Transport properties of MF-4SK perfluorinated membranes modified with zirconium hydrogen phosphate
- Autores: Falina I.V.1, Meshcheryakova E.E.1, Lyapishev K.M.1, Demidenko K.S.1, Titskaya E.V.1, Timofeev S.V.2, Kononenko N.A.1
- 
							Afiliações: 
							- Kuban State University
- OAO “Plastpolymer”
 
- Edição: Volume 14, Nº 6 (2024)
- Páginas: 453-461
- Seção: Articles
- URL: https://kld-journal.fedlab.ru/2218-1172/article/view/684832
- DOI: https://doi.org/10.31857/S2218117224060021
- EDN: https://elibrary.ru/MBQTOC
- ID: 684832
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Physicochemical and transport characteristics of cast and extruded MF-4SK perfluorinated membranes modified with zirconium hydrogen phosphate in an amount of 3–10% are studied. The inorganic phase is formed in the membrane volume by pore-filling method. The effect of zirconium hydrogen phosphate content on the exchange capacity, water content, diffusion permeability for electrolyte solution, hydrogen gas permeability and conductivity at limited humidity of the MF-4SK membrane, as well as the efficiency of its use in a proton exchange membrane fuel cell are studied. A non-monotonic change in transport characteristics from the dopant content is shown. The lowest diffusion permeability and maximum electrical conductivity at low humidity possesses the membrane containing 6% zirconium hydrogen phosphate. The maximum specific power of the proton-exchange membrane fuel cell with modified membranes as a polymer electrolyte is 17% higher compared to the original MF-4SK. This result is caused by lower ohmic resistance and kinetic limitations of membrane-electrode assembly with modified samples compared to the non-modified membrane, revealed on the basis of an analysis of its impedance spectra.
Texto integral
 
												
	                        Sobre autores
I. Falina
Kuban State University
							Autor responsável pela correspondência
							Email: irina_falina@mail.ru
				                					                																			                												                	Rússia, 							149 Stavropol Street, Krasnodar, 350040						
E. Meshcheryakova
Kuban State University
														Email: irina_falina@mail.ru
				                					                																			                												                	Rússia, 							149 Stavropol Street, Krasnodar, 350040						
K. Lyapishev
Kuban State University
														Email: irina_falina@mail.ru
				                					                																			                												                	Rússia, 							149 Stavropol Street, Krasnodar, 350040						
K. Demidenko
Kuban State University
														Email: irina_falina@mail.ru
				                					                																			                												                	Rússia, 							149 Stavropol Street, Krasnodar, 350040						
E. Titskaya
Kuban State University
														Email: irina_falina@mail.ru
				                					                																			                												                	Rússia, 							149 Stavropol Street, Krasnodar, 350040						
S. Timofeev
OAO “Plastpolymer”
														Email: irina_falina@mail.ru
				                					                																			                												                	Rússia, 							32 Polyustrovsky ave., St. Petersburg, 195197						
N. Kononenko
Kuban State University
														Email: irina_falina@mail.ru
				                					                																			                												                	Rússia, 							149 Stavropol Street, Krasnodar, 350040						
Bibliografia
- Safronova E.Yu., Lysova A.A., Voropaeva D.Yu., Yaroslavtsev A.B. // Membranes. 2023. V. 13. № 8. P. 721.
- Zhu L., Li Yu., Liu J., He J., Wang L., Lei J. // Petroleum Science. 2022. V. 19. P. 1371.
- Lehmann M.L., Tyler L., Self E.C., Yang G., Nanda J., Saito T. // Chem. 2022. V. 8. № 6. P. 1611.
- Стенина И.А., Ярославцев А.Б. // Мембраны и мембранные технологии. 2024. Т. 14. № 1. С. 19.
- Zaton M., Roziere J., Jones D.J. // Sustainable Energy Fuels. 2017. V. 1. P. 409.
- Сафронова Е.Ю., Шалимов А.С., Волков В.И., Ярославцев А.Б. // Высокомолекулярные соединения (серия А). 2013. T. 55. № 11. C. 1359.
- Brooker P.R., Bonville L.J., Slattery D.K. // J. Electrochem. Soc. 2013. V. 160. № 1. P. F75.
- Rajeswari J., Ziegler Z., Haugen G.M., Hamrock S.J., Herring A.M. // ECS Trans. 2011. V. 41. P. 1561.
- Tellez-Cruz M.M., Escorihuela J., Solorza-Feria O., Compañ V. // Polymers. 2021. V. 13. № 18. P. 3064.
- Xu Ya., Liang X., Shen X., Yu W., Yang X., Li Q., Ge X., Wu L., Xu T. // J. Membr. Sci. 2024. V. 689. P. 122167.
- Guodong X., Anqi K., Feng J., Yuxin L., Zhiyuan Zh., Rongguan L., Bing H., Jing L., Chengwei D., Yuzhen S., Weiwei C. // Fuel. 2024. V. 361. P. 130706.
- Saccà A., Gatto I., Carbone A., Pedicini R., Maisano S., Stassi A., Passalacqua E. // Internation J Hydrogen Energy. 2019. V. 44. № 59. P. 31445.
- Xiao Sh., Zhang H., Bi Ch., Zhang Yi., Ma Yu., Li X., Zhong H., Zhang Yu. // J. Power Sources. 2010. V. 195. № 24. P. 8000.
- Alberti G. // Acc. Chem. Res. 1978. V. 11. № 4. P. 163.
- Taniuchi T., Ogawa T., Yoshida M., Nakazono T., Ishihara K.N. // Internation J Hydrogen Energy. 2023. V. 48. № 80. P. 31337.
- Pica M., Donnadio A., Casciola M. // Coord. Chem. Rev. 2018. V. 374. P. 218.
- Al-Othman A., Nancarrow P., Tawalbeh M., Ka’ki A., El-Ahwal K., El Taher B., Alkasrawi M. // Internation J Hydrogen Energy. 2021. V. 46. № 8. P. 6100.
- Costamagna P., Yang C., Bocarsly A.B., Srinivasan S. // Electrochimica Acta. 2002. V. 47. P. 1023.
- Zlotorowicz A., Sunde S., Seland F. // Internation J Hydrogen Energy. 2015. V. 40. № 32. P. 9982.
- Ozden A., Ercelik M., Ozdemir Ya., Devrim Yi., Ozgur Colpan C. // Internation J Hydrogen Energy. 2017. V. 42. № 33. P. 21501.
- Bauer F., Willert-Porada M. // J. Membr. Sci. 2004. V. 223. № 1–2. P. 141.
- Chabé J., Bardet M., Gébel G. // Solid State Ionics. 2012. V. 229. P. 20.
- Shkirskaya S.A., Kononenko N.A., Timofeev S.V. // Membranes. 2022. V. 12. № 10. P. 979.
- Kuan H.-C., Wu C.-S., Chen C.-Y., Yu Z.-Z., Dasari A., Mai Y.-W. // Electrochemical and Solid-State Letters. 2006. V. 9. № 2. P. A76.
- Шалимов А.С. и др. Ж. Неорганической химии. 2009. Т. 54. № 3. C. 403.
- Kononenko N.A., Fomenko M.A., Volfkovich Yu.M. // Adv. Colloid Interface Sci. 2015. V. 222. P. 425.
- Tang Q., Li B., Yang D., Ming P., Zhang C., Wang Y. // Internation J Hydrogen Energy. 2021. V. 46. P. 22040.
- Gierke T.D., Munn G.E., Wilson F.C. // J. Polym. Sci., Part B: Polym. Phys. 1981. V. 19. № 11. P. 1687.
- Gebel G., Aldebert P., Pineri M. // Macromolecules. 1987. V. 20. P. 1425.
- Sigwadi R., Dhlamini M.S., Mokrani T., Ṋemavhola F., Nonjola P.F., Msomi P.F. // Heliyon. 2019. V. 5. № 8. P. e02240.
- Trobajo C., Khainakov S.A., Espina A., García J.R. // Chem. Mater. 2000. V. 12. № 6. P. 1787.
- Filippov A., Petrova D., Falina I., Kononenko N., Ivanov E., Lvov Yu., Vinokurov V. // Polymers. 2018. V. 10. № 4. P. 366.
- Volfkovich Yu.M., Sosenkin V.E. // Russ. Chem. Rev. 2012. V. 81. P. 936.
- Novikova S. A., Safronova E. Yu., Lysova A. A., Yaroslavtsev A. B. // Mendeleev Commun. 2010. V. 20. P. 156.
- Сафронова Е.Ю. Материалы на основе модифицированных перфторированных сульфосодержащих мембран с новым комплексом функциональных свойств: дисс. док. хим. наук. – М., 2023. – 286 с.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






