Evaluation of Spirooxindole-3,3'-pyrrolines-incorporating Isoquinoline Motif as Antitumor, Anti-inflammatory, Antibacterial, Antifungal, and Antioxidant Agents


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:A series of novel 2-(isoquinolin-1-yl)-spiro[oxindole-3,3′-pyrrolines] were synthesized by a one-pot three-component reaction involving dimethyl acetylenedicar-boxylate, 3-phenylimidazo[5,1-a]isoquinoline and N-alkylisatins in chloroform at ∼60°C for 24 h.

Aims:This study aimed at the synthesis of novel spirooxindole-3,3'-pyrrolines derivatives and in vitro evaluation of cytotoxicity affinities in cross-correlations with their anti-inflammation and radical scavenging capacities.

Objectives:The objective of this study was to use a one-pot, three-component reaction to syn-thesize a novel set of spirooxindole-3,3'-pyrrolines derivatives.

Methods:A novel set of spirooxindole-3,3'-pyrrolines (8a-i) was synthesized by a one-pot three-component reaction involving dimethyl acetylenedicarboxylate, 3-phenylimidazo[5,1-a]isoquinoline and N-alkylisatins in chloroform at ∼60°C for 24 h. These new compounds were characterized by 1HNMR, 13C-NMR, and HRMS spectral data and screened for their antitumor, anti-inflammatory, antibacterial, antifungal, and antioxidant activities.

Results:The new synthetic spirooxindole-3,3'-pyrrolines (8a-i)-tested compounds displayed significant anti-inflammatory properties and were noncytotoxic on PDL fibroblasts. However, they lacked antioxidative-DPPH radical scavenging capabilities. Notably, Doxorubicin and cisplatin demonstrated antiproliferative effects on various cancer monolayers. Moreover, com-pounds 8b, 8d, 8f, 8h, and 8i exhibited pronounced viability reduction properties in colorectal and pancreatic cancer monolayers, as well as across skin, lung, prostate, and cervical adeno-carcinomas, with higher cytotoxicity in mammary cancer cells MCF7 and T47D. None of the tested compounds had significant antibacterial activity against S. aureus or E. coli. However, compounds 8c, 8d, and 8f exhibited notable antifungal properties, indicating potential for fur-ther investigation.

Results:The new synthetic spirooxindole-3,3'-pyrrolines (8a-i)-tested compounds displayed significant anti-inflammatory properties and were noncytotoxic on PDL fibroblasts. However, they lacked antioxidative-DPPH radical scavenging capabilities. Notably, Doxorubicin and cisplatin demonstrated antiproliferative effects on various cancer monolayers. Moreover, compounds 8b, 8d, 8f, 8h, and 8i exhibited pronounced viability reduction properties in colorectal and pancreatic cancer monolayers, as well as across skin, lung, prostate, and cervical adenocarcinomas, with higher cytotoxicity in mammary cancer cells MCF7 and T47D. None of the tested compounds had significant antibacterial activity against S. aureus or E. coli. However, compounds 8c, 8d, and 8f exhibited notable antifungal properties, indicating potential for further investigation.

Conclusion:Eight new synthetic spiro[indoline-3,3-pyrroles] were prepared, characterized, and evaluated for their anti-inflammatory and cytotoxic properties. The compounds showed significant anti-inflammatory effects and promising cytotoxicity against various cancer mon-olayers, especially in colorectal and pancreatic cancers. Some compounds also exhibited anti-fungal properties. However, they did not exhibit significant antibacterial activity.

