Modular nanotransporters containing Keap1 monobodies are capable of reducing the toxic effect of acetaminophen on the liver of mice
- Authors: Khramtsov Y.V.1, Rosenkranz A.A.1,2, Ulasov A.V.1, Slastnikova T.А.1, Lupanova T.N.1, Alieva R.T.1, Georgiev G.P.1, Sobolev A.S.1,2
- 
							Affiliations: 
							- Institute of Gene Biology, RAS
- Lomonosov Moscow State University Moscow
 
- Issue: Vol 521, No 1 (2025)
- Pages: 225-228
- Section: Articles
- URL: https://kld-journal.fedlab.ru/2686-7389/article/view/684012
- DOI: https://doi.org/10.31857/S2686738925020109
- ID: 684012
Cite item
Abstract
Previously, we created a modular nanotransporter (MNT) containing a monobody to Keap1, an intracellular protein inhibitor of the Nrf2 transcription factor that controls cellular protection from oxidative stress and is capable of interacting with Keap1 in hepatocytes and protect this cells from the effects of hydrogen peroxide. Oxidative liver damage by acetaminophen was used as a model to study the antitoxic effect of this MNT. Intraperitoneal injection of acetaminophen to mice resulted in an increase in the level of alanine aminotransferase and aspartate aminotransferase in the blood, as well as in liver edema. A significant decrease in the level of these enzymes in the blood, along with a decrease in liver edema, was observed after preliminary intravenous administration of MNT 2 hours before the acetaminophen injection. The results obtained can serve as a basis for creating drugs aimed at treating diseases associated with oxidative stress.
Full Text
 
												
	                        About the authors
Y. V. Khramtsov
Institute of Gene Biology, RAS
							Author for correspondence.
							Email: alsobolev@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. A. Rosenkranz
Institute of Gene Biology, RAS; Lomonosov Moscow State University Moscow
														Email: alsobolev@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
A. V. Ulasov
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
T. А. Slastnikova
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
T. N. Lupanova
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
R. T. Alieva
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow						
G. P. Georgiev
Institute of Gene Biology, RAS
														Email: alsobolev@yandex.ru
				                					                																			                								
Academician of the RAS
Russian Federation, MoscowA. S. Sobolev
Institute of Gene Biology, RAS; Lomonosov Moscow State University Moscow
														Email: alsobolev@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
References
- Bellezza I., Giambanco I., Minelli A., et al. // Acta Mol. Cell Res. 2018. V. 1865(5). P. 721–733.
- Hayes J.D., Dinkova-Kostova A.T. // Trends Biochem. Sci. 2014. V. 39(4). P. 199–218.
- Ulasov A.V., Rosenkranz A.A., Georgiev G.P., et al. // Life Sci. 2022. V. 291. 120111.
- Robledinos-Anton N., Fernandez-Gines R., Manda G., et al. // Oxid. Med. Cell Longev. 2019. V. 2019. 9372182.
- Ngo V., Duennwald M.L. // Antioxidants. (Basel). 2022. V. 11(12).
- Taguchi K., Kensler T.W. // Arch. Pharm. Res. 2020. V. 43(3). P. 337–349.
- Patra U., Mukhopadhyay U., Sarkar R., et al. // Antivir. Res. 2019. V. 161. P. 53–62.
- Olagnier D., Farahani E., Thyrsted J., et al. // Nat. Commun. 2020. V. 11. 4938.
- Khramtsov Y.V., Ulasov A.V., Slastnikova T.A., et al. // Pharmaceutics. 2023. V. 15. 2687.
- Khramtsov Y.V., Ulasov A.V., Rosenkranz A.A., et al. // Pharmaceutics. 2024. V. 16. 1345.
- Lee W.M. // Hepatol. 2017. V. 67. P. 1324–1331.
- McGill M.R., Williams C.D., Xie Y., et al. // Toxicol. Appl. Pharmacol. 2012. V. 264. P. 387–394.
- Vorobyeva A., Bragina O., Altai M., et al. // Contrast. Media Mol. Imaging. 2018. V. 2018. 6930425.
- Steffens M. G., Kranenborg M.H., O.C. Boerman O.C., et al. // Cancer Biother. Radiopharm. 1998. V. 13. P. 133–139.
- Ferris T., Carroll L., Jenner S., et al. // J. Labelled Comp Radiopharm. 2021. V. 64. P. 92–108.
- Bruinstroop E., van der Spek A.H., Boelen A. // Eur. Thyroid J. 2023. V. 12. e220211.
- Dohan O., De la Vieja A., Paroder V., et al. // Endocr. Rev. 2003. V. 24. P. 48–77.
- Shen Z., Wang Y., Su Z., et al. // Chem. Biol. Interact. 2018. V. 282. P. 22–28.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted

