Osmotic filtration of salt water in sedimentary strata containing semipermeable areas and its possible applications

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mathematical modeling and investigation of the filtration process of salt water in the sedimentary column, taking into account the phenomenon of osmosis, has been performed. It is shown that the osmotic interaction of salt and fresh water in a sedimentary column containing interlayers and inclusions of poorly permeable rocks (clays, silts, etc.) can lead to the appearance of zones of large pressure anomalies and the destruction of the geomedium. The proposed osmotic mechanism of destruction of the geomedium explains the formation of pockmarks and craters on the surface of passive areas of the crust that do not experience any movements and deformations for a long period of time. This mechanism is an alternative to the common point of view about a polygonal fault system of tectonic nature, on the basis of which marks on the seabed or craters in permafrost areas on land are explained. The mathematical model under study showed that under the conditions under consideration, convection of a solution with closed current lines occurs, similar to gravitational convection.

About the authors

M. M. Ramazanov

Joint Institute for High Temperatures of the Russian Academy of Sciences; Sadovsky Institute of Geosphere Dynamics

Author for correspondence.
Email: mukamay-ipg@mail.ru

Institute for Geothermal Research and Renewable Energy

Russian Federation, Makhachkala; Moscow

L. I. Lobkovsky

Shirshov Institute of Oceanology of Russian Academy of Sciences; V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: llobkovsky@ocean.ru

Academician of the RAS

Russian Federation, Moscow; Vladivostok

N. S. Bulgakova

Joint Institute for High Temperatures of the Russian Academy of Sciences; Dagestan State Institute of National Economy

Email: ipgnatali@mail.ru

Institute for Geothermal Research and Renewable Energy

Russian Federation, Makhachkala; Makhachkala

S. R. Gadzhimagomedova

Joint Institute for High Temperatures of the Russian Academy of Sciences; Dagestan State Institute of National Economy

Email: salikhat.g@gmail.com

Institute for Geothermal Research and Renewable Energy

Russian Federation, Makhachkala; Makhachkala

References

  1. Magara K. Compaction, Ion Filtration, and Osmosis in Shale and Their Significance in Primary Migration // The Am. Assoc. Petrol. Geol. Bullet. 1974. V. 58. №. 2. P. 283–290. https://doi.org/10.1306/83D913D5-16C7-11D7-8645000102C1865D
  2. Neuzil C.E. Osmotic generation of ‘anomalous’ fluid pressures in geological environments // Nature. 2000. V. 40. P. 182–184. https://doi.org/10.1038/35003174
  3. Young A., Low P.F. Osmosis in agrillaceous rocks // AAPG Bull. 1965. V. 49. P. 1004–1008. https://doi.org/10.1306/A663368E-16C0-11D7-8645000102C1865D
  4. Fritz S.J. Ideality of clay membranes in osmotic processes: A review // Clays Clay Miner. 1986. V. 34. P. 214–223. https://doi.org/10.1346/CCMN.1986.0340212
  5. Bolt G.H. Electrochemical phenomena in soil and clay systems // Developments in Soil Science. V. 5B. 1979. P. 387–432. https://doi.org/10.1016/S0166-2481(08)70666-4
  6. Рамазанов М.М., Каракин А.В., Лобковский Л.И. Математическая модель движения растворов с учетом осмотического эффекта // ДАН. 2019. Т. 489. № 1. С. 75–79. https://doi.org/10.31857/S0869-5652489175-79
  7. Keijzer Th.J.S., Loch J.P.G. Chemical osmosis in compacted dredging sludge // Soil. Sci. Soc. Am. J. 2001. V. 65. P. 1045–1055. https://doi.org/10.2136/sssaj2001.6541045x
  8. Marine I.W., Fritz S.J. Osmotic model to explain anomalous hydraulic heads // Water Resour. Res. 1981. V. 17. P. 73–82. https://doi.org/10.1029/WR017I001P00073
  9. Hanor J.S. Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins / Ed. John Parnell. Geological Society. 1994. P. 151–174.
  10. Bachu S. Synthesis and model of formation-water flow // Alberta Basin, Canada. Am. Assoc. Petrol. Geol. Bull. 1995. V. 79. P. 1159–1178. https://doi.org/10.1306/8D2B2209-171E-11D7-8645000102C1865D
  11. Berry F.A.F., Hanshaw B.B. Geological field evidence suggesting membrane properties of shales // Proc. 21st Int. Geol. Congress. Copenhagen, 1960. P. 209.
  12. Мирзаджанзаде А.Х., Ентов В.М. Гидродинамика в бурении. М.: Недра,1985. 196 с.
  13. Воронкевич С.Д., Сергеев В.И., Емельянов С.Н. Исследование фильтрационно-осмотических процессов при создании плотных защитных экранов / Задачи механики природных процессов. М.: НИИ Механики МГУ, 1983. С. 47–63.
  14. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуации / Под ред. Ю. А. Чизмаджева. М.: Мир, 1973. 280 с.
  15. Чураев Н.В. Физикохимия процессов массопереноса в пористых телах. М.: Химия, 1990. 272 с.
  16. Graham J., Tanaka N., Crilly T., Alfaro M. Modified Cam-Clay modeling of temperature effects in clays // Can. Geotech. J. 2001. V. 38. P. 608–621. https://doi.org/10.1139/cgj-38-3-608
  17. Srivastava R.C., Avasthi P.K. Non-equilibrium thermodynamics of thermo-osmosis of water through kaolinite // Hydrol. 1975. V. 24. P. 111–120. https://doi.org/10.1016/0022-1694(75)90145-6
  18. Астахов А.С., Маркевич В.С., Колесник А.Н., Ван Рудзян, Кононов В.В., Обрезков М.С., Босин А.А. Возможные условия и время формирования покмарков Чукотского плато // Океанология. 2014. Т. 54. № 4. С. 1–14. https://doi.org/10.7868/S0030157414040029
  19. Логвина Е.А., Матвеева Т.В., Гладыш В.А., Крылов А.А. Комплексные исследования покмарков на Чукотском плато // Проблемы Арктики и Антарктики. 2011. № 2(88). С. 45–54.
  20. Morgado A., Rocha L., Cartwright J., Cardoso S. Osmosis drives explosions and methane release in Siberian permafrost // arXiv - PHYS – Geophysics. Pub Date: 2023-08-11. https://doi.org/10.48550/arXiv.2308.06046
  21. Рамазанов М.М., Булгакова Н.С., Лобковский Л.И. Осмотическая конвекция // Доклады РАН. Физика, технические науки. 2022. Т. 504. № 1. С. 47–52. https://doi.org/10.31857/S2686740022020109

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences