Modular nanotransporters containing Keap1 monobodies are capable of reducing the toxic effect of acetaminophen on the liver of mice
- Autores: Khramtsov Y.V.1, Rosenkranz A.A.1,2, Ulasov A.V.1, Slastnikova T.А.1, Lupanova T.N.1, Alieva R.T.1, Georgiev G.P.1, Sobolev A.S.1,2
- 
							Afiliações: 
							- Institute of Gene Biology, RAS
- Lomonosov Moscow State University Moscow
 
- Edição: Volume 521, Nº 1 (2025)
- Páginas: 225-228
- Seção: Articles
- URL: https://kld-journal.fedlab.ru/2686-7389/article/view/684012
- DOI: https://doi.org/10.31857/S2686738925020109
- ID: 684012
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Previously, we created a modular nanotransporter (MNT) containing a monobody to Keap1, an intracellular protein inhibitor of the Nrf2 transcription factor that controls cellular protection from oxidative stress and is capable of interacting with Keap1 in hepatocytes and protect this cells from the effects of hydrogen peroxide. Oxidative liver damage by acetaminophen was used as a model to study the antitoxic effect of this MNT. Intraperitoneal injection of acetaminophen to mice resulted in an increase in the level of alanine aminotransferase and aspartate aminotransferase in the blood, as well as in liver edema. A significant decrease in the level of these enzymes in the blood, along with a decrease in liver edema, was observed after preliminary intravenous administration of MNT 2 hours before the acetaminophen injection. The results obtained can serve as a basis for creating drugs aimed at treating diseases associated with oxidative stress.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
Y. Khramtsov
Institute of Gene Biology, RAS
							Autor responsável pela correspondência
							Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Rosenkranz
Institute of Gene Biology, RAS; Lomonosov Moscow State University Moscow
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
A. Ulasov
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
T. Slastnikova
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
T. Lupanova
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
R. Alieva
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow						
G. Georgiev
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                								
Academician of the RAS
Rússia, MoscowA. Sobolev
Institute of Gene Biology, RAS; Lomonosov Moscow State University Moscow
														Email: alsobolev@yandex.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
Bibliografia
- Bellezza I., Giambanco I., Minelli A., et al. // Acta Mol. Cell Res. 2018. V. 1865(5). P. 721–733.
- Hayes J.D., Dinkova-Kostova A.T. // Trends Biochem. Sci. 2014. V. 39(4). P. 199–218.
- Ulasov A.V., Rosenkranz A.A., Georgiev G.P., et al. // Life Sci. 2022. V. 291. 120111.
- Robledinos-Anton N., Fernandez-Gines R., Manda G., et al. // Oxid. Med. Cell Longev. 2019. V. 2019. 9372182.
- Ngo V., Duennwald M.L. // Antioxidants. (Basel). 2022. V. 11(12).
- Taguchi K., Kensler T.W. // Arch. Pharm. Res. 2020. V. 43(3). P. 337–349.
- Patra U., Mukhopadhyay U., Sarkar R., et al. // Antivir. Res. 2019. V. 161. P. 53–62.
- Olagnier D., Farahani E., Thyrsted J., et al. // Nat. Commun. 2020. V. 11. 4938.
- Khramtsov Y.V., Ulasov A.V., Slastnikova T.A., et al. // Pharmaceutics. 2023. V. 15. 2687.
- Khramtsov Y.V., Ulasov A.V., Rosenkranz A.A., et al. // Pharmaceutics. 2024. V. 16. 1345.
- Lee W.M. // Hepatol. 2017. V. 67. P. 1324–1331.
- McGill M.R., Williams C.D., Xie Y., et al. // Toxicol. Appl. Pharmacol. 2012. V. 264. P. 387–394.
- Vorobyeva A., Bragina O., Altai M., et al. // Contrast. Media Mol. Imaging. 2018. V. 2018. 6930425.
- Steffens M. G., Kranenborg M.H., O.C. Boerman O.C., et al. // Cancer Biother. Radiopharm. 1998. V. 13. P. 133–139.
- Ferris T., Carroll L., Jenner S., et al. // J. Labelled Comp Radiopharm. 2021. V. 64. P. 92–108.
- Bruinstroop E., van der Spek A.H., Boelen A. // Eur. Thyroid J. 2023. V. 12. e220211.
- Dohan O., De la Vieja A., Paroder V., et al. // Endocr. Rev. 2003. V. 24. P. 48–77.
- Shen Z., Wang Y., Su Z., et al. // Chem. Biol. Interact. 2018. V. 282. P. 22–28.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