Авторлар туралы

Areej Jaber

Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University

Email: info@benthamscience.net

Jalal Zahra

Department of Chemistry, Faculty of Science, The University of Jordan

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Mustafa El-Abadelah

Department of Chemistry, Faculty of Science, The University of Jordan

Email: info@benthamscience.net

Mohammed Al-Mahadeen

Department of Chemistry, Faculty of Science, The University of Jordan

Email: info@benthamscience.net

Salim Sabri

Department of Chemistry, Faculty of Science, The University of Jordan

Email: info@benthamscience.net

Violet Kasabri

Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, University of Jordan

Email: info@benthamscience.net

Randa Haddadin

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The University of Jordan

Email: info@benthamscience.net

Әдебиет тізімі

  1. Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci., 2017, 18(7), 1544. doi: 10.3390/ijms18071544
  2. Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2019, 24(40), 4771-4778. doi: 10.2174/1381612825666190215121712
  3. Zahra, K.F.; Lefter, R.; Ali, A.; Abdellah, E-C.; Trus, C.; Ciobica, A.; Timofte, D. The involvement of the oxidative stress status in cancer pathology: A double view on the role of the antioxidants. Oxid. Med. Cell. Longev., 2021, 2021, 9965916. doi: 10.1155/2021/9965916
  4. Wang, D.; DuBois, R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 2010, 29(6), 781-788. doi: 10.1038/onc.2009.421
  5. Haj Hussein, B.; Kasabri, V.; Al-Hiari, Y.; Arabiyat, S.; Ikhmais, B.; Alalawi, S.; Al-Qirim, T. Selected statins as dual antiproliferative-antiinflammatory compounds. Asian Pac. J. Cancer Prev., 2022, 23(12), 4047-4062. doi: 10.31557/APJCP.2022.23.12.4047
  6. Zhang, Y.; Pu, W.; Bousquenaud, M.; Cattin, S.; Zaric, J.; Sun, L.; Rüegg, C. Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis. Front. Oncol., 2021, 10, 564674. doi: 10.3389/fonc.2020.564674
  7. Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41. doi: 10.1016/j.immuni.2019.06.025
  8. Xiong, S.; Dong, L.; Cheng, L. Neutrophils in cancer carcinogenesis and metastasis. J. Hematol. Oncol., 2021, 14(1), 173. doi: 10.1186/s13045-021-01187-y
  9. Nair, V.; Deepthi, A.; Ashok, D.; Raveendran, A.E.; Paul, R.R. 1,4-Dipolar cycloadditions and related reactions. Tetrahedron, 2014, 70(19), 3085-3105. doi: 10.1016/j.tet.2014.03.014
  10. Jaber, A.M.; Zahra, J.A.; Sabri, S.S.; Khanfar, M.A.; Awwadi, F.F.; El-Abadelah, M.M. New trends in 1,4-dipolar cycloaddition reactions. thermodynamic control synthesis of model 2′-(isoquinolin-1-yl)-spiro. oxindole-3,3′-pyrrolines Curr. Org. Chem. , 2022, 26(5), 542-549. doi: 10.2174/1385272826666220221141306
  11. Pavlovska, T.L.; Redkin, R.G.; Lipson, V.V.; Atamanuk, D.V. Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol. Divers., 2016, 20(1), 299-344. doi: 10.1007/s11030-015-9629-8
  12. Saraswat, P.; Jeyabalan, G.; Hassan, M.Z.; Rahman, M.U.; Nyola, N.K. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth. Commun., 2016, 46(20), 1643-1664. doi: 10.1080/00397911.2016.1211704
