costa, D.C. Antioxidant properties of Baccharis trimera in the neutrophils of Fisher rats. J. Ethnopharmacol., 2010, 129(3), 381-386. doi: 10.1016/j.jep.2010.04.018 PMID: 20430095
- Pereira, W.K.V.; Lonardoni, M.V.C.; Grespan, R.; Caparroz-Assef, S.M.; Cuman, R.K.N.; Bersani-Amado, C.A. Immunomodulatory effect of Canova medication on experimental Leishmania amazonensis infection. J. Infect., 2005, 51(2), 157-164. doi: 10.1016/j.jinf.2004.09.009 PMID: 16038768
- Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J. Nat. Prod., 2013, 76(8), 1505-1508. doi: 10.1021/np400193m PMID: 23876028
- Da Silva, B.J.M.; Da Silva, R.R.P.; Rodrigues, A.P.D.; Farias, L.H.S.; Do Nascimento, J.L.M.; Silva, E.O. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species. Micron, 2016, 82, 25-32. doi: 10.1016/j.micron.2015.12.001 PMID: 26765293
- Fürst, R.; Zündorf, I. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm., 2014, 2014, 1-9. doi: 10.1155/2014/146832 PMID: 24987194
- Das, A.; Ali, N. Vaccine development against Leishmania donovani. Front. Immunol., 2012, 3(MAY), 99. doi: 10.3389/FIMMU.2012.00099/BIBTEX PMID: 22615707
- Abdellahi, L.; Iraji, F.; Mahmoudabadi, A.; Hejazi, S.H. Vaccination in leishmaniasis: A review article. Iran. Biomed. J., 2022, 26(1), 1-35. doi: 10.52547/IBJ.26.1.35 PMID: 34952558
- Reguera, R.M.; Elmahallawy, E.K.; García-Estrada, C.; Carbajo-Andrés, R.; Balaña-Fouce, R. DNA topoisomerases of leishmania parasites; druggable targets for drug discovery. Curr. Med. Chem., 2019, 26(32), 5900-5923. doi: 10.2174/0929867325666180518074959 PMID: 29773051
- Peretz, A.; Zabari, L.; Pastukh, N.; Avital, N.; Masaphy, S. In vitro antileishmanial activity of a black morel, morchella importuna (Ascomycetes). Int. J. Med. Mushrooms, 2018, 20(1), 71-80. doi: 10.1615/IntJMedMushrooms.2018025313 PMID: 29604914
- Souza, G.S.; de Carvalho, L.P.; de Melo, E.J.T.; Gomes, V.M.; Carvalho, A.O. The toxic effect of Vu -Defr, a defensin from Vigna unguiculata seeds, on Leishmania amazonensis is associated with reactive oxygen species production, mitochondrial dysfunction, and plasma membrane perturbation. Can. J. Microbiol., 2018, 64(7), 455-464. doi: 10.1139/cjm-2018-0095 PMID: 29586486
- Reithinger, R.; Dujardin, J.C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis., 2007, 7(9), 581-596. doi: 10.1016/S1473-3099(07)70209-8 PMID: 17714672
- Oryan, A. Plant-derived compounds in treatment of leishmaniasis. J. Vet. Res., 2015, 16(1), 1.
- CDC - Leishmaniasis - Biology. 2020. Available from: https://www.cdc.gov/parasites/leishmaniasis/index.html#:~:text=Leishmaniasis%20is%20a%20parasitic%20disease,bite%20of%20phlebotomine%20sand%20flies
Supplementary files
