Self-similar solutions of the bed deformation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, a conclusion about the self-similar behavior of the bed surface evolution is made. It is based on the analysis of experimental and numerical studies of the bed surface evolution under the mechanical impact of liquid flow. The bottom wave has a form close to one period of a sinusoidal function with a time-varying wavelength and constant steepness. A method of constructing the automodel dependence of the bed surface on time and spatial coordinate in analytical form is proposed. It was shown that it is enough to select five bottom surfaces with given wavelengths from a series of shapes. Next, the mean values of shear stresses are calculated for them, and the rates of change of wavelengths are found. Then a degree of approximation of the wavelength dependence of its rate of change is determined, and, finally, the exact solution of the corresponding differential equation is obtained. Comparison with experimental data and numerical solutions shows that the solution error does not exceed a few percent and that computational time is reduced by 25–30 times.

Full Text

Restricted Access

About the authors

А. G. Petrov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: petrovipmech@gmail.com
Russian Federation, Moscow

I. I. Potapov

Computing Center of the FEB RAS

Email: petrovipmech@gmail.com

Хабаровский федеральный исследовательский центр

Russian Federation, Khabarovsk

A. S. Epikhin

Ivannikov Institute for System Programming of the Russian Academy of Sciences

Email: petrovipmech@gmail.com
Russian Federation, Moscow

References

  1. Петров А.Г., Потапов И.И. Избранные разделы русловой динамики. М.: Ленанд, 2019. 244 с.
  2. Беликов В.В., Алексюк А.И. Модели мелкой воды в задачах речной гидродинамики. М.: РАН, 2020. 346 с.
  3. Sandra Paskin. The Self-Burial of Seabed Pipelines // Thesis. University of London. 1993. 361 p.
  4. Dey S., Navneet P. Singh Clear-Water Scour below Underwater Pipelines under Steady Flow // J. Hydraul. Eng. 2008. V. 134. № 5. P. 588–600.
  5. Chatterjee S.S., Ghosh S.N., Chatterjee M. Local scour due to submerged horizontal jet // J. Hydraulic Engineering. 1994. V. 120. № 8. Р. 937–991.
  6. Dey S., Sarkar A. Scour Downstream of an Apron Due to Submerged Horizontal Jets // J. Hydraulic Engineering. 2006. V. 132. № 3. March 1. Р. 246–257.
  7. Aamir M., Ahmad Z. Hydraulics of submerged jets causing scour downstream of a rough rigid apron // 14th International Symposium on River Sedimentation. Chengdu, China. 2019. September 16–19. Р. 1–10.
  8. Samma H., Amir Khosrojerdi, Masoumeh Rostam-Abadi, Mojtaba Mehraein, Yovanni Cataño-Lopera. Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet // IWA Publishing 2020. J. Hydroinformatics. 2020. V. 22. № 2. Р. 386–401.
  9. Седов Л.И. Методы подобия и размерности в механике. М.: Наука, Гл. ред. физ.-мат. лит., 1987. 432 с.
  10. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Физматлит, 2015. 728 с.
  11. Mao Y. The interaction between a pipeline and an erodible bed. Ser. Paper 39. Institute of Hydrodynamics and Hydraulic Engineering, Technical Univ. of Denmark, Lyngby, Denmark. 1986
  12. Liang D., Huang J., Zhang J., Shi S., Zhu N., Chen J. Three-Dimensional Simulations of Scour around Pipelines of Finite Lengths // J. Mar. Sci. Eng. 2022. V. 10. P. 106. https://doi.org/10.3390/jmse10010106

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of the bottom surface: a – under a pipe on the river bottom [11], b – under the influence of a flat bottom jet according to data from [6], 1 – sinusoidal approximation.

Download (191KB)
3. Fig. 2. Graphs of functions Ф(ξ) (a) and Г(ξ) (b).

Download (99KB)
4. Fig. 3. Statement of the problem of flow past a cylinder: a – scheme of the computational domain. Гin – input boundary, Гout – output boundary, Гbed – bottom boundary, Гtop – upper boundary; b – shapes of the bottom surface; results of calculation of flow past a cylinder over bottom waves: c – 3D wavelength; g – 6D wavelength.

Download (388KB)
5. Fig. 4. Comparison of results: a – calculated points with power approximation; b – calculation [12] (1), experimental data [11] (red dots), proposed model (2).

Download (201KB)

Note

Presented by Academician of the RAS R.I. Nigmatullin


Copyright (c) 2024 Russian Academy of Sciences