Third-order optical bandpass filters based on structures of alternating layers of quartz and silver

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Designs of optical bandpass filters have been developed on planar structures, which were obtained by vacuum deposition onto quartz glass (SiO2) substrates of three layers also of quartz, which are half-wavelength resonators separated from each other, from free space, and from the substrate by four layers of silver (Ag). The thicknesses of the Ag and SiO2 layers were determined based on the given parameters of the filter passband by parametric synthesis of one-dimensional models using electrodynamic analysis. In this case, experimental frequency dependences of the real and imaginary parts of the permittivity of silver were used. The measured frequency responses of the manufactured prototypes of red, green and purple filters are in good agreement with the responses obtained during synthesis.

Full Text

Restricted Access

About the authors

B. А. Belyaev

Reshetnev Siberian State University of Science and Technology; Siberian Federal University

Author for correspondence.
Email: belyaev@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

V. V. Tyurnev

Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

Email: belyaev@iph.krasn.ru
Russian Federation, Krasnoyarsk

G. V. Skomorokhov

Siberian Federal University; Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

Email: belyaev@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

S. M. Zharkov

Siberian Federal University; Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences

Email: belyaev@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

A. M. Serzhantov

Reshetnev Siberian State University of Science and Technology; Siberian Federal University

Email: belyaev@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

D. A. Shabanov

Reshetnev Siberian State University of Science and Technology; Siberian Federal University

Email: belyaev@iph.krasn.ru
Russian Federation, Krasnoyarsk; Krasnoyarsk

References

  1. Macleod H.A. Thin-Film Optical Filters. Boca Raton: CRC Press, 2010. 772 p.
  2. Беляев Б.А., Тюрнев В.В., Шабанов В.Ф. Полосно-пропускающие фильтры на одномерных фотонно-кристаллических структурах // ДАН. 2014. Т. 454. № 6. С. 651–656. https://doi.org/10.7868/S0869565214060097
  3. Li J. // Optics Commun. 2010. V. 283. P. 2647–2650. http://dx.doi.org/10.1016/j.optcom.2010.02.046
  4. Беляев Б.А., Тюрнев В.В., Шабанов В.Ф. // ДАН. 2014. Т. 456. № 4. С. 413–416. https://doi.org/10.7868/S0869565214160105
  5. Belyaev B.A., Tyurnev V.V., Shabanov V.F. // Optics Letters. 2014. V. 39. No 12. P. 3512–3515. http://dx.doi.org/10.1364/OL.39.003512
  6. Беляев Б.А., Лексиков Ан.А, Тюрнев В.В., Шабанов Д.А. Исследование композита: металлические наночастицы в диэлектрической матрице и многослойных полосно-пропускающих фильтров на его основе // ДАН. 2021. Т. 497. С. 5–11. https://doi.org/10.31857/S2686740021020024
  7. Li Z., Butun S., Aydin K. // ACS Photonics. 2015. V. 2. P. 183–189. http://dx.doi.org/10.1021/ph500410u
  8. Jen Y.J., Lin M.J. Coatings. 2018. No. 8. V. 231. P. 1–8. http://dx.doi.org/10.3390/coatings8070231
  9. Shen W., Sun X., Zhang Y., Luo Z., Liu X., Gu P. // Optics Communications. 2009. V. 282. P. 242–246. https://doi.org/10.1016/j.optcom.2008.09.080
  10. Гупта К., Гардж Р., Чадха Р. Машинное проектирование СВЧ-устройств. М.: Радио и связь, 1987. 432 с.
  11. Babar S., Weaver J.H. // Appl. Opt. 2015. V. 54. No 3. P. 477–481. http://dx.doi.org/10.1364/AO.54.000477
  12. Belyaev B.A., Tyurnev V.V. Ural Radio Engineering Journal. 2023. V. 7. No 4. P. 457–469. https://doi.org/10.15826/urej.2023.7.4.006
  13. Borah R., Ninakanti R., Bals S., Verbruggen S.W. Scientific Reports. 2022. No. 12. V. 15738. P. 1–19. https://doi.org/10.1038/s41598-022-20117-7

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency dependences of the real εʹ and imaginary εʺ parts of the permittivity of silver. The dots are the measurement results [11], the dashed lines are cubic spline interpolations. The inset shows the frequency dependence of the quality factor of silver.

Download (206KB)
3. Fig. 2. The design of a third-order filter and the frequency response of three filters tuned by bandwidth to the red, green and violet colors of the visible frequency spectrum (direct losses are lines, reflection losses are dots).

Download (376KB)
4. Fig. 3. Frequency response of the third-order filter prototypes (points) and frequency response of their one-dimensional models tuned to the passbands of the prototypes at a level of –3 dB from the minimum loss level (lines). In the insets: a – photographs of the prototypes taken in transmission, b – photograph of a cross-section of a two-layer Ag–SiO2 structure.

Download (451KB)

Note

Presented by Academician of the RAS V.F. Shabanov


Copyright (c) 2024 Russian Academy of Sciences