  13. Ani, D.; Noble, V.; Vidya, S. Green protocols for the synthesis of 3, 3′-spirooxindoles-2016-mid 2019. Curr. Green Chem., 2019, 6, 210-225. doi: 10.2174/2213346106666191019144116
  14. Maiuolo, L.; Algieri, V.; Olivito, F.; De Nino, A. Recent developments on 1, 3-dipolar cycloaddition reactions by catalysis in green solvents. Catalysts, 2020, 10, 65-92.
  15. Saranya, P.V.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition metal-catalyzed synthesis of spirooxindoles. RSC Advances, 2021, 11(13), 7146-7179. doi: 10.1039/D1RA00139F
  16. Auria-Luna, F.; Marqués-López, E.; Mohammadi, S.; Heiran, R.; Herrera, R. New organocatalytic asymmetric synthesis of highly substituted chiral 2-oxospiro-indole-3, 4′-(1′, 4′-dihydropyridine) derivatives. Molecules, 2015, 20(9), 15807-15826. doi: 10.3390/molecules200915807
  17. Banerjee, P.; Pandey, A.K. Synthesis of functionalized dispiro-oxindoles through azomethine ylide dimerization and mechanistic studies to explain the diastereoselectivity. RSC Advances, 2014, 4(63), 33236-33244. doi: 10.1039/C4RA01492H
  18. Huisgen, R.; Morikawa, M.; Herbig, K.; Brunn, E. 1.4‐Dipolare Cycloadditionen, II. Dreikomponenten‐Reaktionen des Isochinolins mit Acetylendicarbonsäureester und verschiedenen Dipolarophilen. Chem. Ber., 1967, 100(4), 1094-1106. doi: 10.1002/cber.19671000406
  19. Al-Mahadeen, M.M.; Zahra, J.A.; El-Abadelah, M.M.; Jaber, A.M.; Khanfar, M.A. One-pot synthesis of novel 2-oxo(2H)-spirobenzofuran-3,3′-pyrrolines via 1,4-dipolar cycloaddition reaction. Results in Chemistry, 2022, 4, 100643. doi: 10.1016/j.rechem.2022.100643
  20. Jaber, A.M.; Zahra, J.A.; El-Abadelah, M.M.; Sabri, S.S.; Khanfar, M.A.; Voelter, W. Utilization of 1-phenylimidazo1,5- aquinoline as partner in 1,4-dipolar cycloaddition reactions. Z. Naturforsch. B. J. Chem. Sci., 2020, 75(3), 259-267. doi: 10.1515/znb-2019-0150
  21. Jaber, A.M.; Zahra, J.A.; El-Abadelah, M.M.; Sabri, S.S.; Sabbah, D.S. Thermodynamic control synthesis of spirooxindole-3,3′-pyrrolines via 1,4-dipolar cycloaddition utilizing imidazo1,5- aquinoline. Z. Naturforsch. C J. Biosci., 2023, 78(3-4), 141-148. doi: 10.1515/znc-2022-0085
  22. El-Faham, A.; Hozzein, W.N.; Wadaan, M.A.; Khattab, S.N.; Ghabbour, H.A.; Fun, H-K.; Siddiqui, M.R. Microwave synthesis, characterization, and antimicrobial activity of some novel isatin derivatives. J. Chem., 2015, 2015, 716987. doi: 10.1155/2015/716987
  23. Beauchard, A.; Ferandin, Y.; Frère, S.; Lozach, O.; Blairvacq, M.; Meijer, L.; Thiéry, V.; Besson, T. Synthesis of novel 5-substituted indirubins as protein kinases inhibitors. Bioorg. Med. Chem., 2006, 14(18), 6434-6443. doi: 10.1016/j.bmc.2006.05.036
  24. Wang, Y.; Cheng, X.; Zhan, Z.; Ma, X.; Nie, R.; Hai, L.; Wu, Y. IBX-promoted domino reaction of α-hydroxy amides: A facile one-pot synthesis of isatins. RSC Advances, 2016, 6(4), 2870-2874. doi: 10.1039/C5RA25036F
  25. Jiang, H.; Hu, Q.; Cai, J.; Cui, Z.; Zheng, J.; Chen, W. Synthesis and dyeing properties of indophenine dyes for polyester fabrics. Dyes Pigments, 2019, 166, 130-139. doi: 10.1016/j.dyepig.2019.03.025
  26. Buxton, C.S.; Blakemore, D.C.; Bower, J.F. Reductive coupling of acrylates with ketones and ketimines by a nickel‐catalyzed transfer‐hydrogenative strategy. Angew. Chem. Int. Ed., 2017, 56(44), 13824-13828. doi: 10.1002/anie.201707531
  27. Wang, Q.; Zhang, S.; Guo, F.; Zhang, B.; Hu, P.; Wang, Z.J.T.J.o.O.C. Natural α-amino acids applied in the synthesis of imidazo1,5-aN-heterocycles under mild conditions. J. Org. Chem., 2012, 77(24), 11161-11166.
  28. Kaur, G.; Dufour, J.M.J.S. Cell lines: Valuable tools or useless artifacts; Taylor & Francis: Milton Park, in Oxfordshire, 2012, 2, 1-5.
  29. Shehadi, I.A.; Delmani, F.A.; Jaber, A.M.; Hammad, H.; AlDamen, M.A.; Al-Qawasmeh, R.A.; Khanfar, M.A. Synthesis, characterization and biological evaluation of metal adamantyl 2-pyridylhydrazone complexes. Molecules, 2020, 25(11), 2530. doi: 10.3390/molecules25112530
  30. Al-Nuaimi, A.; Al-Hiari, Y.; Kasabri, V.; Haddadin, R.; Mamdooh, N.; Alalawi, S.; Khaleel, S. A novel class of functionalized synthetic fluoroquinolones with dual antiproliferative - antimicrobial capacities. Asian Pac. J. Cancer Prev., 2021, 22(4), 1075-1086. doi: 10.31557/APJCP.2021.22.4.1075
  31. Ibrahim, R.; Kasabri, V.; Sunoqrot, S.; Shalabi, D.; Alkhateeb, R.; Alhiari, Y. Preparation and characterization of rutin-encapsulated polymeric micelles and studies of synergism with bioactive benzoic acids and triazolofluoroquinolones as anticancer nanomedicines. Asian Pac. J. Cancer Prev., 2023, 24(3), 977-989. doi: 10.31557/APJCP.2023.24.3.977
  32. Shamsheer, R.; Sunoqrot, S.; Kasabri, V.; Shalabi, D.; Alkhateeb, R.; Alhiari, Y.; Ababneh, R.; Ikhmais, B.; Abumansour, H. Preparation and characterization of capsaicin encapsulated polymeric micelles and studies of synergism with nicotinic acids as potential anticancer nanomedicines. J. Pharm. Bioallied Sci., 2023, 15(3), 107-125. doi: 10.4103/jpbs.jpbs_311_22
  33. Piazzini, V.; D’Ambrosio, M.; Luceri, C.; Cinci, L.; Landucci, E.; Bilia, A.R.; Bergonzi, M.C. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules, 2019, 24(9), 1688. doi: 10.3390/molecules24091688
  34. Wolf, L.J.; Stingu, C.S. Antimicrobial susceptibility profile of rare anaerobic bacteria. Antibiotics , 2022, 12(1), 63. doi: 10.3390/antibiotics12010063
  35. Jørgensen, K.M.; Astvad, K.M.T.; Hare, R.K.; Arendrup, M.C. EUCAST susceptibility testing of isavuconazole: MIC data for contemporary clinical mold and yeast isolates. Antimicrob. Agents Chemother., 2019, 63(6), e00073-e19. doi: 10.1128/AAC.00073-19
  36. Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal susceptibility testing: Current approaches. Clin. Microbiol. Rev., 2020, 33(3), e00069-e19. doi: 10.1128/CMR.00069-19
  37. El-Hamoly, T.; El-Sharawy, D.M.; El Refaye, M.S.; Abd El-Rahman, S.S. L-thyroxine modifies nephrotoxicity by regulating the apoptotic pathway: The possible role of CD38/ADP-ribosyl cyclase-mediated calcium mobilization. PLoS One, 2017, 12(9), e0184157. doi: 10.1371/journal.pone.0184157
  38. Kasabri, V.; Khaleel, S.; Al-Hiari, Y.; Haddadin, R.; Albashiti, R.; Al-Zweri, M.; Bustanji, Y. Antiproliferative Properties of 7,8-Ethylene Diamine Chelator-Lipophilic Fluoroquinolone Derivatives Against Colorectal Cancer Cell Lines. Anticancer. Agents Med. Chem., 2022, 22(5), 1012-1028. doi: 10.2174/1871520621666210623111744

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024